首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The B2 subunit of ribonucleotide reductase from Escherichia coli contains a stable tyrosyl free radical and an antiferromagnetically coupled dimeric iron center with high-spin ferric ions. The tyrosyl radical is an oxidized form of tyrosine-122. This study shows that the B2 protein has a fully reduced state, denoted reduced B2, characterized by a normal nonradical tyrosine-122 residue and a dimeric ferrous iron center. Reduced B2 can be formed either from active B2 by a three-electron reduction in the presence of suitable mediators or from apoB2 by addition of two equimolar amounts of ferrous ions in the absence of oxygen. The oxidized tyrosyl radical and the ferric iron center can be generated from reduced B2 by the admission of air. The tyrosyl radical can be selectively reduced by one-electron reduction in the presence of a suitable mediator, yielding metB2, a form that seems identical with the form resulting from treatment of active B2 with hydroxyurea. 1H NMR was used to characterize the paramagnetically shifted resonances associated with the reduced iron center. Prominent resonances were observed around 45 ppm (nonexchangeable with solvent) and 57 ppm (exchangeable with solvent) at 37 degrees C. From the temperature dependence of the chemical shifts of these resonances it was concluded that the ferrous ions in reduced B2 are only weakly, if at all, antiferromagnetically coupled. By comparison with data on the similar iron center of deoxyhemerythrin it is suggested that the 57 ppm resonance should be assigned to protons in histidine ligands of the iron center.  相似文献   

2.
C Gerez  M Fontecave 《Biochemistry》1992,31(3):780-786
Each polypeptide chain of protein R2, the small subunit of ribonucleotide reductase from Escherichia coli, contains a stable tyrosyl radical and an antiferromagnetically coupled diferric center. Recent crystallographic studies [Nordlund, P., Eklund, H., & Sj?berg, B.-M. (1990) Nature 345, 593-598] have shown that both the radical and the diiron site are deeply buried inside the protein and thus strongly support the hypothesis of long-range electron-transfer processes within protein R2. This study shows that monosubstituted hydrazines and hydroxylamines are able to reduce the tyrosyl radical and the ferric ions, under anaerobic conditions. It allows characterization of the site from which those compounds transfer their electrons to the iron/radical center. The efficiency of any given reducing agent is not solely governed by its redox potential but also by its size, its charge, and its hydrophobicity. We suggest, as a possible alternative to the long-range electron-transfer hypothesis, that conformational flexibility of the polypeptide chain might exist in solution and allow small molecules to penetrate the protein and react with the iron/radical center. This study also shows that two reduction mechanisms are possible, depending on which center, the radical or the metal, is reduced first. Full reduction of protein R2 yields reduced R2, characterized by a normal tyrosine residue and a diferrous center. Both the radical and the diferric center are regenerated from reduced R2 by reaction with oxygen, while only the diferric center is formed by reaction with hydrogen peroxide.  相似文献   

3.
Amplification of the M2 gene encoding the small subunit of ribonucleotide reductase (EC 1.17.4.1) was analyzed in a collection of vaccinia virus (VV) isolates selected for resistance to 5 mM hydroxyurea (HU). Most of the mutants harbored tandem direct repeat arrays of the M2 gene, but several had duplicated M2 as an inverted repeat by genomic rearrangements involving the chromosomal termini. Novel joints formed by direct repeats were mapped, amplified in vitro, and sequenced. The junctions were simple fusions between DNA downstream and upstream of the M2 gene. Lack of sequence homology at the breakpoints indicated that the initial genomic rearrangements leading to gene amplification were due to nonhomologous recombination events.  相似文献   

4.
The putative structural gene encoding the vaccinia virus type I DNA topoisomerase (EC 5.99.1.2) was expressed in Escherichia coli under the control of a bacteriophage T7 promoter. Provision of T7 RNA polymerase resulted in the accumulation to high level of a Mr = 33,000 type I topoisomerase with the properties of the vaccinia enzyme. A simple purification scheme yielded approximately 8 mg of recombinant vaccinia topoisomerase from 400 ml of bacteria. DNA unwinding by the enzyme was stimulated by magnesium, manganese, calcium, cobalt, and spermidine, but inhibited by copper and zinc. Like eukaryotic cellular type I topoisomerases, but unlike the prokaryotic counterpart, the recombinant topoisomerase relaxed positively and negatively supercoiled DNA. The viral topoisomerase I was, however, resistant to the effects of camptothecin, a drug that specifically inhibits cellular type I topoisomerases.  相似文献   

5.
6.
Repeated passages of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1,000-fold. Analyses of viral protein synthesis by using [35S]methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase (EC 1.17.4.1) activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification which yielded greater than 90% of the induced ribonucleotide reductase activity in the fraction obtained by 35% saturation with ammonium sulfate resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated [3H]thymidine into DNA earlier and at a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. In the absence of the drug, the attainment of a maximum viral DNA synthesis rate was accelerated after infection by drug-resistant isolates. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolates readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is a 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses.  相似文献   

7.
8.
Ribonucleotide reductase is a heterodimeric (alpha(2)beta(2)) allosteric enzyme that catalyzes the conversion of ribonucleotides to deoxyribonucleotides, an essential step in DNA biosynthesis and repair. In the enzymatically active form aerobic Escherichia coli ribonucleotide reductase is a complex of homodimeric R1 and R2 proteins. We use electrochemical studies of the dinuclear center to clarify the interplay of subunit interaction, the binding of allosteric effectors and substrate selectivity. Our studies show for the first time that electrochemical reduction of active R2 generates a distinct Met form of the diiron cluster, with a midpoint potential (-163 +/- 3 mV) different from that of R2(Met) produced by hydroxyurea (-115 +/- 2 mV). The redox potentials of both Met forms experience negative shifts when measured in the presence of R1, becoming -223 +/- 6 and -226 +/- 3 mV, respectively, demonstrating that R1-triggered conformational changes favor one configuration of the diiron cluster. We show that the association of a substrate analog and specificity effector (dGDP/dTTP or GMP/dTTP) with R1 regulates the redox properties of the diiron centers in R2. Their midpoint potential in the complex shifts to -192 +/- 2 mV for dGDP/dTTP and to -203 +/- 3 mV for GMP/dTTP. In contrast, reduction potential measurements show that the diiron cluster is not affected by ATP (0.35-1.45 mm) and dATP (0.3-0.6 mm) binding to R1. Binding of these effectors to the R1-R2 complex does not perturb the normal docking modes between R1 and R2 as similar redox shifts are observed for ATP or dATP associated with the R1-R2 complex.  相似文献   

9.
Anaerobic growth of Escherichia coli induces an oxygen-sensitive ribonucleoside triphosphate reductase system, different from the aerobic ribonucleoside diphosphate reductase (EC 1.17.4.1) of aerobic E. coli and higher organisms (Fontecave, M., Eliasson, R., and Reichard, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 2147-2151). We have now purified and characterized two proteins from the anaerobic system, provisionally named dA1 and dA3. dA3 is the actual ribonucleoside triphosphate reductase; dA1 has an auxiliary function. From gel filtration, dA1 and dA3 have apparent molecular masses of 27 and 145 kDa, respectively. In denaturing gel electrophoresis, dA3 gives two bands of closely related polypeptides with apparent molecular masses of 77 (beta 1) and 74 (beta 2) kDa. Immunological and structural evidence suggests that beta 2 is a degradation product of beta 1 and that the active enzyme is a dimer of beta 1. dA1 activity coincides on denaturing gels with a band of 29 kDa and thus appears to be a monomer. The reaction requires, in addition, an extract from E. coli heated for 30 min at 100 degrees C. Potassium is one required component, but one or several others remain unidentified and are provisionally designated fraction RT. With dA3, dA1, RT, and potassium ions, CTP reduction shows absolute requirements for S-adenosylmethionine, NADPH (with NADH as a less active substitute), dithiothreitol, and magnesium ions, and is strongly stimulated by ATP, probably acting as an allosteric effector. Micromolar concentrations of several chelators inhibit CTP reduction completely, suggesting the involvement of (a) transition metal(s).  相似文献   

10.
The D1 gene encoding the large subunit of vaccinia virus mRNA capping enzyme was expressed in Escherichia coli BL21(DE3) under the control of a bacteriophage T7 promoter. Guanylyltransferase activity (assayed as the formation of a covalent enzyme-guanylate complex) was detected in soluble lysates of these bacteria. Two major species of protein-GMP complex were formed, one of Mr 95,000 (corresponding in size to the D1 gene product) and one of Mr 60,000. Partial purification of the guanylyltransferase was effected by ammonium sulfate precipitation and ion-exchange chromatography. The expressed large subunit synthesized GpppA caps when provided with 5'-triphosphate-terminated poly(A) as a cap acceptor, but was unable to catalyze cap methylation in the presence of S-adenosylmethionine. Thus, the small capping enzyme subunit was shown to be dispensable for guanylylation, but required for cap methylation of RNA. The Mr 95,000 and Mr 60,000 protein-GMP forming activities were resolved during centrifugation in a glycerol gradient; the two forms sedimented at 5.5 S and 4.4 S, respectively, consistent with each enzyme form being a monomer. Either species catalyzed GMP transfer to an RNA acceptor. The isolated Mr 95,000 guanylyltransferase could be converted to an active Mr 60,000 form in vitro by limited proteolysis with trypsin. Expression of carboxyl-deleted forms of the D1 gene product in E. of carboxyl-deleted forms of the D1 gene product in E. coli further localized the guanylyltransferase domain to the amino two-thirds of the Mr 95,000 polypeptide.  相似文献   

11.
The growth factor gene of the vaccinia virus LIVP strain has been primarily cloned in a 4.3 kbp long BamHI-EcoRI fragment and then subcloned in a 440 bp fragment. It was shown that clone 4 of the LIVP strain contains a single copy of this gene while the WR strain contains a repeat. The gene is located on a 4.3 kbp BamHI-EcoRI fragment but not on a 2.2 kbp fragment and has four nucleotide changes, three of which result in amino acid substitutions.  相似文献   

12.
The amino-terminal domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) contains a serine/threonine-specific protein kinase that has characteristics of a growth factor receptor (Chung, T. D., Wymer, J. P., Smith, C. C., Kulka, M., and Aurelian, L. (1989) J. Virol. 63, 3389-3398; Chung, T. D., Wymer, J. P., Kulka, M. Smith, C. C., and Aurelian, L. (1990) Virology 179, 168-178). To characterize this protein kinase (PK) domain further we constructed a bacterial expression vector (pJL11) containing DNA sequences encoding ICP10 amino acid residues 1-445. Bacteria containing pJL11 were induced to express a 29-kDa protein (designated pp29la1) that represents a truncated portion of the ICP10-PK domain (includes PK catalytic motifs I-V) as demonstrated by immunoprecipitation with antibodies that recognize different antigenic domains, competition studies with extracts of ICP10-positive eukaryotic cells, and peptide mapping.pp29la1 has autophosphorylating and transphosphorylating activity for calmodulin. The enzyme is activated by Mn2+ but not by Mg2+ ions, and autophosphorylation is inhibited by histone. It differs from the authentic ICP10-PK in that phosphorylation is specific only for threonine.  相似文献   

13.
14.
15.
Ribonucleotide reductase activity is markedly elevated in cell lines selected for resistance to hydroxyurea, a cytotoxic drug known specifically to inhibit ribonucleotide reductase. From a cDNA library constructed from a highly hydroxyurea-resistant hamster lung cell line, 600H in which the activity is elevated more than 80-fold, we have isolated a full length cDNA for the small subunit of the reductase. The cDNA is 3.48 kb long with an open reading frame of 1158 nucleotides and a long 3' flanking region of 2169 nucleotides from the termination codon. The derived polypeptide sequence is closely similar to the small subunit of the mouse, differing from it in 20 amino acid positions. Most of these replacements occur in the N-terminal segment of the protein. The hamster subunit does not contain 4 amino acid residues found in the mouse small subunit near the C-terminal end. RNA blots probed with the cDNA show two poly(A)+ RNA species which are elevated in hydroxyurea-resistant cells.  相似文献   

16.
The bacteriophage T4 gene nrdB codes for the small subunit of the enzyme ribonucleotide reductase. The T4 nrdB gene was localized between 136.1 kb and 137.8 kb in the T4 genetic map according to the deduced structural homology of the protein to the amino acid sequence of its bacterial counterpart, the B2 subunit of Escherichia coli. This positions the C-terminal end of the T4 nrdB gene approximately 2 kb closer to the T4 gene 63 than earlier anticipated from genetic recombinational analyses. The most surprising feature of the T4 nrdB gene is the presence of an approximately 625 bp intron which divides the structural gene into two parts. This is the second example of a prokaryotic structural gene with an intron. The first prokaryotic intron was reported in the nearby td gene, coding for the bacteriophage T4-specific thymidylate synthase enzyme. The nucleotide sequence at the exon-intron junctions of the T4 nrdB gene is similar to that of the junctions of the T4 td gene: the anticipated exon-intron boundary at the donor site ends with a TAA stop codon and there is an ATG start codon at the putative downstream intron-exon boundary of the acceptor site. In the course of this work the denA gene of T4 (endonuclease II) was also located.  相似文献   

17.
The active form of protein B2, a homodimeric subunit of Escherichia coli ribonucleotide reductase, contains a diferric iron center and a cationic free radical localized to tyrosine 122 of one of the two polypeptide chains. Hydroxyurea scavenges this radical but leaves the iron center intact. The resulting metB2 (earlier named B2/HU) is enzymatically inactive. Crude extracts of E. coli catalyze the interconversion of metB2 and B2. Radical introduction into metB2 requires a flavin reductase together with a second poorly defined protein fraction ("Fraction b") as well as dioxygen, NAD(P)H, and a flavin (Fontecave, M., Eliasson, R., and Reichard, P. (1987) J. Biol. Chem. 262, 12325-12331). We now find that ferrous ions can substitute for Fraction b and that the diferric center of metB2 is reduced during anaerobic incubation of the system with reduced flavin and ferrous ions. Spectroscopic evidence and isotope experiments suggest an in situ reduction of the diferric to a diferrous center. Admission of oxygen then results in the instantaneous oxidation of tyrosine 122 to the cationic radical coupled to the reformation of the diferric center, giving enzymatically active B2. These data suggest that reduced diferrous B2 is an intermediate between metB2 and B2 during radical introduction. In addition, we find that anaerobic incubation of B2 with reduced flavin results in the loss of the tyrosyl radical and the formation of metB2. This reaction occurs in the absence of Fraction b or ferrous ions. Our experiments reconstitute with defined reagents the interconversion between metB2 and B2 observed earlier in the E. coli extract. The flavin reductase system catalyzes the interconversion in both directions with dioxygen as the critical factor deciding whether activation or inactivation of ribonucleotide reductase occurs.  相似文献   

18.
Ribonucleotide reductase from Escherichia coli consists of two nonidentical subunits, proteins B1 and B2. The active site of the enzyme is made up from both subunits. Protein B2 contributes inter alia an organic free radical which gives a characteristic EPR signal. This radical was now located by isotope substitution experiments to the beta position of a tyrosine residue. The EPR spectrum of protein B2 from bacteria grown in a completely deuterated medium was drastically changed. The change was reversed by the addition of other protonated amino acids. The involvement in radical formation of the beta position of tyrosine was demonstrated from EPR spectra of protein B2 from bacteria grown in the presence of specifically deuterated tyrosine.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号