首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes immunohistochemical localization, purification and characterization of glutathione S-transferase (GST) of human urinary bladder. Even though all the three major classes of isoenzymes (alpha, mu, and pi) were expressed in human bladder, more than 90% of total GST activity was accounted for by a pi class anionic form. Human bladder alpha, mu, and pi class GSTs were immunologically related to respective isoenzymes of other human tissues. GST pi was present in all 13 samples analyzed, whereas GST alpha and mu were detected in nine and eleven samples, respectively. GST alpha of human bladder appeared to be unique, because unlike this class of GSTs of other human tissues, bladder enzyme had lower affinity for GSH linked to epoxy-activated Sepharose 6B affinity resin. Immunohistochemical staining indicated localization of GST alpha in epithelial surface cells, underlying submucosa and smooth muscle, whereas mu and pi class isoenzymes were predominantly distributed in epithelial surface cells. These results suggest that human bladder GSTs may play an important role in providing protection against xenobiotics because epithelium is considered a target for several carcinogens and all the three classes of isoenzymes are expressed in these cells.  相似文献   

2.
Human muscle glutathione S-transferase isozyme, GST zeta (pI 5.2) has been purified by three different methods using immunoaffinity chromatography, DEAE cellulose chromatography, and isoelectric focusing. GST zeta prepared by any of the three methods does not recognize antibodies raised against the alpha, mu, or pi class glutathione S-transferases of human tissues. GST zeta has a blocked N-terminus and its peptide fingerprints also indicate it to be distinct from the alpha, mu, or pi class isozymes. As compared to GSTs of alpha, mu, and pi classes, GST zeta displays higher activities toward t-stilbene oxide and Leukotriene A4 methyl ester. GST zeta also expresses GSH-peroxidase activity toward hydrogen peroxide. The Kms of GST zeta for CDNB and GSH were comparable to those reported for other human GSTs but its Vmax for CDNB, 7620 mol/mol/min, was found to be considerably higher than that reported for other human GSTs. The kinetics of inhibition of GST zeta by hematin, bile acids, and other inhibitors also indicate that it was distinct from the three classes of GST isozymes. These studies suggest that GST zeta corresponds to a locus distinct from GST1, GST2, and GST3 and probably corresponds to the GST4 locus as suggested previously by Laisney et al. (1984, Human Genet. 68, 221-227). The results of peptide fingerprints and kinetic analysis indicate that as compared to the pi and alpha class isozymes, GST zeta has more structural and functional similarities with the mu class isozymes. Besides GST zeta several other GST isozymes belonging to pi and mu class have also been characterized in muscle. The pi class GST isozymes of muscle have considerable charge heterogeneity among them despite identical N-terminal sequences.  相似文献   

3.
The possible role of glutathione S-transferases (GST) in detoxification of fatty acid epoxides generated during lipid peroxidation has been evaluated. Present studies showed that cytosolic human glutathione S-transferases belonging to alpha, mu, and pi classes isolated from human liver and lung catalyzed the conjugation of glutathione and 9,10-epoxystearic acid. The product of enzymatic reaction, i.e., conjugate of GSH and epoxystearic acid, was isolated and characterized. The Michaelis constant (Km) values of the alpha, mu, and pi classes of GSTs for 9,10-epoxystearic acid were found to be 0.47, 0.32 and 0.80 mM, respectively, whereas the maximal velocity (V max) values for the alpha, mu, and pi classes of GSTs were found to be 142, 256, and 52 mol/min/mol, respectively. These results indicate that even though 9,10-epoxystearic acid is a substrate for all the three classes of GSTs, the mu class isozymes have maximum activity toward this substrate and may preferentially metabolize fatty acid epoxides more effectively as compared to the other classes of GSTs.  相似文献   

4.
Isozyme characterization of glutathione S-transferase (GST) isolated from bovine ocular tissue was undertaken. Two isozymes of lens, GST 7.4 and GST 5.6, were isolated and found to be homodimers of a Mr 23,500 subunit. Amino acid sequence analysis of a 20-residue region of the amino terminus was identical for both isozymes and was identical to GST psi and GST mu of human liver. Antibodies raised against GST psi cross-reacted with both lens isozymes. Although lens GST 5.6 and GST 7.4 demonstrated chemical and immunological relatedness, they were distinctly different as evidenced by their pI and comparative peptide fingerprint. A corneal isozyme, GST 7.2, was also isolated and established to be a homodimer of Mr 24,500 subunits. Sequence analysis of the amino-terminal region indicated it to be about 67% identical with the GST pi isozyme of human placenta. Antibodies raised against GST pi cross-reacted with cornea GST 7.2. Another corneal isozyme, GST 8.7, was found to be homodimer of Mr 27,000 subunits. Sequence analysis revealed it to have a blocked amino-terminus. GST 8.7 immunologically cross-reacted with the antibodies raised against cationic isozymes of human liver indicating it to be of the alpha class. Two isozymes of retina, GST 6.8 and GST 6.3, were isolated and identified to be heterodimers of subunits of Mr 23,500 and 24,500. Amino-terminal sequence analysis gave identical results for both retina GST 6.8 and GST 6.3. The sequence analysis of the Mr 23,500 subunit was identical to that obtained for lens GSTs. Similarly, sequence analysis of the Mr 24,500 subunit was identical to that obtained for the cornea GST 7.2 isozyme. Both the retina isozymes cross-reacted with antibodies raised against human GST psi as well as GST pi. The results of these studies indicated that all three major classes of GST isozymes were expressed in bovine eye but the GST genes were differentially expressed in lens, cornea, and retina. In lens only the mu class of GST was expressed, whereas cornea expressed alpha and pi classes and retina expressed mu and pi classes of GST isozymes.  相似文献   

5.
Several forms of glutathione S-transferase (GST) are present in human kidney, and the overall isoenzyme pattern of kidney differs significantly from those of other human tissues. All the three major classes of GST isoenzymes (alpha, mu and pi) are present in significant amounts in kidney, indicating that GST1, GST2 and GST3 gene loci are expressed in this tissue. More than one form of GST is present in each of these classes of enzymes, and individual variations are observed for these classes. The structural, immunological and functional properties of GST isoenzymes of three classes differ significantly from each other, whereas the isoenzymes belonging to the same class have similar properties. All the cationic GST isoenzymes of human kidney except for GST 9.1 are heterodimers of 26,500-Mr and 24,500-Mr subunits. GST 9.1 is a dimer of 24,500-Mr subunits. All the cationic isoenzymes of kidney GST cross-react with antibodies raised against a mixture of GST alpha, beta, gamma, delta and epsilon isoenzymes of liver. GST 6.6 and GST 5.5 of kidney are dimers of 26,500-Mr subunits and are immunologically similar to GST psi of liver. Unlike other human tissues, kidney has at least two isoenzymes (pI 4.7 and 4.9) associated with the GST3 locus. Both these isoenzymes are dimers of 22,500-Mr subunits and are immunologically similar to GST pi of placenta. Some of the isoenzymes of kidney do not correspond to known GST isoenzymes from other human tissues and may be specific to this tissue.  相似文献   

6.
Amino acid sequence of glutathione S-transferase b from guinea pig liver   总被引:1,自引:0,他引:1  
The amino acid sequence of glutathione S-transferase b (GST b) from guinea pig liver was determined by conventional methods. GST b was composed of two identical subunits, each with 217 amino acid residues. As GSTs are generally classified into three classes, alpha, mu, and pi, GST b belonged to class mu and the amino acid sequence of GST b showed about 80% homology with that of rat GST Yb.  相似文献   

7.
The glutathione S-transferases (GST) are a family of isoenzymes serving a major role in the biotransformation of many reactive compounds. The isoenzymes from rat, man and mouse are divided into three classes, alpha, mu and pi, on the basis of similar structural and enzymatic properties. In view of the fact that the individual isoenzymes demonstrate differential though overlapping substrate selectivities, the extent to which biotransformation occurs is dependent on the actual profile of isoenzymes present. Consequently, both genetic factors as well as external factors causing changes in the levels or activities of individual isoenzymes are of relevance with respect to an individual's susceptibility towards electrophilic compounds. This review article deals with a number of determinants of GST isoenzyme patterns and/or activities, including tissue distribution, developmental patterns, hormonal influences, induction and inhibition. In addition, current knowledge on specific properties of class alpha, class mu and class pi isoenzymes is presented.  相似文献   

8.
Glutathione S-transferases in normal and malignant human colon tissue   总被引:1,自引:0,他引:1  
This study focuses on the GST composition of a tissue intrinsically resistant to chemotherapy, the human colon. GSTs were purified from matched pairs of colon tissue (normal and tumor) using glutathione affinity chromatography. The mean GST activity of colon tumors was 1.5-fold higher than that of normal tissue, with tumors of the sigmoid colon showing the greatest increase (2.3-fold). Two-dimensional gel electrophoresis and Western blot analysis of purified enzymes demonstrated the presence of all three GST classes (alpha, mu and pi) in colon, with GST pi being both the predominant isozyme in normal and malignant tissues. The level of alpha class subunits was the same in normal and tumor tissues, while the mu class subunits were decreased in tumors. A protein copurifying with GSTs from both normal and tumor tissue did not crossreact with GST antibodies, but instead reacted with a polyclonal antibody to glyoxylase I. This enzyme existed as a dimer in its native state. Upon boiling, monomeric subunits were produced with a molecular mass of 22.6 kDa and an isoelectric point more acidic than GST pi. Increased amounts of glyoxylase I were also found in tumor vs. normal colon. The apparent elevated levels of these glutathione-associated detoxifying enzymes in colon tumors may contribute to their intrinsic drug resistance.  相似文献   

9.
The developmental expression of the alpha, mu and pi class glutathione S-transferases has been defined in human liver using radioimmunoassay and immunohistochemistry. Expression of alpha and mu class isoenzymes increased significantly at birth, while that of the pi isoenzyme declined during the first trimester. Mu-class isoenzymes (GST1 1, GST1 2, GST1 2-1) were expressed in hepatocytes but not in other liver cell types.  相似文献   

10.
In the adult dog liver cytosol we identified four glutathione S-transferase (GST) subunits, Yd1 (Mr 26,000), Yd2 (Mr 27,000), Yd3 (Mr 28,000), and Ydf (Mr 27,400), and purified GST forms comprising Yd1, Yd2, and Yd3, to apparent homogeneity. Unlike rat transferases the enzyme activity toward 1,2-dichloro-4-nitrobenzene (DCNB) was not retained on the affinity column. Thus the DCNB-active enzyme, GST YdfYdf, from the flow-through fraction of the affinity column was also purified to homogeneity by gel filtration, DE52 chromatography, chromatofocusing, and hydroxylapatite column chromatography. Immunoblot analysis of dog GSTs revealed that the subunits Yd1, Yd2, and Yd3 belong to the pi, alpha, and mu class, respectively. On the contrary, Ydf had no reactivity with antibodies raised against any of the three classes of GST. Each subunit, Yd1, Yd2, Yd3, and Ydf, was distinguishable by its own retention time on reverse-phase high performance liquid chromatography. N-terminal amino acid sequences of the dog GSTS Yd1Yd1 and Yd3Yd3 revealed a high degree of homology to the pi and mu class transferases from rat, human, and mouse, respectively, while the N terminus of Yd2Yd2 is blocked. N-terminal amino acid sequences of GST YdfYdf showed no homology to any of the three classes of GST. The most significant property noted of GST YdfYdf is the high specific activity toward DCNB, exceeding by 1 order of magnitude the corresponding values for the known mu class GSTs. The present results strongly suggest that dog GST YdfYdf is a unique enzyme distinct from the hitherto characterized GST isozymes.  相似文献   

11.
The oxidation of linoleic acid produces several products with biological activity including the hydroperoxy fatty acid 13-hydroperoxyoctadecadienoic acid (13-HPODE), the hydroxy fatty acid 13-hydroxyoctadecadienoic acid (13-HODE), and the 2,4-dienone 13-oxooctadecadienoic acid (13-OXO). In the present work, the peroxidase activity of glutathione transferases (GST) A1-1, M1-1, M2-2, and P1-1(Val 105) toward 13-HPODE has been examined. The alpha class enzyme is the most efficient peroxidase while the two enzymes from the mu class exhibit weak peroxidase activity toward 13-HPODE. It was also determined that the conjugated diene 13-HODE is not a substrate for GST from the alpha and mu classes but that 13-HODE does inhibit the GST-catalyzed conjugation of CDNB by enzymes from the alpha, mu, and pi classes. Finally, both 13-HODE and 13-OXO were shown to be inducers of GST activity in HT-29 and HCT-116 colon tumor cells. These data help to clarify the role of GST in the metabolic disposition of linoleic acid oxidation products.  相似文献   

12.
The oxidation of linoleic acid leads to the generation of several products with biological activity, including 13-oxooctadeca-9,11-dienoic acid (13-OXO), a bioactive 2,4-dienone that has been linked to cell differentiation. In the current work, the conjugation of 13-OXO by human glutathione transferases (GSTs) of the alpha (A1-1, A4-4), mu (M1-1, M2-2) and pi (the allelic variants P1-1/ile, and P1-1/val) classes, and a rat theta (rT2-2) class enzyme has been evaluated. The kinetics and stereoselectivity of the production of the 13-OXO-glutathione conjugate (13-OXO-SG) have been examined. In contrast to many xenobiotic substrates, the endogenous substrate 13-OXO does not exhibit an appreciable non-enzymatic rate of conjugation under physiological conditions. Therefore, the GST-catalyzed conjugation takes on greater significance as it provides the only realistic means for formation of 13-OXO-SG in most biological systems. Alpha class enzymes are most efficient at catalyzing the formation of 13-OXO-SG with kcat/Km values of 8.9 mM(-1) s(-1) for GST A1-1 and 2.14 mM(-1) s(-1) for GST A4-4. In comparison, enzymes from the mu and pi classes exhibit specificity constants from 0.4 to 0.8 mM(-1) s(-1). Conjugation of 13-OXO with glutathione at C-9 of the substrate can yield a pair of diastereomers that can be resolved by chiral HPLC. GSTs from the mu and pi classes are the most stereoselective enzymes and there is no apparent relationship between catalytic efficiency and stereoselectivity. The role of GST in the metabolic disposition of the bioactive oxidation products of linoleic acid has implications for the regulation of normal cellular functions by these versatile enzymes.  相似文献   

13.
14.
15.
Rat lens contains two classes of glutathione S-transferase (GST) isozymes; one is class mu, Yb1-Yb1, and the other is class pi, Yp-Yp, judged from their molecular weights, immunological properties and N-terminal amino acid sequences. The expression pattern of GST isozymes in the rat lens is different from that in pig and bovine lenses which have only class pi and class mu isozymes, respectively.  相似文献   

16.
This paper deals with the purification and the partial characterization of glutathione S-transferase (GST) isoforms from the clam Ruditapes decussatus. For the first step of purification, two affinity columns, reduced glutathione (GSH)-agarose and S-hexyl GSH-agarose, were mounted in series. Four affinity fractions were thus recovered. Further purification was performed using anion exchange chromatography. Seven fractions, which present a GST activity with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate, were collected and analyzed by RP-HPLC. Seven distinct GST isoforms were purified, six of them were homodimers, the last one was a heterodimer consisting of the subunits 3 and 6. Kinetic parameters were studied. Results showed that isoforms have distinct affinity and Vmax for GSH and CDNB as substrates. The catalytic activity of the heterodimer isoform appeared to be a combination of the ability of each subunit. The immunological properties of each purified isoform were investigated using three antisera anti-pi, anti-mu and anti-alpha mammalian GST classes. Three isoforms (3-3, 6-6 and 3-6) seem to be closely related to the pi-class GST. Both isoforms 1-1 and 2-2 cross-reacted with antisera to pi and alpha classes and the isoform 5-5 cross-reacted with the antisera to mu and pi classes. Subunit 4 was recognized by the three antisera used, and its N-terminal amino acid analysis showed high identity (53%) with a conserved sequence of an alpha/m micro /pi GST from Fasciola hepatica.  相似文献   

17.
The oxidation of linoleic acid leads to the generation of several products with biological activity, including 13-oxooctadeca-9,11-dienoic acid (13-OXO), a bioactive 2,4-dienone that has been linked to cell differentiation. In the current work, the conjugation of 13-OXO by human glutathione transferases (GSTs) of the alpha (A1–1, A4–4), mu (M1–1, M2–2) and pi (the allelic variants P1–1/ile, and P1–1/val) classes, and a rat theta (rT2–2) class enzyme has been evaluated. The kinetics and stereoselectivity of the production of the 13-OXO-glutathione conjugate (13-OXO-SG) have been examined. In contrast to many xenobiotic substrates, the endogenous substrate 13-OXO does not exhibit an appreciable non-enzymatic rate of conjugation under physiological conditions. Therefore, the GST-catalyzed conjugation takes on greater significance as it provides the only realistic means for formation of 13-OXO-SG in most biological systems. Alpha class enzymes are most efficient at catalyzing the formation of 13-OXO-SG with kcat/Km values of 8.9 mM−1 s−1 for GST A1–1 and 2.14 mM−1 s−1 for GST A4–4. In comparison, enzymes from the mu and pi classes exhibit specificity constants from 0.4 to 0.8 mM−1 s−1. Conjugation of 13-OXO with glutathione at C-9 of the substrate can yield a pair of diastereomers that can be resolved by chiral HPLC. GSTs from the mu and pi classes are the most stereoselective enzymes and there is no apparent relationship between catalytic efficiency and stereoselectivity. The role of GST in the metabolic disposition of the bioactive oxidation products of linoleic acid has implications for the regulation of normal cellular functions by these versatile enzymes.  相似文献   

18.
The human glutathione S-transferases are products of a gene superfamily which consists of at least four gene families. The various glutathione S-transferase genes are located on different human chromosomes, and new gene(s) are still being added to the gene superfamily. We have characterized a cDNA in pGTH4 encoding human glutathione S-transferase subunit 4 (GST mu) and mapped its gene (or a homologous family member) on chromosome 1 at p31 by in situ hybridization. Genomic Southern analysis with the 3' noncoding region of the cDNA revealed at least four human DNA fragments with highly homologous sequences. Using a panel of DNAs from mouse-human somatic cell hybrids in genomic DNA hybridization we show that the Hb (or B) genes of human glutathione S-transferases are on three separate chromosomes: 1, 6, and 13. Therefore, the glutathione S-transferase B gene family, which encodes the Hb (mu) class subunits, is a dispersed gene family. The GST mu (psi) gene, whose expression is polymorphic in the human population, is probably located on chromosome 13. We propose that the GST mu (psi) gene was created by a transposition or recombination event during evolution. The null phenotype may have resulted from a lack of DNA transposition just as much as from the deletion of an inserted gene.  相似文献   

19.
Håkansson S  Viljanen J  Broo KS 《Biochemistry》2003,42(34):10260-10268
Here we describe a new route to site- and class-specific protein modification that will allow us to create novel functional proteins with artificial chemical groups. Glutathione transferases from the alpha but not the mu, pi, omega, or theta classes can be rapidly and site-specifically acylated with thioesters of glutathione (GS-thioesters) that are similar to compounds that have been demonstrated to occur in vivo. The human isoforms A1-1, A2-2, A3-3, and A4-4 from the alpha class all react with the reagent at a conserved tyrosine residue (Y9) that is crucial in catalysis of detoxication reactions. The yield of modified protein is virtually quantitative in less than 30 min under optimized conditions. The acylated product is stable for more than 24 h at pH 7 and 25 degrees C. The modification is reversible in the presence of excess glutathione, but the labeled protein can be protected by adding S-methylglutathione. The stability of the ester with respect to added glutathione depends on the acyl moiety. The reaction can also take place in Escherichia coli lysates doped with alpha class glutathione transferases. A control substance that lacks the peptidyl backbone required for binding to the glutathione transferases acylates surface-exposed lysines. There is some acyl group specificity since one out of the three different GS-thioesters that we tried was not able to acylate Y9.  相似文献   

20.
(1) The tissue-specific expression of various glutathione-dependent enzymes, including glutathione S-transferase (GST), glutathione peroxidase and glyoxalase I, has been studied in bovine adrenals, brain, heart, kidney, liver, lung and spleen. Of the organs studied, liver was found to possess the greatest GST and glyoxalase I activity, and spleen the greatest glutathione peroxidase activity. The adrenals contained large amounts of these glutathione-dependent enzymes, but significant differences were observed between the cortex and medulla. (2) GST and glyoxalase I activity were isolated by S-hexylglutathione affinity chromatography. Glyoxalase I was found in all the organs examined, but GST exhibited marked tissue-specific expression. (3) The alpha, mu and pi classes of GST (i.e., those that comprise respectively Ya/Yc, Yb/Yn and Yf subunits) were all identified in bovine tissues. However, the Ya and Yc subunits of the alpha class GST were not co-ordinately regulated nor were the Yb and Yn subunits of the mu class GST. (4) Bovine Ya subunits (25.5-25.7 kDa) were detected in the adrenal, liver and kidney, but not in brain, heart, lung or spleen. The Yc subunit (26.4 kDa) was expressed in all those organs which expressed the Ya subunit, but was also found in lung. The mu class Yb (27.0 kDa) and Yn (26.1 kDa) subunits were present in all organs; however, brain, lung and spleen contained significantly more Yn than Yb type subunits. The pi class Yf subunit (24.8 kDa) was detected in large amounts in the adrenals, brain, heart, lung and spleen, but not in kidney or liver. (5) Gradient affinity elution of S-hexylglutathione-Sepharose showed that the bovine proteins that bind to this matrix elute in the order Ya/Yc, Yf, Yb/Yn and glyoxalase I. (6) In conclusion, the present investigation has shown that bovine GST are much more complex than previously supposed; Asaoka (J. Biochem. 95 (1984) 685-696) reported the purification of mu class GST but neither alpha nor pi class GST were isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号