首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human ESCs (hESCs) are a valuable tool for the study of early human development and represent a source of normal differentiated cells for pharmaceutical and biotechnology applications and ultimately for cell replacement therapies. For all applications, it will be necessary to develop assays to validate the efficacy of hESC differentiation. We explored the capacity for FTIR spectroscopy, a technique that rapidly characterises cellular macromolecular composition, to discriminate mesendoderm or ectoderm committed cells from undifferentiated hESCs. Distinct infrared spectroscopic “signatures” readily distinguished hESCs from these early differentiated progeny, with bioinformatic models able to correctly classify over 97% of spectra. These data identify a role for FTIR spectroscopy as a new modality to complement conventional analyses of hESCs and their derivatives. FTIR spectroscopy has the potential to provide low-cost, automatable measurements for the quality control of stem and differentiated cells to be used in industry and regenerative medicine.  相似文献   

2.
Teratoma tumor formation is an essential criterion in determining the pluripotency of human pluripotent stem cells. However, currently there is no consistent protocol for assessment of teratoma forming ability. Here we present detailed characterization of a teratoma assay that is based on subcutaneous co-transplantation of defined numbers of undifferentiated human embryonic stem cells (hESCs) with mitotically inactivated feeder cells and Matrigel into immunodeficient mice. The assay was highly reproducible and 100% efficient when 100,000 hESCs were transplanted. It was sensitive, promoting teratoma formation after transplantation of 100 hESCs, though larger numbers of animals and longer follow-up were required. The assay could detect residual teratoma forming cells within differentiated hESC populations however its sensitivity was decreased in the presence of differentiated cells. Our data lay the foundation, for standardization of a teratoma assay for pluripotency analysis. The assay can also be used for bio-safety analysis of pluripotent stem cell-derived differentiated progeny.  相似文献   

3.
The use of human embryonic stem cells (hESCs) for cell-based therapies will require large quantities of genetically stable pluripotent cells and their differentiated progeny. Traditional hESC propagation entails adherent culture and is sensitive to enzymatic dissociation. These constraints hamper modifying method from 2-dimensional flat-bed culture, which is expensive and impractical for bulk cell production. Large-scale culture for clinical use will require innovations such as suspension culture for bioprocessing. Here we describe the attachment and growth kinetics of both murine embryonic stem cells (mESCs) and hESCs on trimethyl ammonium-coated polystyrene microcarriers for feeder-free, 3-dimensional suspension culture. mESCs adhered and expanded according to standard growth kinetics. For hESC studies, we tested aggregate (collagenase-dissociated) and single-cell (TrypLE-dissociated) culture. Cells attached rapidly to beads followed by proliferation. Single-cell cultures expanded 3-fold over approximately 5 days, slightly exceeding that of hESC aggregates. Importantly, single-cell cultures were maintained through 6 passages with a 14-fold increase in cell number while still expressing the undifferentiated markers Oct-4 and Tra 1-81. Finally, hESCs retained their capacity to differentiate towards pancreatic, neuronal, and cardiomyocyte lineages. Our studies provide proof-of-principle of suspension-based expansion of hESCs on microcarriers, as a novel, economical and practical feeder-free means of bulk hESC production.  相似文献   

4.
Recent advances in human embryonic stem cell (hESC) biology now offer an alternative cell source for tissue engineers, as these cells are capable of proliferating indefinitely and differentiating to many clinically relevant cell types. Novel culture methods capable of exerting spatial and temporal control over the stem cell microenvironment allow for more efficient expansion of hESCs, and significant advances have been made toward improving our understanding of the biophysical and biochemical cues that direct stem cell fate choices. Effective production of lineage specific progenitors or terminally differentiated cells enables researchers to incorporate hESC derivatives into engineered tissue constructs. Here, we describe current efforts using hESCs as a cell source for tissue engineering applications, highlighting potential advantages of hESCs over current practices as well as challenges which must be overcome.  相似文献   

5.
Fourier transform infrared (FTIR) microspectroscopy was employed to elucidate the macromolecular phenotype of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) and their differentiated progeny. Undifferentiated hESCs and hiPSC lines were found to be not clearly distinguishable from each other. However, although both hESC and hiPSC variants appeared to undergo similar changes during differentiation in terms of cell surface antigens, the derived cell types from all cell lines could be discriminated using FTIR spectroscopy. We foresee a possible future role for FTIR microspectroscopy as a powerful and objective investigative and quality control tool in regenerative medicine. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Human embryonic stem cells (hESCs) can provide insights into development of inaccessible human tissues such as embryonic endoderm. Progress in this area has been hindered by a lack of methods for isolating endodermal cells and tracing fates of their differentiated progeny. By using homologous recombination in human ESCs, we inserted an enhanced green fluorescent protein (eGFP) transgene into the SOX17 locus, a postulated marker of human endoderm. FACS purification and gene expression profiling confirmed that SOX17(+)-hESC progeny expressed endodermal markers and unveiled specific cell surface protein combinations that permitted FACS-based isolation of primitive gut tube endodermal cells produced from unmodified human ESCs and from induced pluripotent stem cells (iPSC). Differentiating SOX17(+) endodermal cells expressed markers of liver, pancreas, and intestinal epithelium in vitro and gave rise to endodermal progeny in vivo. Thus, prospective isolation, lineage tracing, and developmental studies of SOX17(+) hESC progeny have revealed fundamental aspects of human endodermal biology.  相似文献   

7.
Human embryonic stem cell (hESC) derivatives show promise as viable cell therapy options for multiple disorders in different tissues. Recent advances in stem cell biology have lead to the reliable production and detailed molecular characterisation of a range of cell-types. However, the role of mitochondria during differentiation has yet to be fully elucidated. Mitochondria mediate a cells response to altered energy requirements (e.g. cardiomyocyte contraction) and, as such, the mitochondrial phenotype is likely to change during the dynamic process of hESC differentiation. We demonstrate that manipulating mitochondrial biogenesis alters mesendoderm commitment. To investigate mitochondrial localisation during early lineage specification of hESCs we developed a mitochondrial reporter line, KMEL2, in which sequences encoding the green fluorescent protein (GFP) are targeted to the mitochondria. Differentiation of KMEL2 lines into the three germ layers showed that the mitochondria in these differentiated progeny are GFP positive. Therefore, KMEL2 hESCs facilitate the study of mitochondria in a range of cell types and, importantly, permit real-time analysis of mitochondria via the GFP tag.  相似文献   

8.
Melichar H  Li O  Ross J  Haber H  Cado D  Nolla H  Robey EA  Winoto A 《PloS one》2011,6(5):e19854
Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34(+) or CD34(+)CD45(+) hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34(+) precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34(+) hematopoietic precursors generated in vitro versus in vivo.  相似文献   

9.
Human pluripotent stem cells (PSCs) have been utilized as a promising source in regenerative medicine. However, the risk of teratoma formation that comes with residual undifferentiated PSCs in differentiated cell populations is most concerning in the clinical use of PSC derivatives. Here, we report that a monoclonal antibody (mAb) targeting PSCs could distinguish undifferentiated PSCs, with potential teratoma-forming activity, from differentiated PSC progeny. A panel of hybridomas generated from mouse immunization with H9 human embryonic stem cells (hESCs) was screened for ESC-specific binding using flow cytometry. A novel mAb, K312, was selected considering its high stem cell-binding activity, and this mAb could bind to several human induced pluripotent stem cells and PSC lines. Cell-binding activity of K312 was markedly decreased as hESCs were differentiated into embryoid bodies or by retinoic acid treatment. In addition, a cell population negatively isolated from undifferentiated or differentiated H9 hESCs via K312 targeting showed a significantly reduced expression of pluripotency markers, including Oct4 and Nanog. Furthermore, K312-based depletion of pluripotent cells from differentiated PSC progeny completely prevented teratoma formation. Therefore, our findings suggest that K312 is utilizable in improving stem cell transplantation safety by specifically distinguishing residual undifferentiated PSCs.  相似文献   

10.
11.
Mechanical forces have been reported to induce proliferation and/or differentiation in many cell types, but the role of mechanotransduction during embryonic stem cell fate decisions is unknown. To ascertain the role of mechanical strain in human embryonic stem cell (hESC) differentiation, we measured the rate of hESC differentiation in the presence and absence of biaxial cyclic strain. Above a threshold of 10% cyclic strain, applied to a deformable elastic substratum upon which the hESC colonies were cultured, hESC differentiation was reduced and self-renewal was promoted without selecting against survival of differentiated or undifferentiated cells. Frequency of mechanical strain application had little effect on extent of differentiation. hESCs cultured under cyclic strain retained pluripotency, evidenced by their ability to differentiate to cell lineages in all three germ layers. Mechanical inhibition of hESC differentiation could not be traced to secretion of chemical factors into the media suggesting that mechanical forces may directly regulate hESC differentiation. Mechanical strain is not sufficient to inhibit differentiation, however, in unconditioned medium, hESCs grown under strain differentiated at the same rate as cells cultured in the absence of strain. Thus, while mechanical forces play a role in regulating hESC self-renewal and differentiation, they must act synergistically with chemical signals. These findings imply that application of mechanical forces may be useful, in combination with chemical and matrix-encoded signals, towards controlling differentiation of hESCs for therapeutic applications.  相似文献   

12.
Insertion of a transgene into a defined genomic locus in human embryonic stem cells (hESCs) is crucial in preventing random integration-induced insertional mutagenesis, and can possibly enable persistent transgene expression during hESC expansion and in their differentiated progenies. Here, we employed homologous recombination in hESCs to introduce heterospecific loxP sites into the AAVS1 locus, a site with an open chromatin structure that allows averting transgene silencing phenomena. We then performed Cre recombinase mediated cassette exchange using baculoviral vectors to insert a transgene into the modified AAVS1 locus. Targeting efficiency in the master hESC line with the loxP-docking sites was up to 100%. Expression of the inserted transgene lasted for at least 20 passages during hESC expansion and was retained in differentiated cells derived from the genetically modified hESCs. Thus, this study demonstrates the feasibility of genetic manipulation at the AAVS1 locus with homologous recombination and using viral transduction in hESCs to facilitate recombinase-mediated cassette exchange. The method developed will be useful for repeated gene targeting at a defined locus of the hESC genome.  相似文献   

13.
Gao M  Yang J  Liu G  Wei R  Zhang L  Wang H  Wang G  Gao H  Chen G  Hong T 《Peptides》2012,34(2):373-379
Ghrelin is broadly expressed in myocardial tissues, where it exerts different functions. It also has been found to have a wide variety of biological functions on cell differentiation and tissue development. The aim of this study was to investigate the effect of ghrelin on human embryonic stem cell (hESC) differentiation in infarcted cardiac microenvironment. The hESCs grown on feeder layers expressed several pluripotential markers including alkaline phosphatase (AKP). Four weeks after transplantation into rat infarcted hearts, the hESCs and their progeny cells survived and formed intracardiac grafts were 54.7% and 19.6% respectively in ghrelin- and phosphate-buffered saline (PBS)-treated groups. Double immunostaining with anti-human Sox9 and anti-HNA or anti-human fetal liver kinase-1 (Flk1) and anti β-tubulin showed that the human grafts were in development. However, double positive stains were only found in the ghrelin-treated group. In addition, the hESC injection protocol was insufficient to restore heart function of the acute myocardial infarction model. Our study, therefore, provides a new insight of ghrelin on promoting hESC survival and differentiation in rat infarcted cardiac microenvironment. This may give a clue for therapy for myocardial infarction by hESCs or progeny cells.  相似文献   

14.
Human embryonic stem cells (hESC) are pluripotent, and can be directed to differentiate into different cell types for therapeutic applications. To expand hESCs, it is desirable to maintain hESC growth without differentiation. As hESC colonies grow, differentiated cells are often found at the periphery of the colonies, but the underlying mechanism is not well understood. Here, we utilized micropatterning techniques to pattern circular islands or strips of matrix proteins, and examined the spatial pattern of hESC renewal and differentiation. We found that micropatterned matrix restricted hESC differentiation at colony periphery but allowed hESC growth into multiple layers in the central region, which decreased hESC proliferation and induced hESC differentiation. In undifferentiated hESCs, β-catenin primarily localized at cell-cell junctions but not in the nucleus. The amount of β-catenin in differentiating hESCs at the periphery of colonies or in multiple layers decreased significantly at cell-cell junctions. Consistently, knocking down β-catenin decreased Oct-4 expression in hESCs. These results indicate that localized decrease of β-catenin contributes to the spatial pattern of differentiation in hESC colonies.  相似文献   

15.
One of the goals of stem cell technology is to control the differentiation of human embryonic stem cells (hESCs), thereby generating large numbers of specific cell types for many applications including cell replacement therapy. Although individual hESC lines resemble each other in expressing pluripotency markers and telomerase activity, it is not clear whether they are equivalent in their developmental potential in vitro. We compared the developmental competence of three hESC lines (HSF6, Miz-hES4, and Miz-hES6). All three generated the three embryonic germ layers, extraembryonic tissues, and primordial germ cells during embryoid body (EB) formation. However, HSF6 and Miz-hES6 readily formed neuroectoderm, whereas Miz-hES4 differentiated preferentially into mesoderm and endoderm. Upon terminal differentiation, HSF6 and Miz-hES6 produced mainly neuronal cells whereas Miz-hES4 mainly formed mesendodermal derivatives, including endothelial cells, leukocyte progenitors, hepatocytes, and pancreatic cells. Our observations suggest that independently-derived hESCs may differ in their developmental potential.  相似文献   

16.
Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.  相似文献   

17.
Objective:  Spontaneous differentiation of human embryonic stem cell (hESC) cultures is a major concern in stem cell research. Physical removal of differentiated areas in a stem cell colony is the current approach used to keep the cultures in a pluripotent state for a prolonged period of time. All hESCs available for research require unidentified soluble factors secreted from feeder layers to maintain the undifferentiated state and pluripotency. Under experimental conditions, stem cells are grown on various matrices, the most commonly used being Matrigel.
Materials and Methods:  We propose an alternative method to prevent spontaneous differentiation of hESCs grown on Matrigel that uses low amounts of recombinant noggin. We make use of the porosity of Matrigel to serve as a matrix that traps noggin and gradually releases it into the culture to antagonize bone morphogenetic proteins (BMP). BMPs are known to initiate differentiation of hESCs and are either present in the conditioned medium or are secreted by hESCs themselves.
Results:  hESCs grown on Matrigel supplemented with noggin in conditioned medium from feeder layers (irradiated mouse embryonic fibroblasts) retained both normal karyotype and markers of hESC pluripotency for 14 days. In addition, these cultures were found to have increased cell proliferation of stem cells as compared to hESCs grown on Matrigel alone.
Conclusion:  Noggin can be utilized for short term prevention of spontaneous differentiation of stem cells grown on Matrigel.  相似文献   

18.
Lin G  OuYang Q  Zhou X  Gu Y  Yuan D  Li W  Liu G  Liu T  Lu G 《Cell research》2007,17(12):999-1007
Homozygous human embryonic stem cells (hESCs) are thought to be better cell sources for hESC banking because their human leukocyte antigen (HLA) haplotype would strongly increase the degree of matching for certain populations with relatively smaller cohorts of cell lines. Homozygous hESCs can be generated from parthenogenetic embryos, but only heterozygous hESCs have been established using the current strategy to artificially activate the oocyte without second polar body extrusion. Here we report the first successful derivation of a human homozygous ESC line (chHES- 32) from a one-pronuclear oocyte following routine in vitro fertilization treatment, chHES-32 cells express common markers and genes with normal hESCs. They have been propagated in an undifferentiated state for more than a year (〉P50) and have maintained a stable karyotype of 46, XX. When differentiated in vivo and in vitro, chHES-32 cells can form derivatives from all three embryonic germ layers. The almost undetectable expression of five paternally expressed imprinted genes and their HLA genotype identical to the oocyte donor indicated their parthenogenetic origin. Using genome-wide single-nucleotide polymorphism analysis and DNA fingerprinting, the homozygosity of chHES-32 cells was further confirmed. The results indicated that ‘ unwanted' one-pronuclear oocytes might be a potential source for human homozygous and parthenogenetic ESCs, and suggested an alternative strategyfor obtaining homozygous hESC lines from parthenogenetic haploid oocytes.  相似文献   

19.
An important risk in the clinical application of human pluripotent stem cells (hPSCs), including human embryonic and induced pluripotent stem cells (hESCs and hiPSCs), is teratoma formation by residual undifferentiated cells. We raised a monoclonal antibody against hESCs, designated anti-stage-specific embryonic antigen (SSEA)-5, which binds a previously unidentified antigen highly and specifically expressed on hPSCs--the H type-1 glycan. Separation based on SSEA-5 expression through fluorescence-activated cell sorting (FACS) greatly reduced teratoma-formation potential of heterogeneously differentiated cultures. To ensure complete removal of teratoma-forming cells, we identified additional pluripotency surface markers (PSMs) exhibiting a large dynamic expression range during differentiation: CD9, CD30, CD50, CD90 and CD200. Immunohistochemistry studies of human fetal tissues and bioinformatics analysis of a microarray database revealed that concurrent expression of these markers is both common and specific to hPSCs. Immunodepletion with antibodies against SSEA-5 and two additional PSMs completely removed teratoma-formation potential from incompletely differentiated hESC cultures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号