首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethylene and auxin both enhance cell elongation growth in the rachis of the frond of Regnellidium diphyllum. Measurements of the stress relaxation modulus of the walls of methanol-killed rachis segments show that both auxin and ethylene cause an increase in cell wall extensibility, that the effects are additive, and that they occur in the presence of hypertonic solutions of mannitol that preclude cell elongation. The results are taken as evidence for the operation of two separate mechanisms for cell wall loosening.Abbreviation IAA indol-3yl-acetic acid  相似文献   

2.
THE RELATIONSHIP OF GIBBERELLIN AND AUXIN IN PLANT GROWTH   总被引:5,自引:0,他引:5  
No synergism was found between IAA and gibberellin in the Avenucurvature test and this bioassay thus measures changes in diffusibleauxin resulting from gibberellin treatment and not a synergisticaction of the gibberellin on the curvature response to auxin.Gibberellin treatment causes an increase in diffusible auxinfrom the stem apex of dwarf pea (Pisum sativum L. var. LittleMarvel) 24 to 48 hours before the elongation response in thestem. The increase in diffusible auxin in the stem apex of Centaureacyanus L. var. Blue Boy occurs four to six days before the boltingresponse to gibberellin treatment under short days. The stemtissues of both the dwarf pea and Centaurea show an elongationresponse to IAA when the IAA is applied in a manner simulatingthe stem apex. Thus the growth of the dwarf pea and the boltingof Centaurea brought about by treatment with gibberellin aredependent on an increase in diffusible auxin. 1Present address: Biological Institute, College of General Education,University of Tokyo, Komaba, Meguro, Tokyo.  相似文献   

3.
Abscisic acid promoted increase in frond number and fresh weightin Lemna polyrhiza when applied at low concentrations althoughhigher concentrations inhibited both parameters. Elongationof coleoptile segments of oats and wheat was also promoted bylow ABA concentrations when the coleoptile tip was not excised,although when the tip was removed no significant promotion wasdetected. Elongation of mesocotyl segments of oats and maizewas promoted by ABA and in these cases the maximum promotionoccurred at higher concentrations with maximum elongation ofmaize mesocotyl segments occurring at the highest concentrationtested. The dose-response relationship for ABA appears to be similarto that reported for IAA in some tissues.  相似文献   

4.
Dark treatment during the most active period of tulip shootgrowth induced rapid elongation of the first internode. Endogenousfree-form gibberellin and diffusible auxin in the first internodeincreased while bound-form gibberellin decreased after the darktreatment. Alternating dark and light treatments at 24-h intervalscaused increases in elongation of the first internode and theamounts of free-form gibberellin and diffusible auxin in thedark but their decreases in the light. TIBA treatment at thefirst node inhibited both the elongation and the increase indiffusible auxin, but did not affect the gibberellin amount.Ancymidol application prior to the dark treatment inhibitedthe increase in both free-form gibberellin and diffusible auxin.Application of gibberellin A3 increased both elongation of thefirst internode and the amount of diffusible auxin. It alsocaused recovery from ancymidol-mediated reduction in elongationand diffusible auxin content. Dark-induced elongation of thefirst internode was inhibited when all organs above the firstinternode were excised, but endogenous free-form gibberellinincreased and bound-form gibberellin decreased. After excision,elongation of the first internode occurred only when both GA3and IAA were applied exogenously, or when IAA was applied withdark treatment. These results indicate that dark-induced elongationof the first internode of tulip is promoted by auxin, whichis transported from the upper organs into the first internodedue to stimulation from the dark-induced increase in free-formgibberellin. Free- and bound-form gibberellins changed complementarilywith the dark and light treatments. An interconversion systembetween the two forms in the first internode and its dependenceon light conditions are also discussed. (Received June 23, 1984; Accepted March 5, 1985)  相似文献   

5.
Morphological and anatomical specializations of the climbing leaves (CL) of Lygodium japonicum were investigated. Examination of growth relationships between the rachis and pinnae of the circumnutating CL revealed a close relationship to the “searcher” morphology of twining shoots. The CL has resting pinna apices (leafbuds) capable of replacing a damaged leaf apex or ramifying the foliar axis. Their structure and growth is similar to the main leaf apex. CL growth is indeterminate and occurs at a steady rate. Crozier uncoiling and rachis elongation occurs by a mechanism of unequal rates of cell division and elongation. The adaptations of the CL are interpreted as specializations within the basic principles of fern leaf morphogenesis.  相似文献   

6.
Cell elongation in the rachis of the semiaquatic fern Regnellidium diphyllum is induced by the addition of ethylene or indoleacetic acid (IAA). Experiments with whole plants or rachis segments have shown that ethylene-induced growth requires the presence of auxin. Ethylene does not cause a modification in either endogenous auxin levels or in the extent of auxin metabolism but auxin transport is reduced. Rates of ethylene production in Regnellidium are not altered by either mechanical excitation or by the addition of auxin. A two-hormone control of cell expansion is proposed in which an initial, auxin-dependent growth event pre-conditions the cells to a further subsequent (or synchronous) ethylene-dependent growth event.Abbreviation IAA indole-3yl-acetic acid  相似文献   

7.
Mode of action of FC was compared with that of auxin in differentexperimental systems and the following results were obtained.
  1. FC, as well as auxin, primarily induced elongation of the epidermisof pea epicotyl segments, but it also promoted elongation ofthe inner tissue, as judged by its action in split stem tests,elongation of hollow-cylinder segments and elongation of unpeeledand peeled segments.
  2. FC decreased the minimum stress relaxationtime (T0) and increasedthe extensibility (mm/gr) of the epidermalcell wall of peaepicotyl segments, as did auxin.
  3. FC failedto induce expansion growth of Jerusalem artichoketuber sliceswhen given alone or in combination with kinetinor gibberellicacid.
  4. FC at concentrations lower than 10–6 M, when givenwithauxin at concentrations lower than 0.03 mg/liter, promotedelongationof Avena coleoptile segments in an additive manner,to achievethe maximum elongation at higher concentrations.
  5. An antiauxin, 2,4,6-trichlorophenoxyacetic acid, inhibitedtheelongation of Avena coleoptile segments due to auxin butnotthat due to FC.
  6. Nojirimycin, an inhibitor of ß-glycosidases,inhibitedelongation of pea internode segments due not onlyto auxin butalso to FC.
  7. At concentrations more than 10–5MFC promoted root elongationof intact lettuce seedlings, whichwas inhibited by exogenousauxin.
From these results it is concluded that FC and auxin have acommon mechanism, which may involve hydrogen ion extrusion,leading to cell wall loosening and thus cell elongation. Thisgrowth is limited to the extent that the cells are capable ofelongating in response to hydrogen ions. Otherwise there isa definite difference in the mode of actions between FC andauxin, including the nature of cellular receptors for thesetwo compounds. (Received August 29, 1974; )  相似文献   

8.
HATCHER  E. S. J. 《Annals of botany》1959,23(3):409-423
Surveys have been made of diffusible auxin in the stem tissuesof growing shoots of apple and plum rootstock varieties. Usingagar plates as carriers auxin was collected from the lower surfaceof isolated stem sections and assayed by the Avena curvaturemethod. The stool and layer shoots studied grew for severalmonths producing many leaves and reaching considerable lengths.The data provide information on selected internodes and showthe auxin status of the shoot at various times during growth,and the auxin gradients down the stem at these various times.Free auxin content of the shoot apex was consistently less thanthat of the internodes below. In 1946 auxin content declinedthroughout growth with a steady positioning of the auxin peakin the upper shoot. In 1947, following a period of drought,when growth almost ceased, a secondary auxin peak occurred positionedin lower internodes distant from the apex. This seasonal contrastwas reflected in the auxin relations of the individual internode,and was observed both in apple and plum. The nature of the auxindecline below the peak region, and the total disappearance offree auxin from the shoot as growth subsides, is discussed.The reappearance of free auxin in mature internodes, which hasnot been transmitted from the stem apex, implies either derivationfrom a stored state or the ability of the internode to produceits own auxin.  相似文献   

9.
Polar auxin transport inhibitors, including N-1-naphthylphthalamicacid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), have variouseffects on physiological and developmental events, such as theelongation and tropism of roots and stems, in higher plants.We isolated NPA-resistant mutants of Arabidopsis thaliana, withmutations designated pir1 and pir2, that were also resistantto TIBA. The mutations specifically affected the root-elongationprocess, and they were shown ultimately to be allelic to aux1and ein2, respectively, which are known as mutations that affectresponses to phytohormones. The mechanism of action of auxintransport inhibitors was investigated with these mutants, inrelation to the effects of ethylene, auxin, and the polar transportof auxin. With respect to the inhibition of root elongationin A. thaliana, we demonstrated that (1) the background levelof ethylene intensifies the effects of auxin transport inhibitors,(2) auxin transport inhibitors might act also via an inhibitorypathway that does not involve ethylene, auxin, or the polartransport of auxin, (3) the hypothesis that the inhibitory effectof NPA on root elongation is due to high-level accumulationof auxin as a result of blockage of auxin transport is not applicableto A. thaliana, and (4) in contrast to NPA, TIBA itself hasa weak auxin-like inhibitory effect. (Received April 12, 1996; Accepted September 2, 1996)  相似文献   

10.
Exo- and endoglucanases present in cereal coleoptile cell wallsare capable of mediating hydrolysis of non-cellulosic rß-(l,3)(l,4)-glucanin situ. To assess the relationship with cell elongation, glucanaseactivities and the respective polypeptide abundance were determinedas a function of Zea mays coleoptile development. Both exo-and endoglucanase activities were quite low initially, but increasedto achieve maximum levels by days 5 or 6. Western blots revealedthat the density of the protein bands increased with coleoptiledevelopment generally in correspondence to activity levels.However, in bioassays with 3 d old coleoptile segments we foundthat auxin stimulation of glucanase activities did not resultfrom increased glucanase polypeptide levels. Hence, there wasno evidence for de novo protein synthesis in excised coleoptilesin response to added auxin. While glucanase antibodies stronglyinhibited IAA-induced elongation of coleoptile segments on days2–4, these same antibodies had little effect on day 1.We conclude that glucanases contribute to auxin mediated coleoptilegrowth only during a limited developmental interval. We proposethat when elongation is dominate, the physical properties ofthe cell wall adjust in response to metabolism of cell wallrß-(l,3)(l,4)-glucans but the enhancement of suchactivity is governed by factors other than glucanase proteinlevels. (Received December 24, 1997; Accepted April 30, 1998)  相似文献   

11.
Diffusible chemoattractants and chemorepellants, together with contact attraction and repulsion, have been implicated in the establishment of connections between neurons and their targets. Here we study how such diffusible and contact signals can be involved in the whole sequence of events from bundling of axons, guidance of axon bundles towards their targets, to debundling and the final innervation of individual targets. By means of computer simulations, we investigate the strengths and weaknesses of a number of particular mechanisms that have been proposed for these processes.  相似文献   

12.
The effect of four pyrimidine base analogues and their antidoteson S. oligorrhiza was studied. FUdR stopped cell division at concentrations of 4 10–7M and higher. This effect could be nullified by the additionof 4 10–6 M thymidine. Neither uridine nor uracil hadan antidotal effect on FUdR. FU (8 10–6 M or higher concentration) affected celldivision, frond elongation and differentiation, and could notbe counteracted by either thymidine or uracil. TU (8 10–4 M) rather specifically inhibited differentiationof frond tissues, while not preventing cell division or theinitiation of new generations. Uracil and uridine at about equimolarconcentrations completely counteracted the TU effect. AzU (10–3 M) suppressed cell division, frond elongationand frond differentiation. When thymidine (10–3 M) wasadded simultaneously with AzU only cell elongation and differentiationof fronds were inhibited, but cell division proceeded. 10–3M uracil (but not uridine) counteracted all effects of AzU. 1 Based on a portion of the senior author's Ph.D. Thesis.  相似文献   

13.
Scott , Tom K., and Winslow R. Briggs . (Stanford U., Stanford, Calif.) Auxin relationships in the Alaska pea (Pisum sativum). Amer. Jour. Bot. 47(6) : 492–499. Illus. 1960.—The distribution of “free” auxin in the 9-day-old ‘Alaska’ pea epicotyl was determined by short-term ether extraction and by the standard agar diffusion technique. The apical bud appeared to be the only source of “free” auxin. In the upper (growing) internode “free” auxin as determined by diffusion was found to decrease significantly from apex to base, while “free” auxin as determined by extraction remained constant. Below this region, both diffusible and extractable auxin remain constant through one internode and then both decrease simultaneously to the base of the plant. In the growing region, a fraction of diffusible auxin must move from the transport system but remain readily extractable. Upon removal of the apical auxin source all “free” auxin will ultimately be found in the transport system from which it gradually disappears basally.  相似文献   

14.
Intemodes from Impatiens sultani shoots, explanted into sterileculture, often developed a transverse separation layer afterone to two weeks and the top then abscised from the bottom ofthe explant. Such abscission occurred more rapidly and in agreater proportion of explants when 00001 per cent auxin (IAA)was provided basally and when younger intemodes and shorterexplants were used. The distance of the separation layer fromthe base of the explant varied little with explant length, butincreased with the concentration of auxin applied basally. It seems that in this adventitious abscission the processesof positional definition and differentiation proceed withoutpause, whereas in normal abscission the position is definedearly in development but the final stage of differentiationof the separation layer is delayed until much later when theorgan senesces. To account for the results from the internodal explants andfrom surgical operations on shoots as well as for the characteristicposition of abscission sites of leaves and fruits, we suggestthat the position of abscission is controlled primarily by auxinacting as a morphogen: abscission sites occur at Y-junctionsjust above the base of the arm with the lower activity and auxinstatus, or in single axes above a region of higher auxin status.In both sites, the auxin concentration decreases in the apicaldirection. This hypothesis is supported by a mathematical model (see Appendix)of the interaction of diffusive and polar transport in controllingthe concentration gradient along intemodes with specified auxinconcentrations maintained basally. The model allows predictionsconcerning the site and timing of abscission which accord withobservations on intemodal explants. Impatiens sultani Hook., abscission, auxin, differentiation, diffusion coefficient, IAA, morphogen, polar transport coefficient, positional control, separation layer  相似文献   

15.
Trisporic acids (90% C) at concentrations of 0.2 to 0.8 mg/literinhibited the auxin induced elongation of Avena coleoptile.Only slight inhibition was observed with no auxin present. (Received February 1, 1977; )  相似文献   

16.
Using diploid strains of Saccharomyces cerevisiae and S. ellipsoideus,the following facts were found:
  1. Indole-3-acetic acid, 2,4-dichlorophenoxyacetic acid and -naphthaleneaceticacid produced stable variants differing in the cell form andin the response to the actions of auxin to elongate cells, toinduce respiration- deficient mutation and to promote sporulation.
  2. The auxins also produced stable variants differing in theabilityto form spores.
  3. Acetic acid had no above-menthionedactions of auxin.
  4. Spore-formation and cell elongation of someof auxin-inducedvariants were controlled by auxin.
Biological significance of the auxin-induced variation is discussedand the usefulness of some of these variants as experimentalmaterial for auxin physiology in general is pointed out. (Received November 1, 1966; )  相似文献   

17.
Exogenous Auxin Effects on Lateral Bud Outgrowth in Decapitated Shoots   总被引:16,自引:1,他引:15  
CLINE  MORRIS G. 《Annals of botany》1996,78(2):255-266
In 1933 Thimann and Skoog demonstrated exogenous auxin repressionof lateral bud outgrowth in decapitated shoots ofVicia faba. This evidence has given strong support for a role of auxinin apical dominance. Most, but not all, investigators have confirmedThimann and Skoog's results. In the present study, auxin treatmentswere carried out on ten different species or plant types, manyof which were treated with auxin in different forms, media andunder different light conditions. The Thimann–Skoog experimentdid work for most species (i.e. exogenous auxin did repressbud outgrowth) including thedgt tomato mutant which is knownto be insensitive to auxin in certain responses. Toxic auxinsymptoms were observed in some but not all species. The Thimann–Skoogexperiment did not work for greenhouse-grownColeus or forArabidopsis. Light was shown to reduce apical dominance inColeus andIpomoeanil . apical dominance; lateral bud outgrowth; axillary bud; auxin; IAA; decapitation; Vicia faba ; Ipomoea nil ; Pisum sativum ; Phaseolus vulgaris ; Lycopersion exculentum ; dgt ; Coleus blumei ; Arabidopsis thaliana ; Helianthus annuus ; Thimann–Skoog  相似文献   

18.
The growth of a cell strain derived from the stem pith of tobacco(Nicotiana tabacum L., cv. Virginia Bright Italia) was investigatedin subcultures grown at various levels of synthetic auxins.Both partial and complete auxin starvation resulted in a decreaseof the frequency of cell division. For these treatments theendogenous free indole-3-acetic acid content increased substantiallyat the commencement of the exponential growth phase. The possibilitythat the receptivity of the cells to auxin changed during thegrowth cycle was examined by measuring the activity of a membrane-boundauxin-binding site. In subcultures grown in a medium with anoptimal auxin concentration the maximum auxin-binding activitywas restricted to the end of the exponential growth phase. Inthe cells cultivated in partially or completely auxin deprivedmedia the auxin-binding activity increased to varying extents.These results probably reflect mechanisms controlling both theintracellular content of free auxin and the sensitivity of thecells to exogenous auxin supply (including auxin binding) withrespect to the cell division and/or growth Key words: Nicotiana tabacum L., plant cell culture, IAA, auxin-binding site, cell division  相似文献   

19.
Auxin Induced Lateral Root Formation in Chicory   总被引:2,自引:0,他引:2  
The supply of auxins [2,4-dichlorophenoxy acetic acid (2,4D),indole-3 acetic acid (1AA) and -naphthaleneacetic acid (NAA)]to excised chicory roots induced the formation of lateral rootmeristems mainly located close to the pre-existing apical rootmeristem. Lateral root growth induced in non-excised roots requiredhigher auxin concentrations. Inhibition of root elongation andconcomittant enlargement of the apices was also observed. SupplyingIAA induced the formation of lateral meristems earlier thanNAA, but subsequently favoured root elongation. Conversely,in the presence of 2,4D, reactivation of pericycle cells wasvery intense, but conversion of primordia to laterals was inhibited.Regardless of the auxin used, the responsive area in which lateralmeristems appeared was located a maximum of 4 mm away from theapical meristem. This region remained devoid of any lateralroot formation under control conditions. Pericycle cells oppositethe xylem poles in the diarch stele regained meristematic activityand divided transversally, giving rise to shorter cells. Thesecells subsequently divided periclinally, forming pairs of cellson the same transverse level. The root primordium extruded throughcortical cells and was surrounded by a lacuna formed to thedetriment of cortical cells.Copyright 1998 Annals of BotanyCompany Auxins,Cichorium intybus, chicory, lateral root, root elongation.  相似文献   

20.
EFFECT OF LIGHT ON AUXIN TRANSPORT AND ELONGATION OF AVENA MESOCOTYL   总被引:1,自引:0,他引:1  
The present work was undertaken to find if there are relations between light and auxin action on elongation of coleoptilar node and mesocotyl with Avena seedlings. Red light inhibited the elongation of mesocotyl and simultaneously decreased the rate of transport of diffusible auxin through the node. Red light also inhibited the transport of exogenously given IAA through the nodal region. The light inhibition of IAA transport was closely related to the increase of IAA immobilization. As the age proceeds, the ability of IAA immobilization increased with the decrease in the rate of mesocotyl elongation, even if the seedling was grown in complete darkness. The nature of radioactive substances found in the IAA-C14 treated tissue was examined by paper chromatography. The above results strongly suggested that the increase of IAA immobilization might result in the inhibition of mesocotyl elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号