首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The physical factors controlling algal primary production weredemonstrated from data collected for a hypertrophic lake. Amaxranged between 12.4 and 5916 mg C m–3 h–1. Arealrates (A) varied between 46.9 and 3381 mg C m–2 h–1.The factors permitting and controlling production were subjectivelyseparated into two categories. In category 1, nutrients (N +P), which were in overabundance, permitted large standing cropsof Microcystis aeruginosa to develop (>1000 µg chla 1–1). Wind patterns determined the dramatic spatialand temporal changes in algal standing crop which could dropto 2.7 µg chl a 1–1. In category 2 were the factorswhich affected the rate processes. The buoyancy mechanism ofMicrocystis usually kept the alga in the euphotic zone. A powerrelationship (r = 0.92, n = 54) between A and Amax/min showedthat with increasing phytoplankton vertical stratification,Amax was increasingly important in the integral. The saturationparameter IK and photosynthetic capacity were temperature dependent.Variations of A were significantly related to changes in watercolumn stability (g cm cm–2) because both axes of thephotosynthesis depth-profile were affected by stability changes.  相似文献   

2.
This work aimed to study the impacts of acquisition and assimilationof various nitrogen sources, i.e. NO3, NH4+ or NH4NO3,in combination with gaseous NH3 on plant growth and acid-basebalance in higher plants. Plants of C3 Triticum aestivum L.and C4 Zea mays L. grown with shoots in ambient air in hydroponicculture solutions with 2 mol m–3 of nitrogen source asNO3, NH4+ or NH4NO3 for 21 d and 18 d, respectively,had their shoots exposed either to 320 µg m–3 NH3or to ambient air for 7 d. Variations in plant growth (leaves,stubble and roots), and OH and H+ extrusions as wellas the relative increases in nitrogen, carbon and carboxylatewere determined. These data were computed as H+/N, H+/C, (C-A)/N,and (C-A)/C to analyse influences of different nitrogen sourceson acid-base balance in C3 Triticum aestivum and C4 Zea maysplants. Root growth in dry weight gain was significantly reduced bytreatment with 320 µg m–3 NH3 in Triticum aestivumand Zea mays growing with different N-forms, whereas leaf growthwas not significantly affected by NH3. In comparison with C3Triticum aestivum, non-fumigated C4 Zea mays had low ratiosof OH/N in NO3–3-grown plants and of H+/N in NH4+- and NH 4NO3-grown plants. Utilization of NH3 from the atmospherereduced both the OHN ratios in NO3 -grown plantsand the H+/N ratio in NH4+ - and NH4NO3 -grown plants of bothspecies. Furthermore, Zea mays had higher ratios of (C-A)/Nin NH4+ - and NH4NO3-grown plants than Triticum aestivum. Thismeans that C4 Zea mays had synthesized more organic anion perunit increase in organic N than C3 Triticum aestivum plants.Within both species, different nitrogen sources altered theratios of (C-A)/N in the order: NH4NO3>NH4+>NO3.Fumigation with NH3 increased organic acid synthesis in NO3- and NH4+ - grown plants of Triticum aestivum, whereas it decreasedorganic acid synthesis in Zea mays plants under the same conditions.Furthermore, these differences in acid-base regulation betweenC3 Triticum aestivum and C4 Zea mays plants growing with differentnitrogen sources are discussed. Key words: Acid-base balance, ammonia, ammonium, nitrate, ammonium nitrate, C3 Triticum aestivum L., C4 Zea mays L.  相似文献   

3.
The response of phytoplankton to variations in the light regimewas studied during the VULCAN and ACDA cruises in the Antarctic.Unenriched batch cultures of 12–19 days' duration reachedchl concentrations of 10–50 µg–1 and exhibitedexponential growth rates, with the maximal rate being 0.41 doubl,day–1. Ice edge algae exhibited maximum growth rates atphoton flux densities (PFD) of 30–100 µE m–2S–1and the growth rate was reduced by about 30% at 500–1000µE m–2S–1 The chl/C ratio ranged between 0.004and 0.018, with the lowest ratios at PFDs above 500 µEm–2S–1 chl/C ratios were also below maximum at PFDsbelow 40–50 µE m–2S–1 The C:N:P ratioswere close to the Redfield ratios; the Si/C ratio averaged 0.16(atoms), and the ATP/C ratio averaged from 0.0024 to 0.0050in different culture senes. When thawed after having been frozenfor 10 days, shade-adapted cultures were in a much better conditionthan sun-adapted ones. P versus I data showed that the maximumassimilation number varied from 0.75 to 4.4 µg C (µgchl)–1h–1. It varied inversely with the chl/C ratio;therefore the maximum carbon turnover rate varied little betweensamples (0.024/0.035 h–1). Low biomass communities exhibitedrelatively high values for (the initial slope of P versus Icurves), low values for 1sat (160–330 µE m–2S–1),and they were susceptible to photoinhibition. In contrast, communitiesdominated by Odontella weissflogii exhibited low values for, a high value for Isat (560 µE m–2S–1 andthey tolerated high PFDs. The photo-adaptational status of thephytoplankton in natural water samples is discussed relativeto the profile of water column stability and mixing processes.  相似文献   

4.
Aspects of the physiology and feeding behaviour of the scavengingsnails, Babylonia lutosa and Nassarius festivus have been studiedand compared. N. festivus has a wider physiological tolerancethan B. lutosa; upper lethal temperatures being 31.5°C and28.5°C respectively and lower lethal salinities 15.5 and11.5. N. festivus was also more resistant to desiccation. N.festivus is adapted to an intertidal environment that is morevariable than the subtidal habitat of B. lutosa. The metabolicrate of adult N. festivus was two to three times higher thanthat of adult B. lutosa, the specific oxygen consumption rateof the former being 7.91±0.49x10–6 mol of O2.g–1wet wt.hr–1. This correlates with estimates of consumptionobtained for the two animals, B. lutosa eating, on average,6.57% of its wet tissue weight per day, N. festivus 15.33%.Standardization of the data for 2 g animals of both species,however, reveals no significant difference in terms of oxygenconsumption and thus the enhanced consumption by N. festivussimply reflects its smaller size. Both species are opportunisticfeeders and can survive long periods of starvation (>100days). The feeding strategies of the two are also different,N. festivus eating faster than B. lutosa, possibly because ofthe more ephemeral nature of carrion in the intertidal. Starvationaffected the feeding behaviour of N. festivus more than B. lutosaand N. festivus was able to perceive carrion from greater relativedistances than B. lutosa. (Received 27 February 1989; accepted 24 July 1989)  相似文献   

5.
Primary production was measured for 7 years, using the in situ14C-method in hypertrophic Hartbeespoort Dam, South Africa,to examine the influence of light and water temperature on theupper limit of Microcystis aeruginosa production. Water temperaturesvaried from 11 to >25°C and chlorophyll concentrationsreached 6500 mg m–3. The maximum volumetric rate of production(Amax) was 12->8800 mg C m–3 h–1 with areal productions(A) of 69->3300 mg C m–2 h–1 for euphotic zonedepths of <0.5–8.4 m. The intrinsic parameters of phytoplanktonproduction (, Amax/B, Ik) indicated that the phytoplankton populationwas adapted to high light levels. Both Amax/B and Ik were correlatedwith temperature. Under optimal conditions, , the theoreticalupper limit of A, was calculated to be 2.8 g Cm–2 h–1,while the measured rate was 2.5 g Cm–2 h–1. Measuredareal rates exceeding were overestimated due to methodologicalproblems when working with Microcystis scums. Light and watertemperature interacted to yield high production rates: watertemperature through its direct effect on photosynthetic ratesand indirectly in the formation of diurnal mixed layers; lightindirectly through water temperature and directly through itsattenuation and induction of light-adapted physiology in Microcystis.  相似文献   

6.
The causes of interspecific differences in the µ-l relationshipare examined in the context of a mechanistic model which relatesµ to irradiance in terms of six factors:, kc photosyntheticquotient (PQ), Chl a:C, respiration and excretion. The effectof cell size on the light saturated growth rate is also considered.It is shown that photosynthetic efficiency and PQ exhibit remarkablylittle interspecific variability, and average 0.024 ±0.005 µg C(µg Chl a)–1 h–1 (µEm–2 s–1)–1 and 1.5 ± 0.2 mol 02 molC–1 (when NO3 is the nitrogen source) respectively.Two useful relationships were derived: (i) between growth efficiency,g and Chl a:C at µ. = 0; (ii) between the compensationintensity, Ic and the Chl a-specific maintenance respirationrate. Both relationships were independent of temperature anddaylength. Species best adapted to growth at low light werefound to exhibit high Chl a:C ratios and low maintenance respirationrates. As a group, diatoms were consistently the best adaptedfor growth at low irradiance. Chiorophytes, haptophytes, chrysophytesand cryptophytes were intermediate in their performance at lowirradiance. Dinoflagellates exhibited extreme diversity, withspecies spanning the spectrum from very good performance atlow irradiance to very poor. A new µmax-cell carbon relationshipis given based on growth rates normalized to 15°C. Evidenceis presented to show that noise in this relationship can besignificantly reduced by using only carbon-specific growth ratesand using only data for species grown at the same daylength.  相似文献   

7.
Slater, R. J. and Bryant, J. A. 1987. RNA polymerase activityduring breakage of seed dormancy by low temperature treatmentof fruits of Acer platanoides (Norway maple).—J. exp.Bot. 38:1026–1032. Endogenous RNA polymerase activity has been characterized innuclei isolated from embryo axes of Acer platanoides. Optimalactivity was recorded at 4·0 mol m–3 MgCl2 and50 mol m–3 (NH4)2SO4 and total activity could be inhibitedby up to 30% by -amanitin. Stratification of fruits leads toa stimulation of RNA polymerase activity. A minimum of 3 d coldtreatment is required with at least 3-fold stimulation recordedafter 10 d at 4°C. The increased enzyme activity is resistantto -amanitin suggesting an effect on RNA polymerase I. Key words: Acer platanoides, RNA polymerase, seed dormancy  相似文献   

8.
Shells from 14 populations of sphaeriid clams including Sphaeriumstriatinum, S. simile, Pisidium walkeri, Musculim partumeiumand M. iransversum were analyzed for organic carbon (µgCmg–1 shell), nitrogen (µg,N mg–1 shell) andCaCOs (%CaCO3 of total clam dry weight). Habitat waters wereassessed for total hardness (expressed as ppm CaCo3), ppm Ca,ppm Mg, conductivity (µmho) and suspended organic Carbon(µgCl–1). For all populations, shell organic C andN are positively correlated and there is an inverse relationshipbetween the amounts of shell CaCO3 and shell organic carbon.Trophic considerations give the best correlation with shelltype at the generic level of consideration since species ofMusculium are found at the opposite end of the trophic scale(eutrophic) from all other populations studied. For S. striatinum,the most extensively studied species, the amount of shell CaCO3is inversely related to water hardness. The selection of shellsin the Sphaeriidae is discussed in relation to structural-functionalneeds and habitat conditions 1 Present Address: Department of Biology, Syracuse University,Syracuse, New York 13210, U.S.A. 2 Present Address: Department of Zoology, Miami University,Oxford, Ohio 45056, U.S.A. (Received 5 December 1978;  相似文献   

9.
Photosynthetic 14C fixation by Characean cells in solutionsof high pH containing NaH14CO3 gave a measure of the abilityof these cells to take up bicarbonate (H14CO3). Whereascells of Nitella translucens from plants collected and thenstored in the laboratory absorbed bicarbonate at 1–1.5µµmoles cm–2 sec–1, rates of 3–8µµmoles cm–2 sec–1 were obtained withN. translucens cells from plants grown in the laboratory. Influxesof 5–6 µµmoles cm–2 sec–1 wereobtained with Chara australis, 3–8 µµmolescm–2 sec–1 with Nitellopsis obtusa, and 1–5µµmoles cm–2 sec–1 with Tolypella intricata.It is considered that these influxes represent the activityof a bicarbonate pump, which may be an electrogenic process. In solutions of lower pH, H14CO3 uptake would be maskedby rapid diffusion of 14CO2 into the cells: the four Characeanspecies fixed 14CO2 at maximum rates of 30–40 µµmolescm–2 sec–1 (at 21° C).  相似文献   

10.
Nodulated 1-1.5-year-old plants of Acacia littorea grown inminus nitrogen culture were each partnered with a single seedlingof the root hemiparasite Olax phyllanthi. Partitioning of fixedN between plant organs of the host and parasite was studiedfor the period 4–8 months after introducing the parasite.N fluxes through nodules of Acacia and xylem-tapping haustoriaof Olax were compared using measured xylem flows of fixed Nand anatomical information for the two organs. N2 fixation duringthe study interval (635 µg N g FW nodules–1 d–1)corresponded to a xylem loading flux of 0.20 µg N mm–2d–1 across the secretory membranes of the pencycle parenchymaof the nodule vascular strands. A much higher flux of N (4891µg mm–2 d–1) exited through xylem at the junctionof nodule and root. The corresponding flux of N from host xylemacross absorptive membranes of the endophyte parenchyma of Olaxhaustorium was 1.15 µg N mm–1 d–1, six timesthe loading flux in nodules. The exit flux from haustorium toparasite rootlet was 20.0 pg N mm–1 d–1, 200-foldless than that passing through xylem elements of the nodule.Fluxes of individual amino compounds in xylem of nodule andhaustorium were assessed on a molar and N basis. N flux valuesare related to data for transpiration and partitioning of Cand N of the association recorded in a companion paper. Key words: Olax phyllanthi, host-parasite relationships, N flux, Acacia, N2 fixation  相似文献   

11.
The increase of -amylase activity in embryoless rice endosperminduced by the addition of gibberellin A3 was examined undervarious conditions with an aim to establish a bioassay methodfor gibberellins. Sterilized embryoless rice endosperms were incubated in a testtube containing 0.2–1.0 ml of test solution for 4 daysat 30. -Amylase activity in the endosperm was determined bymeasuring digestion of added starch. The increase of amylaseactivity during the incubation was not affected by the additionof various vitamins, amino acids, organic acids, protease, sucrose,indoleacetic acid or kinetin. Helminthosporol, helminthosporicacid and sclerin (1–10 µg/ml) had weak promotingeffects. Under appropriate conditions, 10–5 µg/mlof gibberellin A3 could be detected. In double logarithmic plot,the increase in the enzyme activity was proportional to thegibberellin A3 concentration in the range from 10–5 to10–2 µg/ml. (Received April 13, 1966; )  相似文献   

12.
Four species of seagrasses, Halophila stipulacea, Thalassodendronciliatum, Halodule uninervis, and Syringodium isoetifolium,were investigated for their ability to utilize and CO2 as exogenous carbon sources for photosynthesis. Ratesof photosynthesis were measured as rates of O2 evolution ina closed system in which the pH was continuously controlled.A computer program was written to calculate the concentrationsof different carbon species as a function of pH and other specifiedexperimental conditions. Bicarbonate as well as CO2 were readily assimilated by all fourseagrass species. Saturating concentrations of , at saturating light intensities, were 0.5–1.8 mM dependingon the species. Rates of photosynthesis under such conditionswere 0.1–0.55 µmol O2 min–1 mg–1 chlorophyll.At saturating CO2 concentrations, i.e. 0.5–1.3 mM, ratesof photosynthesis were 0.22–1.4 µmol CO2 min–1mg–1 chlorophyll. Photosynthetic rates in each specieswere considerably higher when CO2 rather than was supplied at saturating concentrations. The concentration of in natural seawater was found to be saturating, and that of CO2 insufficient forconsiderable photosynthetic rates in these plants under thegiven conditions It was thus concluded that is the major carbon source for photosynthesis in seagrasses.  相似文献   

13.
The major isoenzymes of -mannosidase (EC 3.2.1.24 [EC] ) and ß-galactosidase(ECf 3.2.1.23 [EC] ) have been separated from cotyledons of gardenpea, Pisum sativum L. (Vicieae), chick pea, Cicer arietinumL. (Cicereae), and cowpea, Vigna unguiculata (L.) Walp. (Phaseoleae).Some of their properties have been determined, including pHoptima, Km values for p-nitrophenyl glycosidc substrates, andthe effects of several inhibitors. Swainsonine, an indolizidinealkaloid, was the most effective inhibitor of mannosidase 1,with I30 values of 5.6 x 10–8 M (cowpea), 1x 10–7M (chick pea) and 2.9 x 19–7 M (pea). The most effectiveinhibitor of ß-galactosidase 2 from all sources wasD-galactonic acid-1,4-lactonwe (-lactone), with Ki values rangingbetween 3.0 and 3.9x 10–3 M. An inhibitor of the E. coliß-galactosidose, p-aminophenyl thio-ß-D-galactopyranoside,did not inhibit any of the legume ß-galctosidases;rather it enhanced the activites of the enzymes from chick peaand cowpea cotyledons. Etiolated hull and seed tissues frompea pods developing in darkness contained similar acid glycosidaseactivities to normal green tissues, thus the chloroplast isan unlikely location for ß-galactosidase 2. The majorß-galactosidasesdetected with an indigogenic substrate (5-bromo-4-chloro-3-indoxyl-ß-D-galactopyranoside)following gel electrophoresis of extracts from pea hull, seedcoats and cotyledons appeared to be different from ß-galactosidase2. Acid glycosidase, cotyledon, isoenzyme, -lactone, legume, swainsonine  相似文献   

14.
The N-linked oligosaccharides of frog (Rana pipiens) rhodopsinwere analysed by sequential exoglycosidase digestion and gelfiltration chromatography, following reductive tritiation. Inaddition, selected tryptic glycopeptides obtained from frogretinal rod outer segment membranes were examined by electrospraymass spectrometry (ES-MS), fast atom bombardment mass spectrometry(FAB-MS), amino acid sequence and composition analysis, andcarbohydrate composition analysis. The amino acid sequence datademonstrated that the glycopeptides were derived from rhodopsinand confirmed the presence of twoN-glycosylation sites, at residuesAsn2 and Asn15. The predominant glycan (60% of total) had thestructure GlcNAcß1–2Man1–3(Man1–6)Manß1–4GlcNAcß1–4GlcNAc-(Asn),with the remaining structures containing 1–3 additionalhexose residues, as reported previously for bovine rhodopsin.Unlike bovine rhodopsin, however, a sizable fraction of thetotal giycans of frog rhodopsin also contained sialic acid (NeuAc),with the sialylated oligosaccharides being present exclusivelyat the Asn2 site. FAB-MS analysis of oligosaccharides releasedfrom the Asn2 site gave, among other signals, an abundant quasimolecularion corresponding to a glycan of composition NeuAc1Hex6HexNAc3(where Hex is hexose and HexNAc is N-acetylhexosamine), consistentwith a hybrid structure. The potential biological implicationsof these results are discussed in the context of rod outer segmentmembrane renewal. glycoforms oligosaccharide structure rhodopsin  相似文献   

15.
Species-specific differences in the assimilation of atmosphericCO2 depends upon differences in the capacities for the biochemicalreactions that regulate the gas-exchange process. Quantifyingthese differences for more than a few species, however, hasproven difficult. Therefore, to understand better how speciesdiffer in their capacity for CO2 assimilation, a widely usedmodel, capable of partitioning limitations to the activity ofribulose-1,5-bisphosphate carboxylase-oxygenase, to the rateof ribulose 1,5-bisphosphate regeneration via electron transport,and to the rate of triose phosphate utilization was used toanalyse 164 previously published A/Ci, curves for 109 C3 plantspecies. Based on this analysis, the maximum rate of carboxylation,Vcmax, ranged from 6µmol m–2 s–1 for the coniferousspecies Picea abies to 194µmol m–2 s–1 forthe agricultural species Beta vulgaris, and averaged 64µmolm–2 s–1 across all species. The maximum rate ofelectron transport, Jmax, ranged from 17µmol m–2s–1 again for Picea abies to 372µmol m–2 s–1for the desert annual Malvastrum rotundifolium, and averaged134µmol m–2 s–1 across all species. A strongpositive correlation between Vcmax and Jmax indicated that theassimilation of CO2 was regulated in a co-ordinated manner bythese two component processes. Of the A/Ci curves analysed,23 showed either an insensitivity or reversed-sensitivity toincreasing CO2 concentration, indicating that CO2 assimilationwas limited by the utilization of triose phosphates. The rateof triose phosphate utilization ranged from 4·9 µmolm–2 s–1 for the tropical perennial Tabebuia roseato 20·1 µmol m–2 s–1 for the weedyannual Xanthium strumarium, and averaged 10·1 µmolm–2 s–1 across all species. Despite what at first glance would appear to be a wide rangeof estimates for the biochemical capacities that regulate CO2assimilation, separating these species-specific results intothose of broad plant categories revealed that Vcmax and Jmaxwere in general higher for herbaceous annuals than they werefor woody perennials. For annuals, Vcmax and Jmax averaged 75and 154 µmol m–2 s–1, while for perennialsthese same two parameters averaged only 44 and 97 µmolm2 s–1, respectively. Although these differencesbetween groups may be coincidental, such an observation pointsto differences between annuals and perennials in either theavailability or allocation of resources to the gas-exchangeprocess. Key words: A/Ci curve, CO2 assimilation, internal CO2 partial pressure, photosynthesis  相似文献   

16.
Yield stress threshold (Y) and volumetric extensibility () arethe rheological properties that appear to control root growth.In this study they were measured in wheat roots by means ofparallel measurement of the growth rate (r) of intact wheatroots and of the turgor pressures (P) of individual cells withinthe expansion zone. Growth and turgor pressure were manipulatedby immersion in graded osmoticum (mannitol) solutions. Turgorwas measured with a pressure probe and growth rate by visualobservation. The influence of various growth conditions on Yand was investigated; (a) At 27 °C.In 0.5 mol m–3 CaCl2 r, P, Y and were20.7±4.6 µm min–1, 0.77±0.05 MPa,0.07±0.03 MPa and 26±1.9 µm min–1MPa–1 (expressed as increase in length), respectively.Following 24 h growth in 10 mol m–3 KC1 these parametersbecame 12.3±3.5 µm min–1, 0.72±0.04MPa, 0.13±0.01 MPa and 21±0.7 µm min–1MPa–1. After 24 h osmotic adjustment in 150 mol m–3mannitol/0.5 mol m–3 CaCl2 r= 19.6±4.2 µmmin–1, P = 0.68±0.05 MPa and Y and were 0.07±0.04MPa and 30±0.2 µm min–1 MPa–01, respectively.After 24 h growth in 350 mol m–3 mannitol/0.5 mol m–3CaCl2 r= 13.3±4.1 µm min–1, P= 0.58±0.07MPa, Y=0.12±0.01 MPa and ø 32±0.2 tim min–1MPa–1. During osmotic adjustment in 200 mol m–3mannitol/0.5 mol m–3 CaCl2, with or without KCl, the recoveryof growth rate corresponded to turgor pressure recovery (t1/2approximately 3 h). (b) At 15 °C. Lowered temperature dramatically influencedthe growth parameters which became r= 8.3±2.8 um min–1,P=0.78 MPa, r=<0.2 MPa and =15±0.1 µm min–1MPa–1. Therefore, Y and are influenced by 10 mol m–3 K+ ionsand low temperature. In each case the effective pressure forgrowth (P-Y) was large indicating that small fluctuations ofsoil water potential will not stop root elongation. Key words: Yield threshold, cell wall extensibility, wheat root growth, temperature, turgor pressur  相似文献   

17.
Three marine phytoplankton species (Skeletonema costatum, Olisthodiscusluteus andGonyaulax tamarensis) were grown in batch culturesat 15°C and a 14:10 L:D cycle at irradiance levels rangingfrom 5 to 450 µEinst m–2 s–1. At each irradiance,during exponential growth, concurrent measurements were madeof cell division, carbon-specific growth rate, photosyntheticperformance (both O2 and POC production), dark respiration,and cellular composition in terms of C, N and chlorophyll a.The results indicate that the three species were similar withrespect to chemical composition, C:N (atomic) = 6.9 ±0.4, photo-synthetic quotient, 1.43 ± 0.09, and photosyntheticefficiency, 2.3 ±0.1 x 10–3 µmol O2 (µgChl a)–1 h–1 (µEinst m–2 s–1)–1.Differences in maximum growth rate varied as the –0.24power of cell carbon. Differences in growth efficiency, werebest explained by a power function of Chl a:C at µ = 0.Compensation intensities, ranged from 1.1 µEinst m–2s–1 for S. costatum to 35 forG. tamarensis and were foundto be a linear function of the maintenance respiration rate.The results indicate that interspecific differences in the µ–Irelationship can be adequately explained in terms of just threeparameters: cell carbon at maximum growth rate, the C:Chl aratio (at the limit as growth approaches zero) and the respirationrate at zero growth rate. A light-limited algal growth modelbased on these results gave an excellent fit to the experimentalµ–I curves and explained 97% of the observed interspecificvariability. 1Present address: Lamont-Doherty Geological Observatory Columbiaof University, Palisades, NY 10964, USA  相似文献   

18.
Epithelial ion transport disorders, including cystic fibrosis, adversely affect male reproductive function by nonobstructive mechanisms and by obstruction of the distal duct. Continuous cell lines that could be used to define ion transport mechanisms in this tissue are not readily available. In the present study, porcine vas deferens epithelial cells were isolated by standard techniques, and the cells spontaneously immortalized to form a porcine vas deferens epithelial cell line that we have titled PVD9902. Cells were maintained in continuous culture for >4 yr and 200 passages in a typical growth medium. Frozen stocks were generated, and thawed cells exhibited growth characteristics indistinguishable from their nonfrozen counterparts. Molecular and immunocytochemical studies confirmed the origin and epithelial nature of these cells. When seeded on permeable supports, PVD9902 cells grew as electrically tight (>6,000 ·cm2), confluent monolayers that responded to forskolin with an increase in short-circuit current (Isc; 8 ± 1 µA/cm2) that required Cl, HCO3, and Na+, and was partially sensitive to bumetanide. mRNA was expressed for a number of anion transporters, including CFTR, electrogenic Na+-HCO3 cotransporter 1b (NBCe1b), downregulated in adenoma, pendrin, and Cl/formate exchanger. Both forskolin and isoproterenol caused an increase in cellular cAMP levels. In addition, PVD9902 cell monolayers responded to physiological (i.e., adenosine, norepinephrine) and pharmacological [i.e., 5'-(N-ethylcarboxamido)adenosine, isoproterenol] agonists with increases in Isc. Unlike their freshly isolated counterparts, however, PVD9902 cells did not respond to glucocorticoid exposure with an increase in amiloride-sensitive Isc. RT-PCR analysis revealed the presence of both glucocorticoid and mineralocorticoid receptor mRNA as well as mRNA for the - and -subunits of the epithelia Na+ channels (- and -ENaC), but not -ENaC. Nonetheless, PVD9902 cells recapitulated most observations in freshly isolated cells and thus represent a powerful new tool to characterize mechanisms that contribute to male reproductive function. male reproductive tract; cystic fibrosis; epithelial Na+ channel expression; glucocorticoid receptor; adrenergic; vasopressin  相似文献   

19.
The carbon balance of shade-grown Ananas comosus was investigatedwith regard to nitrogen supply and responses to high PAR. Netdark CO2 uptake was reduced from 61.2 to 38.5 mmol CO2 m–2in N limited (–N) plants grown under low PAR (60 µmolm–2 s–1) and apparent photon yield declined from0.066 to 0.034 (mol 02.mol–1 photon), although photosyntheticcapacities (measured under 5% CO2) were similar. Following transferfor 7 d to high PAR (600. µmol m–2 s–1), netCO2 uptake at night increased by 14% in +N plants, and daytimephotosynthetic capacity was higher, with a maximum value of7.8 µmol m–2 s–1. The magnitude of dark CO2 fixation during CAM was measured asdawn—dusk variations in leaf-sap titratable acidity (H+)and as the proportion of malic and citric acids. The contributionfrom re-fixation of respiratory CO2 recycling (measured as thedifference between net CO2 uptake and malic acid accumulation)varied with growth conditions, although it was generally lower(30%) than reported for other bromeliads. Assuming a stoichiometryof 2H+: malate and 3H+: citrate, there was a good agreementbetween titratable protons and enzymatically determined organicacids. The accumulation of citric acid was related to nitrogensupply and PAR regime, increasing from 7.0 mol m–3 (+Nplants) to 18 mol m–3 (–N plants) when plants weretransferred to high PAR; malate: citrate ratios decreased from13.1 to 2.5 under these conditions. Under the low PAR regime, leaf-sap osmotic pressure increasedat night in proportion to malic acid accumulation. However,following the transfer to high PAR for 7 d, there was a muchgreater depletion of soluble sugars at night which correspondedto a decrease in leaf-sap osmotic pressure. Although a rolefor citric acid in CAM has not been properly defined, it appearsthat the accepted stoichiometry for CAM in terms of gas exchange,titratable acidity, malic acid and osmotic pressure may nothold for plants which accumulate citric acid. Key words: Ananas comosus, CAM, citric acid accumulation, carbon recycling  相似文献   

20.
The Uptake of Gaseous Ammonia by the Leaves of Italian Ryegrass   总被引:5,自引:0,他引:5  
Lockyer, D. R. and Whitehead, D. C. 1986. The uptake of gaseousammonia by the leaves of Italian ryegrass.—J. exp. Bot.37: 919–927. Plants of Italian ryegrass (Lolium multiflorum Lam.) grown insoil with two rates of added 15N-labelled nitrate were exposed,in chambers, for 40 d to NH3 in the air at concentrations of16, 118 and 520 µg m–3. At the highest concentrationof NH3, this source provided 47?3% of the total nitrogen inplants grown with the lower rate of nitrate addition (100mgN kg–1 dry soil) and 35?2% with the higher rate (200mgN kg–1 dry soil) At the intermediate concentration ofNH3, the contributions to total plant N were 19?6% and 10?8%,respectively, at low and high nitrate while, at the lowest concentrationof NH3, they were 5?1% and 32%. Most of the N derived from theNH3 remained in the leaves, but some was transported to theroots. The amount of N derived from the NH3 that was presentin the leaves was not reduced by washing the leaves in waterat pH 5?0 before harvesting, indicating that the N was assimilatedby the plant and not adsorbed superficially. Rates of uptakeof NH3 per unit leaf area ranged from 1?7 µg dm–2h–1 at a concentration of 16 µg m–3 to 29?0µg dm–2 h–1 at a concentration of 520 µgm–3 and with the lower rate of nitrate addition. Increasingthe supply of nitrate to the roots slightly reduced the rateof uptake of NH3 per unit leaf area. Uptake of N from the higherrate of nitrate was reduced at the highest concentration ofNH3 in the air. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号