首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Currently, there are no accepted alternative tests for the replacement of animals in ocular irritation testing. This study focused on the quantification of cellular viability as a measure of toxic events in immortalised human corneal cell cultures and a three-dimensional corneal construct. Simultaneous vital dye staining by calcein AM and ethidium homodimer-1 was used to provide "live" and "dead" probes, respectively. For further quantification, we have developed image processing tools to evaluate digital images obtained from confocal fluorescence scanning microscopy measurements. Based on the finding that ocular irritation can be related to the extent of cell injury at the various cell layers of the cornea, we extended our studies from corneal cell cultures to an in vitro human corneal equivalent system comprising epithelial, stromal keratocyte and endothelial layers. Our results showed that the microscopic measurement of cellular injury by using either cell cultures or in vitro corneal constructs, combined with image processed quantification, can provide insight into the extent of the toxic effects.  相似文献   

3.
There is great interest in the identification of synthetic molecules that are capable of manipulating protein-protein interactions in living cells. Peptides, unlike other classes of small molecules, have binding properties appropriate for this application, but most are poorly cell permeable and sensitive to proteases. Therefore, considerable effort has been expended in the development of libraries of oligomeric peptide-like molecules. However, there are no clear-cut rules to guide the design of libraries rich in cell permeable compounds. Furthermore, currently available empirical methods to assess permeability may not accurately reflect true permeability and/or are capable of only modest throughput. We describe here an assay for assessing the relative cell permeability of synthetic molecules in the context of steroid fusions that is capable of high throughput and can be used in any transfectable cell line.  相似文献   

4.
The corneal epithelial stem cell   总被引:4,自引:0,他引:4  
The aim of this paper was to develop a GFP-expressing transgenic mouse model for the keratoepithelioplasty and to use this to follow the outcome of this form of graft, when placed on an inflamed corneal surface. Further aims were to characterize both the graft and the epithelial surface of the mouse and rat cornea using putative stem cell markers (P63 and Telomerase) and marker of cell differentiation (14-3-3 sigma). Keratepithelioplasty was carried out using a GFP transgenic mouse cornea as donor tissue. Fluorescent epithelial outgrowth from each keratepithelioplasty was scored and quantified. Donor corneal graft tissue was obtained from the paracentral region or the anatomical limbal region of murine corneas. Paracentral donor grafts (n = 20) consistently demonstrated a significant increase in proliferative potential compared to grafts obtained from the anatomical limbal region of the mouse cornea (n = 25) (P = 0.000, Mann-Whitney U). Correspondingly, P63 expression was maximal in the paracentral region of the mouse cornea, in keeping with the demonstrated increased proliferative potential of donor grafts harvested from this region of the cornea. The murine corneal epithelium demonstrated decreased rather than increased cellular layers at the limbal region, in contrast to that of the rat or human epithelium. In addition, as a general finding in all species tested, there was an apparent increase noted in P63 expression in basal corneal epithelial cells in regions that had increased cellular layers (limbus in humans and rats and the paracentral corneal region in the mouse). Epithelium, which had migrated from donor grafts onto recipient corneas, retained P63 expression for the period of time examined (up to 3 days postengraftment). In addition, the conjunctival surface of an injured conjunctivalized displayed an abnormal pattern of P63 expression. Telomerase expression was widespread throughout many layers of both the murine and rat corneal epithelium. In the mouse and rat corneal epithelium P63 expression was maximal in areas of increased proliferative potential. Its expression, however, was not confined to stem cells alone. Migrating cells from transplanted keratoepithelial grafts retained P63 expression at least in the early stages post-transplantation. Finally, damaged conjunctivalized corneas displayed an abnormal P63 expression pattern when compared to either normal conjunctiva or normal cornea.  相似文献   

5.
We investigated acid-base permeability properties of electrically resistive monolayers of alveolar epithelial cells (AEC) grown in primary culture. AEC monolayers were grown on tissue culture-treated polycarbonate filters. Filters were mounted in a partitioned cuvette containing two fluid compartments (apical and basolateral) separated by the adherent monolayer, cells were loaded with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and intracellular pH was determined. Monolayers in HCO-free Na(+) buffer (140 mM Na(+), 6 mM HEPES, pH 7.4) maintained a transepithelial pH gradient between the two fluid compartments over 30 min. Replacement of apical fluid by acidic (6.4) or basic (8.0) buffer resulted in minimal changes in intracellular pH. Replacement of basolateral fluid by acidic or basic buffer resulted in transmembrane proton fluxes and intracellular acidification or alkalinization. Intracellular alkalinization was blocked > or =80% by 100 microM dimethylamiloride, an inhibitor of Na(+)/H(+) exchange, whereas acidification was not affected by a series of acid/base transport inhibitors. Additional experiments in which AEC monolayers were grown in the presence of acidic (6.4) or basic (8.0) medium revealed differential effects on bioelectric properties depending on whether extracellular pH was altered in apical or basolateral fluid compartments bathing the cells. Acid exposure reduced (and base exposure increased) short-circuit current from the basolateral side; apical exposure did not affect short-circuit current in either case. We conclude that AEC monolayers are relatively impermeable to transepithelial acid/base fluxes, primarily because of impermeability of intercellular junctions and of the apical, rather than basolateral, cell membrane. The principal basolateral acid exit pathway observed under these experimental conditions is Na(+)/H(+) exchange, whereas proton uptake into cells occurs across the basolateral cell membrane by a different, undetermined mechanism. These results are consistent with the ability of the alveolar epithelium to maintain an apical-to-basolateral (air space-to-blood) pH gradient in situ.  相似文献   

6.
We have developed a simple dye transfer method that allows quantification of the gap-junction permeability of small cultured cells. Fluorescent dyes (calcein and Lucifer yellow) were perfused into one cell of an isolated cell pair using a patch-type micropipette in the tight-seal whole cell configuration. Dye spreading into the neighboring cells was monitored using a low-light charge-coupled device camera. Permeation rates for calcein and Lucifer yellow were then estimated by fitting the time course of the fluorescence intensities in both cells. For curve fitting, we used a set of model equations derived from a compartment model of dye distribution. The permeation rates were correlated to the total ionic conductance of the gap junction measured immediately after the perfusion experiment. Assuming that dye permeation is through a unit-conductance channel, we were then able to calculate the single-channel permeance for each tracer dye. We have applied this technique to HeLa cells stably transfected with rat-Cx46 and Cx43, and to BICR/M1R(k) cells, a rat mammary tumor cell line that has very high dye coupling through endogenous Cx43 channels. Scatter plots of permeation rates versus junctional conductance did not show a strictly linear correlation of ionic versus dye permeance, as would have been expected for a simple pore. Instead, we found that the data scatter within a wide range of different single-channel permeances. In BICR/M1R(k) cells, the lower limiting single-channel permeance is 2.2 +/- 2.0 x 10(-12) mm3/s and the upper limit is 50 x 10(-12) mm3/s for calcein and 6.8 +/- 2.8 x 10(-12) mm3/s and 150 x 10(-12) mm3/s for Lucifer yellow, respectively. In HeLa-Cx43 transfectants we found 2.0 +/- 2.4 x 10(-12) mm3/s and 95 x 10(-12) mm3/s for calcein and 2.1 +/- 6.8 x 10(-12) mm3/s and 80 x 10(-12) mm3/s for Lucifer yellow, and in HeLa-Cx46 transfectants 1.7 +/- 0.3 x 10(-12) mm3/s and 120 x 10(-12) mm3/s for calcein and 1.3 +/- 1.1 x 10(-12) mm3/s and 34 x 10(-12) mm3/s for Lucifer yellow, respectively. This variability is most likely due to a yet unknown mechanism that differentially regulates single-channel permeability for larger molecules and for small inorganic ions.  相似文献   

7.
In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell(LESC)hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient(or transit) amplifying cells(TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell(CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed by the LESC hypothesis.  相似文献   

8.
Summary Normal colonic epithelial cell cultures of mammalian origin are required to facilitate the study of both normal cellular functions as well as pathogenesis of certain (human) colonic diseases. To date, little information is available regarding the growth requirements of colonic epithelial cells in culture of eitehr animal or human origin. Such data would enable the development of a long-term culture system for these cells. In this study, we present methodology that results in the establishment of homogeneous cultures of adult rabbit colonic epithelial reproducibly, quickly, and in quantity. The epithelial nature of the cultures is unambiguously established by intermediate filament typing using antikeratin antibodies. Such culutres can now be used for a variety of functional studies as well as to investigate the growth requirements of colonic epithelial in culture. This work was supported by the Blinder Foundation for Crohn’s Disease Research, Harbor UCLA IBD Center (AM 36200) and grant AM 27806 from the National Institutes of Health, Bethesda, MD.  相似文献   

9.
A popular criterion of cell-cell communication in tissue cultures is dye coupling: the ability of the injected fluorescent dye of low molecular weight to be transferred from one cell to another. We report about a new factor which induces cell-to-cell dye coupling in previously uncoupled epithelial sheets. Paradoxically it is the standard fluorescent microscopy itself (that is, blue light of 320- to 480-nm wavelength) which induces rapid morphological alterations of cell culture followed by the transfer of fluorescent dye from one cell to another. Thus monitoring cell-cell dye coupling by fluorescent microscopy may itself induce the dye coupling in previously uncoupled epithelial cells.  相似文献   

10.
Apoptosis plays a causative role in acute lung injury in part due to epithelial cell loss. We recently reported that zinc protects the lung epithelium during inflammatory stress whereas depletion of intracellular zinc enhances extrinsic apoptosis. In this investigation, we evaluated the relationship between zinc, caspase-3, and cell-to-cell contact via proteins that form the adherens junction complex. Cell adhesion proteins are directly responsible for formation of the mechanical barrier of the lung epithelium. We hypothesized that exposure to inflammatory cytokines, in conjunction with zinc deprivation, would induce caspase-3, leading to degradation of junction proteins, loss of cell-to-cell contact, and compromised barrier function. Primary human upper airway and type I/II alveolar epithelial cultures were obtained from multiple donors and exposed to inflammatory stimuli that provoke extrinsic apoptosis in addition to depletion of intracellular zinc. We observed that zinc deprivation combined with tumor necrosis factor-alpha, interferon-gamma, and Fas receptor ligation accelerates caspase-3 activation, proteolysis of E-cadherin and beta-catenin, and cellular apoptosis, leading to increased paracellular leak across monolayers of both upper airway and alveolar lung epithelial cultures. Zinc supplementation inhibited apoptosis and paracellular leak, whereas caspase inhibition was less effective. We conclude that zinc is a vital factor in the lung epithelium that protects against death receptor-mediated apoptosis and barrier dysfunction. Furthermore, our findings suggest that although caspase-3 inhibition reduces lung epithelial apoptosis it does not prevent mechanical dysfunction. These findings facilitate future studies aimed at developing therapeutic strategies to prevent acute lung injury.  相似文献   

11.
12.
13.
Cervical cancer is a major public health problem and research using cell culture models has improved understanding of this disease. The human cervix contains three anatomic regions; ectocervix with stratified squamous epithelium, endocervix with secretory epithelium, and transformation zone (TZ) with metaplastic cells. Most cervical cancers originate within the TZ. However, little is known about the biology of TZ cells or why they are highly susceptible to carcinogenesis. The goal of this study was to develop and optimize methods to compare growth and differentiation of cells cultured from ectocervix, TZ or endocervix. We examined the effects of different serum-free media on cell attachment, cell growth and differentiation, and cell population doublings in monolayer culture. We also optimized conditions for organotypic culture of cervical epithelial cells using collagen rafts with human cervical stromal cells. Finally, we present a step-by-step protocol for culturing cells from each region of human cervix.  相似文献   

14.
Transformed 3T3 cells incubated with ATP at an alkaline pH become permeable to phosphorylated compounds. The increase in membrane permeability can be induced by incubation with ATP at a neutral pH but only if sodium fluoride is present. Fluoride is not necessary for activation of the permeability change in these cultures at the alkaline pH. The effect of fluoride is very rapid, and sodium fluoride by itself does not alter membrane permeability. The alteration of membrane permeability by ATP in 3T6 cells is reversible; the permeability barrier is restored by switching to neutral buffer in the presence or absence of divalent cations. The restoration of the membrane permeability barrier is prevented by fluoride, and by ATP itself; this action of ATP is specific and no other nucleoside triphosphates or chelating agents produce this effect. Untransformed 3T3 cells do not exhibit any appreciable change in permeability as a result of ATP treatment either in the presence or absence of fluoride. These results are consistent with the presence on the transformed cell surface of an ATP-requiring protein kinase and a fluoride-inhibitable protein phosphatase, which would be involved in the control of membrane permeability.  相似文献   

15.
We analyze a stochastic model that describes receptor-mediated ligand trapping in epithelial layers and cell culture assays. In both cases, the problem is reduced to diffusion of a Brownian particle between the partially absorbing and reflective surfaces. We derive an analytical expression for the spatial distribution of the trapping points and identify the domains of applicability of the two limiting regimes. We conclude that a thin layer approximation is applicable for ligand trapping in epithelial layers while a typical cell culture experiment is appropriately described within an infinite layer approximation.  相似文献   

16.
17.
Growth and characterization of human skin epithelial cell cultures   总被引:6,自引:0,他引:6  
Summary In 129 of 140 attempts, human skin cells were successfully cultured on the dermal collagen bed of sterile, dead pigskin. Diploid epithelial cells grew selectively on the collagen bed; fibroblasts grew on the glass surfaces of the culture dishes. The cultures could be subdivided physically up to six times at a 1:2 split ratio, but at least 24 to 48 cell generations were produced over the months the cells could be carried. Much of the cell multiplication resulted in maturation into distinct basal, squamous, granular, and keratinized cell layers. The cultured cells were considered epithelial because of their shape, possession of intercellular bridges, desmosomes and tonofibrils, and because they formed maturating epithelium in vitro and upon transplantation back to the original human donor. As the cells grew they digested the pigskin collagen, thus producing clear zones that could be used to monitor and quantitate cell growth. Multiplication of epithelial cells, rather than migration, was indicated by mitotic figures in colchicine-treated cultures and by DNA synthesis. Expert technical assistance was provided by Nancy Allen (cell culture); William Towler (electron microscopy); James Malone, Nona Scaife, and Joy M. Nicolet (cytogenetics); R. Thomas Campbell and Dorothy Sarver (photography); and V. L. Angerstein, Susan Ekker, and Arnater Yarbrough (histology). This work was supported by The United Fund Cancer Society of Summit County, the Greater Cleveland Associated Foundation (grant no. 3G3490X1), the National Institute of General Medical Services (grant no. 1 R01 GM 21929-01), and the Charles E. Merrill Trust.  相似文献   

18.
In the present study, the analysis of epithelial cells derived from various sources was undertaken, beginning from the mammary gland tissue through the primary cultures and their subsequent passages. The objective of the study was the comparative analysis of the stage in which the epithelial cells obtained from individuals in different lactation cycles and disparate phases of cell culture growth are the most suitable for morphological research and analysis of gene expression activity. The cultures of primary bovine mammary epithelial cells and passages were identified morphologically using immunocytochemical methods. After positive identification, real-time PCRs were performed for the analysis of the expression level of casein genes, whey protein genes, and butyrophilin gene. The most stable reference genes in real-time PCRs for the mammary gland tissue and cell cultures were also determined. Of the reference genes, the UXT and GAPDH genes appeared to be the most stable ones for the mammary gland tissue samples and epithelial cell cultures. The results obtained allowed concluding that the mammary gland samples collected from heifers constituted the most effective material for the initiation of primary cultures. The primary cultures formed characteristic for the mammary gland tissue dome structures, which images were obtained using confocal microscopy. The highest levels of expression of the CSN1S1, CSN1S2, CSN2, and CSN3 genes were detected in primary cultures. The levels of expression of whey protein genes (LALBA and BGL) were highest in the second passage. The most abundant expression of the BTN1A1 gene was observed in primary cultures and the third passage. On the basis of the whole experiment, it can be concluded that primary cultures and cells of the second passage derived from heifer individuals appeared to be the best materials for the analysis of mammary gland function and gene expression activity.  相似文献   

19.
The hydraulic water permeability (Lp) of the cell membranes of Necturus gallbladder epithelial cells was estimated from the rate of change of cell volume after a change in the osmolality of the bathing solution. Cell volume was calculated from computer reconstruction of light microscopic images of epithelial cells obtained by the "optical slice" technique. The tissue was mounted in a miniature Ussing chamber designed to achieve optimal optical properties, rapid bath exchange, and negligible unstirred layer thickness. The control solution contained only 80% of the normal NaCl concentration, the remainder of the osmolality was made up by mannitol, a condition that did not significantly decrease the fluid absorption rate in gallbladder sac preparations. The osmotic gradient ranged from 11.5 to 41 mosmol and was achieved by the addition or removal of mannitol from the perfusion solutions. The Lp of the apical membrane of the cell was 1.0 X 10(-3) cm/s . osmol (Posm = 0.055 cm/s) and that of the basolateral membrane was 2.2 X 10(-3) cm/s . osmol (Posm = 0.12 cm/s). These values were sufficiently high so that normal fluid absorption by Necturus gallbladder could be accomplished by a 2.4-mosmol solute gradient across the apical membrane and a 1.1-mosmol gradient across the basolateral membrane. After the initial cell shrinkage or swelling resulting from the anisotonic mucosal or serosal medium, cell volume returned rapidly toward the control value despite the fact that one bathing solution remained anisotonic. This volume regulatory response was not influenced by serosal ouabain or reduction of bath NaCl concentration to 10 mM. Complete removal of mucosal perfusate NaCl abolished volume regulation after cell shrinkage. Estimates were also made of the reflection coefficient for NaCl and urea at the apical cell membrane and of the velocity of water flow across the cytoplasm.  相似文献   

20.
Specular microscopy can provide a non-invasive morphological analysis of the cornea endothelial cell layer. A variety of analysis programs are available to determine corneal endothelial quality. The flex-center endothelial analysis method (Konan Inc) is a newer technique including the outermost digitized cells and thus increases the number of cells for analysis. The aim of this study is to analyze whether the new flex-center method, increases the possibilities of corneal endothelium evaluation before implants. For this purpose 67 corneas were studied by both methods at the Eye Bank of the Tissue Establishment of Córdoba. Although we have found differences in the resulting of number of cells in the area analysed, no significant differences were found with respect to the endothelial cell count, coefficient of variation cell area, and the percentage of hexagonal cells recorded. Based on this data, both methods can be used satisfactorily in eye banking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号