首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although much is known about fibrin polymerization, because it is complex, the effects of various modifications are not intuitively obvious and many experimental observations remain unexplained. A kinetic model presented here that is based on information about mechanisms of assembly accounts for most experimental observations and allows hypotheses about the effects of various factors to be tested. Differential equations describing the kinetics of polymerization were written and then solved numerically. The results have been related to turbidity profiles and electron microscope observations. The concentrations of intermediates in fibrin polymerization, and fiber diameters, fiber and protofibril lengths have been calculated from these models. The simplest model considered has three steps; fibrinopeptide A cleavage, protofibril formation, and lateral aggregation of protofibrils to form fibers. The average number of protofibrils per fiber, which is directly related to turbidity, can be calculated and plotted as a function of time. The lag period observed in turbidity profiles cannot be accurately simulated by such a model, but can be simulated by modifying the model such that oligomers must reach a minimum length before they aggregate. Many observations, reported here and elsewhere, can be accounted for by this model; the basic model may be modified to account for other experimental observations. Modeling predicts effects of changes in the rate of fibrinopeptide cleavage consistent with electron microscope and turbidity observations. Changes only in the rate constants for initiation of fiber growth or for addition of protofibrils to fibers are sufficient to account for a wide variety of other observations, e.g., the effects of ionic strength or fibrinopeptide B removal or thrombospondin. The effects of lateral aggregation of fibers has also been modeled: such behavior has been observed in turbidity curves and electron micrographs of clots formed in the presence of platelet factor 4. Thus, many aspects of clot structure and factors that influence structure are directly related to the rates of these steps of polymerization, even though these effects are often not obvious. Thus, to a large extent, clot structure is kinetically determined.  相似文献   

2.
The well-characterized rates, mechanisms, and stochastics of nucleation-dependent polymerization of deoxyhemoglobin S (HbS) are important in governing whether or not vaso-occlusive sickle cell crises will occur. The less well studied kinetics of depolymerization may also be important, for example in achieving full dissolution of polymers in the lungs, in resolution of crises and/or in minimizing gelation-induced cellular damage. We examine depolymerization by microscopic observations on depolymerizing HbS fibers, by Monte Carlo simulations and by analytical characterization of the mechanisms. We show that fibers fracture. Experimental scatter of rates is consistent with stochastic features of the analytical model and Monte Carlo results. We derive a model for the distribution of vanishing times and also show the distribution of fracture-dependent fiber fragment lengths and its time dependence. We describe differences between depolymerization of single fibers and bundles and propose models for bundle dissolution. Our basic model can be extended to dissolution of gels containing many fibers and is also applicable to other reversible linear polymers that dissolve by random fracture and end-depolymerization. Under the model, conditions in which residual HbS polymers exist and facilitate repolymerization and thus pathology can be defined; whereas for normal polymers requiring cyclic polymerization and depolymerization for function, conditions for rapid cycling due to residual aggregates can be identified.  相似文献   

3.
A systematic study was performed of the fiber forming properties and polymerization characteristics of two peptide amphiphiles containing a diacetylene functionality in the alkyl tail comprising 23 and 25 C atoms, respectively. Both diyne containing peptide amphiphiles were able to form stable beta-sheet fibers of micrometers length in an aqueous solution. However, there was a large difference between the stability of the two amphiphiles. This was shown by a large difference in assembly and disassembly temperature and by different behavior during polymerization. Because the monomers were preorganized with a tight molecular packing, the polymerization could be carried out using wavelengths up to 532 nm. For both amphiphiles, the fiber structure did not change when the polymerization was carried out at an elevated temperature. The degree of polymerization, however, barely decreased for the longer amphiphile (2) but showed a gradual decline for the shorter one (1) when the temperature was raised from room temperature to the melting temperature of the fibers. Furthermore, the pH did not influence the fiber assembly for 2, but hampered it for 1 at alkaline pH. The fiber structure was, for both of the amphiphiles, not dependent on the pH. After polymerization, the molecular packing of the amphiphiles was only slightly influenced by an increase in temperature, as indicated by the small color change of polymerized fibers, which was also reversible. Additionally, pH had no influence on the assembly structure, as indicated by the color of the polymer which was the same at all pH values. Thus, both fibers increased in stability upon polymerization. The large difference in assembly and polymerization behavior of the two similar-looking amphiphiles 1 and 2, with a 23 or 25 carbon tail, is indicative of the subtlety of the assembly and disassembly processes in these fibrous architectures.  相似文献   

4.
Pathogenesis in sickle cell disease depends on polymerization of deoxyhemoglobin S into rod-like fibers, forming gels that rigidify red cells and obstruct the systemic microvasculature. Fiber structure, polymerization kinetics and equilibria are well characterized and intimately related to pathogenesis. However, data on gel rheology, the immediate cause of obstruction, are limited, and models for structure and rheology are lacking. The basis of gel rheology, micromechanics of individual fibers, has never been examined. Here, we isolate fibers by selective depolymerization of gels produced under photolytic deliganding of CO hemoglobin S. Using differential interference contrast (DIC) microscopy, we measure spontaneous, thermal fluctuations in fiber shape to obtain bending moduli (kappa) and persistence lengths (lambda(p)). Some fibers being too stiff to decompose shape accurately into Fourier modes, we measure deviations of fiber midpoints from mean positions. Serial deviations, sufficiently separated to be independent, exhibit Gaussian distributions and provide mean-squared fluctuation amplitudes from which kappa and lambda(p) can be calculated. Lambda(p) ranges from 0.24 to 13 mm for the most flexible and stiffest fibers, respectively. This large range reflects formation of fiber bundles. If the most flexible are single fibers, then lambda(p) =13 mm represents a bundle of seven single fibers. Preliminary data on the bending variations of frozen, hydrated single fibers of HbS obtained by electron microscopy indicate that the value 0.24 mm is consistent with the persistence length of single fibers. Young's modulus is 0.10 GPa, less than for structural proteins but much larger than for extensible proteins. We consider how these results, used with models for cross-linking, may apply to macroscopic rheology of hemoglobin S gels. This new technique, combining isolation of hemoglobin S fibers and measurement of micromechanical properties based on thermal fluctuations and midpoint deviations, can be used to study fibers of mutants, hemoglobin A/S, and mixtures and hybrids of hemoglobin S.  相似文献   

5.
Sperm from nematodes use a major sperm protein (MSP) cytoskeleton in place of an actin cytoskeleton to drive their ameboid locomotion. Motility is coupled to the assembly of MSP fibers near the leading edge of the pseudopod plasma membrane. This unique motility system has been reconstituted in vitro in cell-free extracts of sperm from Ascaris suum: inside-out vesicles derived from the plasma membrane trigger assembly of meshworks of MSP filaments, called fibers, that push the vesicle forward as they grow (Italiano, J.E., Jr., T.M. Roberts, M. Stewart, and C.A. Fontana. 1996. Cell. 84:105–114). We used changes in hydrostatic pressure within a microscope optical chamber to investigate the mechanism of assembly of the motile apparatus. The effects of pressure on the MSP cytoskeleton in vivo and in vitro were similar: pressures >50 atm slowed and >300 atm stopped fiber growth. We focused on the in vitro system to show that filament assembly occurs in the immediate vicinity of the vesicle. At 300 atm, fibers were stable, but vesicles often detached from the ends of fibers. When the pressure was dropped, normal fiber growth occurred from detached vesicles but the ends of fibers without vesicles did not grow. Below 300 atm, pressure modulates both the number of filaments assembled at the vesicle (proportional to fiber optical density and filament nucleation rate), and their rate of assembly (proportional to the rates of fiber growth and filament elongation). Thus, fiber growth is not simply because of the addition of subunits onto the ends of existing filaments, but rather is regulated by pressure-sensitive factors at or near the vesicle surface. Once a filament is incorporated into a fiber, its rates of addition and loss of subunits are very slow and disassembly occurs by pathways distinct from assembly. The effects of pressure on fiber assembly are sensitive to dilution of the extract but largely independent of MSP concentration, indicating that a cytosolic component other than MSP is required for vesicle-association filament nucleation and elongation. Based on these data we present a model for the mechanism of locomotion-associated MSP polymerization the principles of which may apply generally to the way cells assemble filaments locally to drive protrusion of the leading edge.  相似文献   

6.
BackgroundIn the lung, macrophages attempt to engulf inhaled high aspect ratio pathogenic materials, secreting inflammatory molecules in the process. The inability of macrophages to remove these materials leads to chronic inflammation and disease. How the biophysical and biochemical mechanisms of these effects are influenced by fiber length remains undetermined. This study evaluates the role of fiber length on phagocytosis and molecular inflammatory responses to non-cytotoxic fibers, enabling development of quantitative length-based models.MethodsMurine alveolar macrophages were exposed to short and long populations of JM-100 glass fibers, produced by successive sedimentation and repeated crushing, respectively. Interactions between fibers and macrophages were observed using time-lapse video microscopy, and quantified by flow cytometry. Inflammatory biomolecules (TNF-α, IL-1α, COX-2, PGE2) were measured.ResultsUptake of short fibers occurred more readily than for long, but long fibers were more potent stimulators of inflammatory molecules. Stimulation resulted in dose-dependent secretion of inflammatory biomolecules but no cytotoxicity or strong ROS production. Linear cytokine dose-response curves evaluated with length-dependent potency models, using measured fiber length distributions, resulted in identification of critical fiber lengths that cause frustrated phagocytosis and increased inflammatory biomolecule production.ConclusionShort fibers played a minor role in the inflammatory response compared to long fibers. The critical lengths at which frustrated phagocytosis occurs can be quantified by fitting dose-response curves to fiber distribution data.General significanceThe single physical parameter of length can be used to directly assess the contributions of length against other physicochemical fiber properties to disease endpoints.  相似文献   

7.
Coiled-coil motifs provide simple systems for studying molecular self-assembly. We designed two 28-residue peptides to assemble into an extended coiled-coil fiber. Complementary interactions in the core and flanking ion-pairs were used to direct staggered heterodimers. These had "sticky-ends" to promote the formation of long fibers. For comparison, we also synthesized a permuted version of one peptide to associate with the other peptide and form canonical heterodimers with "blunt-ends" that could not associate longitudinally. The assembly of both pairs was monitored in solution using circular dichroism spectroscopy. In each case, mixing the peptides led to increased and concentration-dependent circular dichroism signals at 222 nm, consistent with the desired alpha-helical structures. For the designed fiber-producing peptide mixture, we also observed a linear dichroism effect during flow orientation, indicative of the presence of long fibrous structures. X-ray fiber diffraction of partially aligned samples gave patterns indicative of coiled-coil structure. Furthermore, we used electron microscopy to visualize fiber formation directly. Interestingly, the fibers observed were at least several hundred micrometers long and 20 times thicker than expected for the dimeric coiled-coil design. This additional thickness implied lateral association of the designed structures. We propose that complementary features present in repeating structures of the type we describe promote lateral assembly, and that a similar mechanism may underlie fibrillogenesis in certain natural systems.  相似文献   

8.
Assembly of fibrin. A light scattering study.   总被引:9,自引:0,他引:9  
Using stopped flow light scattering, we show that assembly of fibrin following activation with non-rate-limiting amounts of thrombin or reptilase occurs in two steps, of which the first is end-to-end polymerization of fibrin monomers to protofibrils and the second is lateral association of protofibrils to fibers, in agreement with Ferry's original proposal. Polymerization is found to proceed as a bimolecular association of bifunctional monomers; the overall rate varies as the inverse first power of the concentration; end-to-end association of two monomers, of a monomer and an oligomer, and of two oligomers occurs with the same rate constant. The value of the rate constant is 8.2 C 10(5) M-1 s-1 in 0.5 M NaCl, is three times larger in 0.1 M NaCl (0.05 M Tris, pH 7.4), and is the same following activation by reptilase and by thrombin. The onset of growth of fibers from protofibrils takes 12 times longer in 0.5 than in 0.1 M salt, i.e. thick fibers ("coarse" gels) form from short protofibrils, and thin fibers ("fine" gels) form from longer protofibrils. Jumps of salt concentration at times when protofibrils, but not fibers, have formed result in immediate growth of thick fibers at low salt from long protofibrils formed at high salt. The rate of fiber growth in these experiments varies as the inverse first power of the concentration. 3the instant of gelation (formation of a network of fibers) falls in the later half of the time during which the scattering rises due to fiber growth; the rise of gel rigidity after gelation is found to continue beyond the end of this period. Jumps from low to high salt result in retention of whatever fibers have formed at low salt and a very small additional increase of the scattering due to further fiber growth at high salt. From a variety of evidence, we conclude that the properties of fibrin are determined by kinetics and not equilibria of assembly steps. Results obtained here agree with the following scheme of fibrin assembly: monomers polymerize to protofibrils; long protofibrils associate laterally to fibers; occasionally a long protofibril associates with two different fibers to form an interfiber connection; fiber growth does not reverse to yield stabler, more compact, structures and terminates in formation of a network of fibers. The typical delay of fiber growth is the time during which protofibrils form from monomers. Measurements at rate-limiting concentrations of thrombin have allowed estimation of turnover rates of fibrinopeptides that agree with kinetic parameters obtained with direct assay of fibrinopeptide. Release of fibrinopeptide B causes more rapid fiber formation. Addition of thrombin after activation by reptilase, at a time when protofibrils, but not fibers, have formed, is followed rapidly by fiber formation; this proves that thrombin readily removes fibrinopeptide B from protofibrils. On the basis of these new results and earlier work (in particular, Blomb?ck, B., Hessel, B., Hogg, D., and Therkildsen, L...  相似文献   

9.
Stress fibers play a central role in adhesion, motility, and morphogenesis of eukaryotic cells, but the mechanism of how these and other contractile actomyosin structures are generated is not known. By analyzing stress fiber assembly pathways using live cell microscopy, we revealed that these structures are generated by two distinct mechanisms. Dorsal stress fibers, which are connected to the substrate via a focal adhesion at one end, are assembled through formin (mDia1/DRF1)-driven actin polymerization at focal adhesions. In contrast, transverse arcs, which are not directly anchored to substrate, are generated by endwise annealing of myosin bundles and Arp2/3-nucleated actin bundles at the lamella. Remarkably, dorsal stress fibers and transverse arcs can be converted to ventral stress fibers anchored to focal adhesions at both ends. Fluorescence recovery after photobleaching analysis revealed that actin filament cross-linking in stress fibers is highly dynamic, suggesting that the rapid association-dissociation kinetics of cross-linkers may be essential for the formation and contractility of stress fibers. Based on these data, we propose a general model for assembly and maintenance of contractile actin structures in cells.  相似文献   

10.
The fiber composition of the distal accessory flexor muscle (DAFM) and the branching pattern of its excitor axon were compared in several species of crabs, in the lobster and the crayfish. The muscle is composed exclusively of long sarcomere (> 6 μm) fibers and therefore of the slow type. In all the crab species, except one, there is a distal to proximal gradient of fibers with increasing sarcomere lengths; this gradient is reverse in lobsters and crayfish. A proximal to distal gradient of increasing fiber diameters occurs in the DAFM of all crab species but not in the lobster and crayfish, in which all the fibers are approximately equal in diameter. The single excitatory axon traverses the width of the DAFM and gives off primary branches on either side in the lobster and crayfish but on only one side in crabs. The hypothesis that the axonal branching pattern may govern the regional distribution of fibers with differing sarcomere lengths in proposed.  相似文献   

11.
Elastic fibers provide tissues with elasticity which is critical to the function of arteries, lungs, skin, and other dynamic organs. Loss of elasticity is a major contributing factor in aging and diseases. However, the mechanism of elastic fiber development and assembly is poorly understood. Here, we show that lack of fibulin-4, an extracellular matrix molecule, abolishes elastogenesis. fibulin-4-/- mice generated by gene targeting exhibited severe lung and vascular defects including emphysema, artery tortuosity, irregularity, aneurysm, rupture, and resulting hemorrhages. All the homozygous mice died perinatally. The earliest abnormality noted was a uniformly narrowing of the descending aorta in fibulin-4-/- embryos at embryonic day 12.5 (E12.5). Aorta tortuosity and irregularity became noticeable at E15.5. Histological analysis demonstrated that fibulin-4-/- mice do not develop intact elastic fibers but contain irregular elastin aggregates. Electron microscopy revealed that the elastin aggregates are highly unusual in that they contain evenly distributed rod-like filaments, in contrast to the amorphous appearance of normal elastic fibers. Desmosine analysis indicated that elastin cross-links in fibulin-4-/- tissues were largely diminished. However, expression of tropoelastin or lysyl oxidase mRNA was unaffected in fibulin-4-/- mice. In addition, fibulin-4 strongly interacts with tropoelastin and colocalizes with elastic fibers in culture. These results demonstrate that fibulin-4 plays an irreplaceable role in elastogenesis.  相似文献   

12.
Intrinsically disordered proteins (IDPs) can form liquid-like membraneless organelles, gels, and fibers in cells and in vitro. In this study, we propose a simple model of IDPs as associative polymers in poor solvent and explore the formation of transient liquid droplets and their transformation into solid-like aggregates. We use Langevin dynamics simulations of short polymers with two stickers placed symmetrically along their contour to study the effect of the primary sequence of these polymers on their organization inside condensed droplets. We observe that the shape, size, and number of sticker clusters inside the droplet change from a long cylindrical fiber to many compact clusters as one varies the location of stickers along the chain contour. Aging caused by the conversion of intramoleclular to intermolecular associations is observed in droplets of telechelic polymers but not for other sequences of associating polymers. The relevance of our results to condensates of IDPs is discussed.  相似文献   

13.
The formation of a functional bipolar mitotic spindle is essential for genetic integrity. In human cells, the microtubule polymerase XMAP215/ch-Tog ensures spindle bipolarity by counteracting the activity of the microtubule-depolymerizing kinesin XKCM1/MCAK. Their antagonistic effects on microtubule polymerization confer dynamic instability on microtubules assembled in cell-free systems. It is, however, unclear if a similar interplay governs microtubule behavior in mammalian cells in vivo. Using real-time analysis of spindle assembly, we found that ch-Tog is required to produce or maintain long centrosomal microtubules after nuclear-envelope breakdown. In the absence of ch-Tog, microtubule assembly at centrosomes was impaired and microtubules were nondynamic. Interkinetochore distances and the lengths of kinetochore fibers were also reduced in these cells. Codepleting MCAK with ch-Tog improved kinetochore fiber length and interkinetochore separation but, surprisingly, did not rescue centrosomal microtubule assembly and microtubule dynamics. Our data therefore suggest that ch-Tog has at least two distinct roles in spindle formation. First, it protects kinetochore microtubules from depolymerization by MCAK. Second, ch-Tog plays an essential role in centrosomal microtubule assembly, a function independent of MCAK activity. Thus, the notion that the antagonistic activities of MCAK and ch-Tog determine overall microtubule stability is too simplistic to apply to human cells.  相似文献   

14.
The contribution of glycosaminoglycans (GAGs) to the biological and mechanical functions of biological tissue has emerged as an important area of research. GAGs provide structural basis for the organization and assembly of extracellular matrix (ECM). The mechanics of tissue with low GAG content can be indirectly affected by the interaction of GAGs with collagen fibers, which have long been known to be one of the primary contributors to soft tissue mechanics. Our earlier study showed that enzymatic GAG depletion results in straighter collagen fibers that are recruited at lower levels of stretch, and a corresponding shift in earlier arterial stiffening (Mattson et al., 2016). In this study, the effect of GAGs on collagen fiber recruitment was studied through a structure-based constitutive model. The model incorporates structural information, such as fiber orientation distribution, content, and recruitment of medial elastin, medial collagen, and adventitial collagen fibers. The model was first used to study planar biaxial tensile stress-stretch behavior of porcine descending thoracic aorta. Changes in elastin and collagen fiber orientation distribution, and collagen fiber recruitment were then incorporated into the model in order to predict the stress-stretch behavior of GAG depleted tissue. Our study shows that incorporating early collagen fiber recruitment into the model predicts the stress-stretch response of GAG depleted tissue reasonably well (rms = 0.141); considering further changes of fiber orientation distribution does not improve the predicting capability (rms = 0.149). Our study suggests an important role of GAGs in arterial mechanics that should be considered in developing constitutive models.  相似文献   

15.
《Biophysical journal》2021,120(20):4442-4456
Formins stimulate actin polymerization by promoting both filament nucleation and elongation. Because nucleation and elongation draw upon a common pool of actin monomers, the rate at which each reaction proceeds influences the other. This interdependent mechanism determines the number of filaments assembled over the course of a polymerization reaction, as well as their equilibrium lengths. In this study, we used kinetic modeling and in vitro polymerization reactions to dissect the contributions of filament nucleation and elongation to the process of formin-mediated actin assembly. We found that the rates of nucleation and elongation evolve over the course of a polymerization reaction. The period over which each process occurs is a key determinant of the total number of filaments that are assembled, as well as their average lengths at equilibrium. Inclusion of formin in polymerization reactions speeds filament nucleation, thus increasing the number and shortening the lengths of filaments that are assembled over the course of the reaction. Modulation of the elongation rate produces modest changes in the equilibrium lengths of formin-bound filaments. However, the dependence of filament length on the elongation rate is limited by the number of filament ends generated via formin’s nucleation activity. Sustained elongation of small numbers of formin-bound filaments, therefore, requires inhibition of nucleation via monomer sequestration and a low concentration of activated formin. Our results underscore the mechanistic advantage for keeping formin’s nucleation efficiency relatively low in cells, where unregulated actin assembly would produce deleterious effects on cytoskeletal dynamics. Under these conditions, differences in the elongation rates mediated by formin isoforms are most likely to impact the kinetics of actin assembly.  相似文献   

16.
Microfibril-associated MAGP-2 stimulates elastic fiber assembly   总被引:3,自引:0,他引:3  
Elastic fibers are complex structures composed of a tropoelastin inner core and microfibril outer mantle guiding tropoelastin deposition. Microfibrillar proteins mainly include fibrillins and microfibril-associated glycoproteins (MAGPs). MAGP-2 exhibits developmental expression peaking at elastic fiber onset, suggesting that MAGP-2 mediates elastic fiber assembly. To determine whether MAGP-2 regulates elastic fiber assembly, we used an in vitro model featuring doxycycline-regulated cells conditionally overexpressing exogenous MAGP-2 and constitutively expressing enhanced green fluorescent protein-tagged tropoelastin. Analysis by immunofluorescent staining showed that MAGP-2 overexpression dramatically increased elastic fibers levels, independently of extracellular levels of soluble tropoelastin, indicating that MAGP-2 stimulates elastic fiber assembly. This was associated with increased levels of matrix-associated MAGP-2. Electron microscopy showed that MAGP-2 specifically associates with microfibrils and that elastin globules primarily colocalize with MAGP-2-associated microfibrils, suggesting that microfibril-associated MAGP-2 facilitates elastic fiber assembly. MAGP-2 overexpression did not change levels of matrix-associated fibrillin-1, MAGP-1, fibulin-2, fibulin-5, or emilin-1, suggesting that microfibrils and other elastic fiber-associated proteins known to regulate elastogenesis do not mediate MAGP-2-induced elastic fiber assembly. Moreover, mutation analysis showed that MAGP-2 does not stimulate elastic fiber assembly through its RGD motif, suggesting that integrin receptor binding does not mediate MAGP-2-induced elastic fiber assembly. Because MAGP-2 interacts with Jagged-1 that controls cell-matrix interaction and cell motility, two key factors in elastic fiber macroassembly, microfibril-associated MAGP-2 may stimulate elastic fiber macroassembly by targeting the release of elastin globules from the cell membrane onto developing elastic fibers.  相似文献   

17.
18.
This study examines the myosin isozyme heterogeneity (in terms of both alkali light chains and myosin heavy chains) among skeletal muscle fibers of the rabbit and correlates these isozyme differences with the differences in a contractile property, the velocity of unloaded shortening, of the fibers. The mean velocities of unloaded shortening (pCa 4.3; 12 degrees C) were as follows: psoas IIb fibers, 2.07 fiber lengths/s (n = 25); tibialis anterior (IIb) fibers, 1.63 fiber lengths/s (n = 18); vastus intermedius IIa fibers, 0.98 fiber lengths/s (n = 15); fibers (IIa) from chronically stimulated tibialis anterior, 0.86 fiber lengths/s (n = 16). Peptide maps of the myosins showed that the myosin heavy chains of the two groups of IIb fibers were indistinguishable from each other, but different from the heavy chains of the IIa fibers. However, the difference in maximal shortening velocity of the two groups of IIb fibers was correlated with a difference in the alkali light chain ratio deduced from the intensity ratio of myosin isoforms separated by gel electrophoresis under nondenaturing conditions. The vastus intermedius (IIa) and chronically stimulated tibialis anterior (IIa) fibers were indistinguishable in terms of either velocities of unloaded shortening or myosin isozyme contents. Soleus fibers contained only slow-twitch myosin. Thus, among fibers that contained a variety of myosin isozymes, differences in shortening velocities were correlated with the alkali light chain ratio, myosin heavy chain type, or a combination of both.  相似文献   

19.
Vidal BC  Mello ML 《Biopolymers》2005,78(3):121-128
The optical anisotropies (linear dichroism or LD and birefringence) of crystalline aggregates of the sulfonic azo-dye Ponceau SS and of dye complexed with chicken tendon collagen fibers were investigated in order to assess their polarizing properties and similarity to liquid crystals. In some experiments, the staining was preceded by treatment with picric acid. Crystalline fibrous aggregates of the dye had a negative LD, and their electronic transitions were oriented perpendicular to the filamentary structures. The binding of Ponceau SS molecules to the collagen fibers altered the LD signal, with variations in the fiber orientation affecting the resulting dichroic ratios. The long axis of the rod-like dye molecule was assumed to be bound in register, parallel to the collagen fiber. Picric acid did not affect the oriented binding of the azo dye to collagen fibers. There were differences in the optical anisotropy of Ponceau SS-stained tendons from 21-day-old and 41-day-old chickens, indicating that Ponceau SS was able to distinguish between different ordered states of macromolecular aggregation in chicken tendon collagen fibers. In the presence of dichroic rod-like azo-dye molecules such as Ponceau SS, collagen also formed structures with a much higher degree of orientation. The presence of LD in the Ponceau SS-collagen complex even in unpolarized light indicated that this complex can act as a polarizer.  相似文献   

20.
In mouse chimaeras, individual skeletal muscle fibers typically contain populations of myonuclei derived from both cell lines. This 'mosaic' circumstance has provided an opportunity to investigate directly whether the mammalian myofiber syncytium is functionally subdivided into territories, each preferentially influenced by products encoded by the local myonucleus, or whether the multiple nuclei direct the synthesis of products that achieve a uniform distribution throughout the fiber. Chimaeras were produced in which one cell line was derived from an embryo homozygous for gpi-1a, whereas the other was homozygous for the gpi-1b; each allele specifies electrophoretically distinguishable isozymes of the cytosolic enzyme glucosephosphate isomerase (GPI-1). Microtechniques capable of measuring the proportion of each isozyme expressed within small samples of individual muscle fibers have been established, permitting the comparison of the relative quantitative distributions of the GPI-1 isozyme types along the length of individual chimaera fibers. From individual mosaic fibers, all samples yielded identical isozyme profiles, demonstrating that GPI-1 is not sequestered adjacent to the nucleus directing its synthesis; rather, it achieves a homogeneous distribution throughout the mosaic syncytium. The GPI-1 gene locus encodes only the GPI-1 monomer, whereas the functional enzyme detected in our analysis is a dimer that results from the aggregation of monomers in the cytoplasm. The quantitative distribution of dimer types within each mosaic fiber was consistent with random aggregation amongst all monomers represented in the final isozyme pattern, a result requiring that monomers or earlier precursors were mixed in the myofiber cytoplasm prior to assembly of the enzymatically active dimer. Thus, both the final distribution of enzyme dimers within fibers and the patterns of monomer aggregation suggest that there are no subdivisions related to the spatial separation of the genotypically distinct myonuclei within mosaic muscle fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号