首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The patch-clamp technique was used to characterize ion channels in the apical membranes of cultured human nasal epithelial cells, dissociated from fetal nasal mucosa and from adult nasal polyps. Outward-rectifying chloride channels were found in 4.3% of the cell-attached patches from fetal cells (n=258) and in 3.1% of the patches from adult cells (n=320). After exeision the number of patches containing active chloride channels increased threefold to 13% of the patches from the fetal cells and 10% from adult cells. The single-channel conductance at 0 mV in symmetrical 150mm NaCl solutions was 24.3 ±0.9 pS (n=28) and 26.0 ± 1.2 pS (n=30), respectively, in adult and fetal cells and showed outward rectification in the potential range from –80 to +80 mV. In fetal cells as well as in adult cells the channels were anion selective, and were almost impermeable for larger anions and monovalent cations. In cell-free patches the channels were Ca2+ independent. In most of the channels the open probability was voltage independent and high (±0.86); in 20% of the channels, however, the open probability increased with depolarization. In conclusion, fetal nasal epithelial cells contain chloride channels in their apical membranes with singlechannel properties and regulatory mechanisms similar to those found in cells from adults.  相似文献   

2.
Respiratory tissues can be damaged by the exposure of airway epithelial cells to reactive oxygen species that generate oxidative stress. We studied the effects of the hydroxyl radical *OH, for which there is no natural intra- or extracellular scavenger, on a Ca(2+)-activated chloride channel (CACC) that participates in Cl(-) secretion in the apical membrane of airway epithelial cells. We identified and characterized CACC in cell-attached and in inside-out excised membrane patches from the apical membrane of cultured nonciliated human nasal epithelial cells. In these cells, the CACC was outwardly rectified, Ca(2+)/calmodulin-kinase II, and voltage dependent. The channel was activated in cell-attached and inside-out patches in a bath solution containing millimolar [Ca(2+)] and ran down quickly. The channel was reversibly or irreversibly activated by exposure of the internal surface of the membrane to *OH, which depended on the concentration and the duration of exposure to H(2)O(2). CACC activity evoked by oxidative stress was inhibited by 1,3-dimethyl-2-thiurea, an antioxidant that scavenges hydroxyl radicals, and by the reduced form of glutathione. The oxidized SH residues could be close to the Ca(2+)/calmodulin kinase site. The reversible or irreversible activation of CACC after a period of oxidative stress without change in [Ca(2+)] is a new observation. CACC play a direct role in mucus production by goblet cells and may thus contribute to the pathogenesis of asthma.  相似文献   

3.
Summary Chloride ions (Cl) are concentrated in airway epithelial cells and subsequently secreted into the tracheal lumen by downhill flux through apical Cl channels. We have studied Cl currents in cultured canine tracheal cells using the whole-cell voltage-clamp technique. Ultrastructural techniques demonstrated that the cells used in the electrophysiological experiments possessed apical membrane specializations known to be present in the intact, transporting cell type. Cultured cells 2–6 days old were characterized by an input resistance of 3.4±0.8 G (n=11) and a capacitance of 63.8±10.8 pF (n=26). A comparison of 3 and 4 day-old cells with 5 and 6 day-old cells showed that the input resistance decreased almost 50%, and the cell capacitance and the inward and outward currents increased concomitantly approximately 200%. Cultured cells 3–4 days old held at –40 mV produced currents of 196±22 pA at 50 mV and –246±27 pA at –90 mV (n=212) with pipette and bath solutions containing primarily 140 KCl and 140 NaCl, respectively. The chloride channel blocker diphenylamine-2-carboxylate (DPC, 100 m) suppressed whole-cell currents by 76.8% at 60 mV; however, currents were unaffected by the stilbenes SITS (1mm) and DNDS (1–30 m). Replacement of K+ with Cs+ in the pipette solution did not affect the outward current, the current reversal potential, or the input resistance of the cells, indicating that the current was not significantly K+ dependent when the intrapipette solution was buffered to a Ca2+ concentration of 20nm. The Cl/Na+ permeability ratio was estimated to be greater than 11 as calculated from reversal potential measurements in the presence of an internal to external NaCl concentration ratio of 12. Current equilibrium permeabilities, relative to Cl were: I (2.9)NO 3 (1.1)Br (1.1)Cl (1.0)F (0.93)MeSO 4 (0.19)gluconate (0.18)aspartate (0.14). Depolarizations to potentials greater than 20 mV elicited a time-dependent component in the outward current in 71% of the cells studied. Currents inactivated with a double exponential time course at the most depolarized voltages. Recovery from inactivation was fast, holding potential-dependent, and followed a double exponential time course. Current amplitude was increased via a cAMP-dependent pathway as has been demonstrated for single Cl-selective channels in cell-attached patches from cultured canine and human tracheal epithelial cells. Forskolin, an activator of adenylate cyclase, produced a 260% increase in the outward current at +50 mV. In summary, cultured canine tracheal cells have a single resting conductance that is Cl selective, voltage-dependent, and modulated by a cAMP-dependent mechanism. This preparation appears to be appropriate for analysis of cellular modulation of airway Cl channels and Cl secretion.  相似文献   

4.
Cultured Na(+)-transporting epithelia from amphibian renal distal tubule (A6) were impaled with microelectrodes and analyzed at short-circuit and after transepithelial voltage perturbation to evaluate the influence of voltage on apical and basolateral membrane conductances. For equivalent circuit analysis, amiloride was applied at each setting of transepithelial potential. At short-circuit, apical and basolateral membrane conductances averaged 88 and 497 microS/cm2, respectively (n = 10). Apical membrane conductance, essentially due to Na(+)-specific pathways, decreased after depolarization of the apical membrane. The drop was considerably larger than predicted by the Goldman-Hodgkin-Katz (GHK) constant-field equation. This suggests decrease in permeability of the apical Na+ channels upon depolarization. Basolateral membrane conductance, preferentially determined by K+ channels, increased after hyperpolarization of the basolateral membrane. This behavior is contrary to the prediction of the GHK constant field equation and reflects inward rectification of the K+ channels. The observed rectification patterns can be valuable for maintenance of cellular homeostasis.  相似文献   

5.
Chloride channels and non-selective cation channels in the apical membranes of cultured nasal epithelial cells from three cystic fibrosis patients were investigated with the patch-clamp techinique. Outwardly rectifying chloride channels were found in 31% of the inside-out patches, but activity of this channel was never observed in cell-attached patches, even after stimulation with adrenaline. In 30% of the patches with chloride channels, activation occurred immediately after excision. Most of the channels, however, activated only after a membrane depolarization of +40 to +120 mV. Once activated, the chloride channels were indistinguishable from thsoe in nasal epithelial cells of control patients. Amiloride-insensitive, calcium- and voltage-dependent, non-selective cation channels were present in 11% of the cell-attached and 43% of the cell-free patches and could not be distinguished from those in controls. The cystic fibrosis chloride channel defect is conserved in cultured nasal epithelial cells, while a non-selective cation channel is apparently not affected.  相似文献   

6.
Essential fatty acid metabolism in cultured human airway epithelial cells.   总被引:3,自引:0,他引:3  
To characterize essential fatty acid metabolism of human airway epithelium, we examined the capacity of epithelial cells to incorporate and desaturate/elongate 18:2(n - 6) and the turnover of phospholipid fatty acyl chains in these cells. Epithelial cells were cultured for 5-7 days and incubated with [1-14C]18:2(n - 6) (1 microCi, 100 nmol). The essential fatty acid profile of the cells was readily modified by 18:2(n - 6) supplementation to culture medium. After 4 h incubation, 32 +/- 5.6 nmol of [1-14C]18:2(n - 6) was incorporated into phospholipids (65 +/- 9.5%, of which 74% was incorporated into phosphatidylcholine (PC)) and neutral lipid (31 +/- 10%) per mg protein of cultured cells. 30 +/- 8% of [1-14C]18:2(n - 6) incorporated, was converted to homologous trienes, tetraenes and pentaenes, the major products being 20:3(n - 6) and 20:4(n - 6). The conversion of 18:2(n - 6) was time-dependent and donor age-related. A higher proportion of 20:3(n - 6) and 20:4(n - 6) was incorporated into phosphatidylinositol (PI) and phosphatidylethanolamine (PE). About 10-15% of total products formed from 18:2(n - 6) was released from membrane to culture medium. Both 20:4(n - 6) and 20:5(n - 3) inhibited 18:2(n - 6) incorporation and desaturation. Rate of incorporation of 18:2(n - 6) was more than either 18:1(n - 9) or 16:0. With pulse-chase studies, the half-life of 18:2(n - 6) in PC, PI and PE was estimated to be 5.5, 6.0 and 7.3 h, respectively. These data indicate active metabolism of essential fatty acids in human airway epithelial cells. This metabolism may play a key role in the regulation of membrane properties and function in these cells.  相似文献   

7.
Electrophysiology of cultured human lens epithelial cells   总被引:2,自引:0,他引:2  
Summary The lens epithelial K+ conductance plays a key role in maintaining the lens ionic steady state. The specific channels responsible for this conductance are unknown. We used cultured lens epithelia and patch-clamp technology to address this problem. Human lens epithelial explants were cultured and after 1–4 passages were dissociated and used in this study. The cells from which we measured had a mean diameter of 31±1 m (sem,n=26). The resting voltage was –19±4 mV (sem,n=10) and the input resistance was 2.5±0.5 G (sem,n=17) at –60 mV. Two currents were prominent in whole-cell recordings. An outwardly rectifying current was seen in nearly every cell. The magnitude of this current was a function of K+ concentration and was blocked by 3mm tetraethylammonium. The instantaneous current-voltage relationship was linear in symmetric K+, implying that the outward rectificiation was due to gating. The current showed complex activation and inactivation kinetics. The second current seen was a transient inward current. This current had kinetics very similar to the traditional Na+ current of excitable cells and was blocked by 0.1 m tetrodotoxin. In single-channel recordings, a 150-pS K+ channel and a 35-pS nonselective cation channel were seen but neither account for the macroscopic currents measured.  相似文献   

8.
人胎儿鼻咽上皮细胞的背景氯电流   总被引:3,自引:0,他引:3  
Sun XR  Wang LW  Mao JW  Zhu LY  Nie SH  Zhong P  Chen LX 《生理学报》2005,57(3):349-354
采用膜片钳和图像分析技术,研究人胎儿鼻咽上皮细胞背景电流的特性及其与容积激活性氯电流的关系。在等张溶液中,可记录到一背景电流,该电流呈微弱的外向整流性,无明显时间依赖性失活,其翻转电位为(?0.73±1.7)mV(n=21),接近氯离子平衡电位(?0.9mV)。细胞外高张刺激(440mOsmol/L)明显抑制此电流(59.6±7.1)%,而低张刺激(160mOsmol/L)则诱发细胞产生容积激活性氯电流。氯通道阻断剂tamoxifen和5-硝基-2-(3-苯丙胺基)苯甲酸[5-nitro-2-(3-phenylpropylamino)benzoicacid,NPPB]显著地抑制背景电流并使细胞基础容积增大。上述结果表明,人胎儿鼻咽上皮细胞的背景Cl?电流是背景电流的重要成分,此Cl?电流与容积激活性氯电流及细胞基础容积调节有关。  相似文献   

9.
Shen B  Li X  Wang F  Yao X  Yang D 《PloS one》2012,7(4):e34694
Mutations in the gene-encoding cystic fibrosis transmembrane conductance regulator (CFTR) cause defective transepithelial transport of chloride (Cl(-)) ions and fluid, thereby becoming responsible for the onset of cystic fibrosis (CF). One strategy to reduce the pathophysiology associated with CF is to increase Cl(-) transport through alternative pathways. In this paper, we demonstrate that a small synthetic molecule which forms Cl(-) channels to mediate Cl(-) transport across lipid bilayer membranes is capable of restoring Cl(-) permeability in human CF epithelial cells; as a result, it has the potential to become a lead compound for the treatment of human diseases associated with Cl(-) channel dysfunction.  相似文献   

10.
Glomerular mesangial cells require Cl ions for the development of a variety of metabolic and functional properties. In the present study the electrochemical distribution for Cl- was examined in cultured rat mesangial cells with Cl(-)-sensitive intracellular microelectrodes. It was determined that the intracellular Cl activity exceeded the levels predicted for a passively distributed ion. This was further substantiated by exposing mesangial cells to 10(-5) M bumetanide which drove intracellular Cl to a value close to electrochemical equilibrium. We conclude that Cl accumulates in mesangial cells, against its electrochemical gradient, through a transport pathway that is highly sensitive to bumetanide.  相似文献   

11.
Secondhand smoke (SHS) exposure is an independent risk factor for asthma, rhinosinusitis, and more severe respiratory tract infections in children and adults. Impaired mucociliary clearance with subsequent mucus retention contributes to the pathophysiology of each of these diseases, suggesting that altered epithelial salt and water transport may play an etiological role. To test the hypothesis that SHS would alter epithelial ion transport, we designed a system for in vitro exposure of mature, well-differentiated human bronchial epithelial cells to SHS. We show that SHS exposure inhibits cAMP-stimulated, bumetanide-sensitive anion secretion by 25 to 40% in a time-dependent fashion in these cells. Increasing the amount of carbon monoxide to 100 ppm from 5 ppm did not increase the amount of inhibition, and filtering SHS reduced inhibition significantly. It was determined that SHS inhibited cAMP-dependent apical membrane chloride conductance by 25% and Ba2+-sensitive basolateral membrane potassium conductance by 50%. These data confirm previous findings that cigarette smoke inhibits chloride secretion in a novel model of smoke exposure designed to mimic SHS exposure. They also extend previous findings to demonstrate an effect on basolateral K+ conductance. Therefore, pharmacological agents that increase either apical membrane chloride conductance or basolateral membrane potassium conductance might be of therapeutic benefit in patients with diseases related to SHS exposure.  相似文献   

12.
Gene expression of platelet-derived growth factor (PDGF) and its receptors in cultured human retinal pigment epithelial (RPE) cells was studied by using semiquantitative polymerase chain reaction. The RPE cells were found to express PDGF A- and B-chain genes as well as alpha- and beta-receptor genes with dominant expression of B-chain and beta-receptor isoforms. Phorbol myristate acetate (PMA) and thrombin increased the expression of PDGF B-chain gene to 19.8 +/- 1.75 and 15.9 +/- 1.84 fold (n = 3) of the control without affecting beta-receptor gene expression. PDGF produced by the RPE cells may play an important role in the pathogenesis of some ocular proliferative diseases.  相似文献   

13.
Plateau and pacemaker currents from tissue cultured clusters of embryonic chick heart cells were studied in the time domain, using voltage-clamp steps, and in the frequency domain, using a wide-band noise input superimposed on a steady holding voltage. In the presence of tetrodotoxin to block the sodium channel, a depolarizing voltage step into the plateau range elicited: (a) a rapid (approximately equal to 2 ms) activation of the slow inward current; (b) a subsequent slower (approximately equal to 25 ms) decline in the slow inward current; and (c) activation of a very slow (5 to 10 s) outward current. Impedance studies in this voltage range could clearly resolve two voltage-dependent processes, which appeared to correspond to points b and c above because of their voltage dependence, pharmacology, and time constants. A correlate of point a was also probably present but difficult to resolve owing to the fast time constant of activation for the slow inward channel. At voltages negative to -50 mV a new voltage-dependent process could be resolved, which, because of its voltage dependence and time constant, appeared to represent the pacemaker channel (also termed If or IK2). In the Appendix, linear models of voltage-dependent channels and ion accumulation/depletion are derived and these are compared with our data. Most of the above-mentioned processes could be attributed to voltage-dependent channels with kinetics similar to those observed in time domain, voltage-clamp studies. However, the frequency domain correlate of the decline of the slow inward current was incompatible with channel gating, rather, it appears accumulation/depletion of calcium may dominate the decline in this preparation.  相似文献   

14.
Using five different monoclonal antibodies to vimentin, we have examined the expression of vimentin in cryostat sections and serum-free cultures of normal human breast tissue. In cryostat sections, myoepithelial cells as well as stromal cells showed immunoreactivity to vimentin, irrespective of the antibody used. In contrast, luminal epithelial cells were negative for vimentin, but positive for keratin K18. In culture, myoepithelial cells showed immunoreactivity to vimentin from their first appearance in monolayer. Moreover, a fraction of luminal epithelial cells expressed vimentin in addition to keratin K18. We found a clear, reversible correlation between proliferation, determined by incorporation of [3H]-TdR, and induction of vimentin in the luminal epithelial cells. Thus, in growth-stimulated cultures on a medium containing cholera toxin (CT), epidermal growth factor (EGF), transferrin (Tf), hydrocortisone (H) and insulin (I), the fraction of vimentin-positive luminal epithelial cells increased, while it decreased within 14 days from approximately 36% to 3% on a medium containing CT and EGF, only. We therefore conclude: (1) vimentin is constantly expressed in myoepithelial cells in situ and in vitro, and (2) expression of vimentin in luminal epithelial cells in vitro is not a result of monolayer cultivation as such, but rather associated with the increased growth rate seen in culture.  相似文献   

15.
The cyclic AMP metabolism of cultured epithelial cells was investigated. Epinephrine or 1-methyl,3-isobutylxanthine (MIX) alone had no effect on cyclic AMP levels in intact cells, whereas the combination of the two agents yielded a 6- to 10-fold increase in cyclic AMP levels. Both basal and stimulated cyclic AMP levels decreased with increasing cell density. Cell-free adenylate cyclase preparations were stimulated markedly by epinephrine or isoproterenol in the absence of MIX. Since the epithelial cells were found to have a relatively small amount of cyclic nucleotide phosphodiesterase (PDE) activity, the requirement for MIX to visualize intact cell responsiveness to epinephrine could be explained only partially by its PDE inhibitory properties.  相似文献   

16.
17.
18.
19.

Rationale

Unbiased approaches that study aberrant protein expression in primary airway epithelial cells at single cell level may profoundly improve diagnosis and understanding of airway diseases. We here present a flow cytometric procedure to study CFTR expression in human primary nasal epithelial cells from patients with Cystic Fibrosis (CF). Our novel approach may be important in monitoring of therapeutic responses, and better understanding of CF disease at the molecular level.

Objectives

Validation of a panel of CFTR-directed monoclonal antibodies for flow cytometry and CFTR expression analysis in nasal epithelial cells from healthy controls and CF patients.

Methods

We analyzed CFTR expression in primary nasal epithelial cells at single cell level using flow cytometry. Nasal cells were stained for pan-Cytokeratin, E cadherin, and CD45 (to discriminate epithelial cells and leukocytes) in combination with intracellular staining of CFTR. Healthy individuals and CF patients were compared.

Measurements and Main Results

We observed various cellular populations present in nasal brushings that expressed CFTR protein at different levels. Our data indicated that CF patients homozygous for F508del express varying levels of CFTR protein in nasal epithelial cells, although at a lower level than healthy controls.

Conclusion

CFTR protein is expressed in CF patients harboring F508del mutations but at lower levels than in healthy controls. Multicolor flow cytometry of nasal cells is a relatively simple procedure to analyze the composition of cellular subpopulations and protein expression at single cell level.  相似文献   

20.
We have applied patch-clamp techniques to on-cell and excised-membrane patches from human retinal pigment epithelial cells in tissue culture. Single-channel currents from at least four ion channel types were observed: three or more potassium-selective channels with single-channel slope conductances near 100, 45, and 25 pS as measured in on-cell patches with physiological saline in the pipette, and a relatively nonselective channel with subconductance states, which has a main-state conductance of approximately 300 pS at physiological ion concentrations. The permeability ratios, PK/PNa, measured in excised patches were 21 for the 100-pS channels, 3 for the 25-pS channels, and 0.8 for the 300-pS nonselective channel. The 45-pS channels appeared to be of at least two types, with PK/PNa's of approximately 41 for one type and 3 for the other. The potassium-selective channels were spontaneously active at all potentials examined. The average open time for these channels ranged from a few milliseconds to many tens of milliseconds. No consistent trend relating potassium-selective channel kinetics to membrane potential was apparent, which suggests that channel activity was not regulated by the membrane potential. In contrast to the potassium-selective channels, the activity of the nonselective channel was voltage dependent: the open probability of this channel declined to low values at large positive or negative membrane potentials and was maximal near zero. Single-channel conductances observed at several symmetrical KCl concentrations have been fitted with Michaelis-Menten curves in order to estimate maximum channel conductances and ion-binding constants for the different channel types. The channels we have recorded are probably responsible for the previously observed potassium permeability of the retinal pigment epithelium apical membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号