首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the rat pituitary cell line GH3, carbachol inhibits PRL secretion in a pertussis toxin-sensitive manner. For elucidation of the underlying mechanisms, we studied the effect of carbachol on voltage-dependent Ca2+ currents. Under voltage-clamp conditions, carbachol inhibited whole-cell Ca2+ currents by about 25%. This inhibitory action of carbachol was not observed in cells treated with pertussis toxin, indicating the involvement of a pertussis toxin-sensitive G-protein. In membranes of GH3 cells, carbachol stimulated a pertussis toxin-sensitive high-affinity GTPase. In immunoblot experiments with peptide antisera, we identified two forms of the Gi alpha-subunit (41 and 40 kDa) and two forms of the Go alpha-subunit (40 and 39 kDa). The 40-kDa Gi alpha-subunit was recognized by an antibody specific for the Gi2 alpha-subunit, and the 39-kDa Go alpha-subunit was detected by an antibody specific for the Go2 alpha-subunit. Incubation of membranes with the photoreactive GTP analog [alpha-32P]GTP azidoanilide resulted in photo-labelling of 40- and 39-kDa pertussis toxin substrates comigrating with G-protein alpha-subunits of the corresponding molecular masses. Carbachol dose-dependently stimulated incorporation of the photoreactive GTP analog into the 39-kDa pertussis toxin substrate and, to a lesser extent, into 40-kDa pertussis toxin substrates. The data indicate that muscarinic receptors of GH3 cells couple preferentially to Go, which is likely to be involved in the inhibition of secretion, possibly by conferring an inhibitory effect to voltage-dependent Ca2+ channels.  相似文献   

2.
Two GTP-binding proteins which can be ADP-ribosylated by islet-activating protein, pertussis toxin, were purified from the cholate extract of bovine lung membranes. Both proteins had the same heterotrimeric structure (alpha beta gamma), but the alpha subunits were dissociated from the beta gamma when they were purified in the presence of AlCl3, MgCl2 and NaF. The molecular mass of the alpha subunit of the major protein (designated GLu, with beta gamma) was 40 kDa and that of the minor one was 41 kDa. The results of peptide mapping analysis of alpha subunits with a limited proteolysis indicated that GLu alpha was entirely different from the alpha of brain Gi or Go, while the 41-kDa polypeptide was identical with the alpha of bovine brain Gi. The kinetics of guanosine 5'-[3-O-thio]triphosphate (GTP[gamma S]) binding to GLu was similar to that to lung Gi but quite different from that to brain Go. On the other hand, incubation of GLu alpha at 30 degrees C caused a rapid decrease of GTP[gamma S] binding, the inactivation curve being similar to that of Go alpha but different from that of Gi alpha. The alpha subunits of lung Gi and GLu did not react with the antibodies against the alpha subunit of bovine brain Go. The antibodies were raised in rabbits against GLu alpha and were purified with a GLu alpha-Sepharose column. The purified antibodies reacted not only with GLu alpha but also with the 41-kDa protein and purified brain Gi alpha. However, the antibodies adsorbed with brain Gi alpha reacted only with GLu alpha, indicating antisera raised with GLu alpha contained antibodies that recognize both Gi alpha and GLu alpha, and those specific to GLu alpha. These results further indicate that GLu is different from Gi or Go. Anti-GLu alpha antibodies reacted with the 40-kDa proteins in the membranes of bovine brain and human leukemic (HL-60) cells. The beta gamma subunits were also purified from bovine lung. The beta subunit was the doublet of 36-kDa and 35-kDa polypeptides. The lung beta gamma could elicit the ADP-ribosylation of GLu alpha by islet-activating protein, increase the GTP[gamma S] binding to GLu and protect the thermal denaturation of GLu alpha. The antibodies raised against brain beta gamma cross-reacted with lung beta but not with lung gamma.  相似文献   

3.
On separation of rat pancreatic plasma membrane proteins by two-dimensional gel electrophoresis, 15 GTP-binding protein (G-protein) alpha-subunits could be detected immunochemically using an alpha common antibody. These consisted of five 48 kDa proteins (pI 5.70, 5.80, 5.90, 6.10 and 6.25) and five 45 kDa proteins (pI 5.90, 6.05, 6.25, 6.30 and 6.70), presumably corresponding to low- and high-molecular mass forms of the Gs-protein, as well as three 40/41 kDa proteins (pI 5.50, 5.70 and 6.00) and two 39 kDa proteins (pI 5.50 and 6.00). All of these proteins except for the more acidic 39 kDa protein were ADP-ribosylated by cholera toxin (CT). In addition, the three 40/41 kDa proteins and the more alkaline 39 kDa protein were also ADP-ribosylated by pertussis toxin (PT). CT- and PT-induced ADP-ribosylation changed the pI values of G-protein alpha-subunits by 0.2 pI units to more acidic values. Preincubation of isolated pancreatic membranes with cholecystokinin octapeptide (CCK-OP), which stimulates phospholipase C in acinar cells, decreased CT-induced as well as PT-induced ADP-ribosylation of the three 40/41 kDa proteins, whereas CT-induced ADP-ribosylation of one 45 kDa (pI 5.80) and all 48 kDa proteins was enhanced in the presence of CCK. Carbachol, another stimulant of phospholipase C, had no effect. The three 40/41 kDa proteins and one 48 kDa protein could be labelled with the GTP analogue [alpha-32P]GTP-gamma-azidoanilide. CCK, but not carbachol, stimulated incorporation of the GTP analogue into all of these four proteins. Using different anti-peptide antisera specific for alpha-subunits of G-proteins we identified the three 40/41 kDa Gi-proteins as Gi1 (pI 6.00), Gi2 (pI 5.50) and Gi3 (pI 5.70). The Gi3-protein was found to be the major Gi-protein of pancreatic plasma membranes. One of the 39 kDa proteins (pI 6.0) was identified as Go. These results indicate that CCK receptors functionally interact with six Gs-proteins and with Gi1, Gi2 and Gi3-proteins. Since evidence suggests that a 40/41 kDa CT substrate is involved in the stimulation of phospholipase C in pancreatic acinar cells, it is likely that one, two or all three 40/41 kDa Gi-proteins are involved in the coupling of CCK receptors with phospholipase C.  相似文献   

4.
In rat myometrial membranes, two 3H-Bradykinin binding sites with KD values of 16 pM and 1.0 nM were identified. Employed at pM concentrations, bradykinin stimulated high affinity GTPases. This effect was abolished by the bradykinin antagonist, [D-Arg(Hyp3-Thi5,8, D-Phe7)]bradykinin (10 microM), and by treatment of membranes with pertussis toxin. Myometrial membranes contained two pertussis toxin substrates of 40 and 41 kDa, which corresponded immunologically to alpha-subunits of Gi-type G-proteins. The faster migrating substrate was tentatively identified as Gi2 alpha-subunit. The electrophoretic mobility of the slower migrating Gi alpha-subunit was very similar to that of the Gi3 alpha-subunit. Go alpha-subunits were not detected. Thus, in uterine smooth muscle, G-proteins of the Gi-family (Gi2, Gi3) couple high-affinity bradykinin receptors to their effector enzymes.  相似文献   

5.
T Katada  M Oinuma  K Kusakabe  M Ui 《FEBS letters》1987,213(2):353-358
A new GTP-binding protein serving as the specific substrate of islet-activating protein (IAP), pertussis toxin, was purified from porcine brain membranes as an alpha beta gamma-heterotrimeric structure. The alpha-subunit of the purified protein (alpha 40 beta gamma) had a molecular mass of 40 kDa and differed from that of Gi (alpha 41 beta gamma) or Go (alpha 39 beta gamma) previously purified from brain tissues. The fragmentation patterns of limited tryptic digestion and immunological cross-reactivities among the three alpha were different from one another. However, the beta gamma-subunit resolved from the three IAP substrates similarly inhibited a membrane-bound adenylate cyclase and their beta-subunits were immunologically indistinguishable from one another. Thus, the alpha 40 beta gamma is a new IAP substrate protein different from Gi or Go, in the alpha-subunit only.  相似文献   

6.
Noradrenaline (NA) stimulated the release of arachidonic acid (AA) from the [3H]AA-labelled rabbit platelets via alpha 2-adrenergic receptors, since the effect of NA was inhibited by yohimbine. The stimulatory effect of NA in digitonin-permeabilized platelets was completely dependent on the simultaneous presence of GTP and Ca2+. The NA- and thrombin-stimulated releases of AA were markedly decreased by the prior ADP-ribosylation of the permeabilized platelets with pertussis toxin. Antiserum directed against the pig brain Go (a GTP-binding protein of unknown function), recognizing both alpha 39 and beta 35,36 subunits, but not alpha 41, of pig brain, reacted with 41 kDa and 40 kDa bands, with not one of 39 kDa, in rabbit platelet membranes. Anti-Go antiserum inhibited guanosine 5'-[gamma-thio]triphosphate-, A1F4(-)-, NA- and thrombin-stimulated AA releases in the membranes. Although the effect of thrombin was inhibited by low concentrations of anti-Go antiserum, high concentrations of the antiserum was needed for inhibition of the NA effect. Antiserum directed against the pig brain G1 (inhibitory G-protein), recognizing both alpha 41 and beta 35,36 subunits, but not alpha 39, of pig brain, reacted with the 41 kDa band in platelets. Anti-G1 antiserum inhibited only the effect of NA. Reconstitution of the platelet membranes ADP-ribosylated by pertussis toxin with Go, not Gi, purified from pig brain restored the thrombin-stimulated release of AA. In contrast, reconstitution of those membranes with Gi, not Go, restored the NA-stimulated release of AA. These results indicate that different GTP-binding proteins, Gi- and Go-like proteins, may be involved in the mechanism of signal transduction from alpha 2-adrenergic receptors and thrombin receptors to phospholipase A2 in rabbit platelets.  相似文献   

7.
Adipocyte plasma membranes contain two Gi subtypes but are devoid of Go   总被引:5,自引:0,他引:5  
Antisera generated against synthetic peptides were used to identify G-protein alpha-subunits in plasma membranes from rat adipocytes. Applying the immunoblot technique, we detected two Gs alpha-subunits of 42 and 43 kDa, corresponding to the two cholera toxin substrates, and two Gi alpha-subunits of 40 and 41 kDa, corresponding to the two pertussis toxin substrates present in these membranes. The 40 kDa protein was tentatively identified as the Gi2 alpha-subunit. A serum specific for the Go alpha-subunit failed to detect any immunoreactive protein. Thus plasma membranes of adipocytes possess two forms of Gi but not Go.  相似文献   

8.
Cholera toxin, an agent that impairs the function of Gs transducer proteins, was injected (0.5 microgram/mouse, icv) and the antinociceptive activity of opioids and clonidine was studied 24h later in the tail-flick test. In these animals, an enhancement of the analgesic potency of morphine, beta-endorphin and clonidine could be observed. Cholera toxin did not modify the antinociception evoked by the enkephalin derivatives DAGO and DADLE. Pertussis toxin that catalyses the ADP ribosylation of alpha subunits of Gi/Go regulatory proteins was given icv (0.5 microgram/mouse). This treatment reduced the analgesic effect of opioids and clonidine. However, while the analgesia elicited by DAGO, DADLE and clonidine was greatly decreased, the effect of morphine and beta-endorphin was reduced to a moderate extent. It is concluded that Gi/Go regulatory proteins functionally coupled to opioid and alpha 2 receptors are implicated in the efficacy displayed by opioids and clonidine to produce supraspinal analgesia. Moreover, these two receptors are susceptible to regulation by a process that might involve a Gs protein.  相似文献   

9.
The ontogenesis of alpha 2-adrenoceptors and GTP-binding proteins and their coupling activity were investigated in telencephalon membranes of developing rats. The manganese-induced elevation of [3H]clonidine binding was increased in an age-dependent manner but the guanosine 5'-O-(3-thio)triphosphate-induced decrease in binding did not change. The extent of the binding of [3H]clonidine at 15 nM (saturable concentration) increased in an age-dependent manner and reached the adult level at 4 days after birth. Cholera toxin and pertussis toxin catalyzed ADP-ribosylation of proteins of 46 and 41/39 kilodaltons (kDa) in solubilized cholate extracts of the membranes. The 41/39-kDa proteins ADP-ribosylated by pertussis toxin (Gi alpha + Go alpha) were increased with age and reached the adult level at day 12, whereas the 46-kDa protein (Gs alpha) reached its peak on day 12 and then decreased to the fetal level at the adult stage. The immunoblot experiments of the homogenates with antiserum (specific antibody against alpha- and beta-subunit of GTP-binding proteins) demonstrated that the 39-kDa alpha-subunit of (Go alpha) and the 36-kDa beta-subunit of GTP-binding protein (beta 36) increased with postnatal age. In contrast, 35-kDa beta-subunit (beta 35) did not change. From these results, it is suggested that the coupling activity of alpha 2-adrenoceptor with GTP-binding protein gradually develops in a manner parallel with the increase of alpha 2-adrenoceptor and pertussis toxin sensitive GTP-binding proteins, Gi, and that alpha 39 beta 36 gamma may be related to the differentiation and/or growth of nerve cells in rat telencephalon.  相似文献   

10.
A1 adenosine receptors and associated guanine nucleotide-binding proteins (G proteins) were purified from bovine cerebral cortex by affinity chromatography (Munshi, R., and Linden, J. (1989) J. Biol. Chem. 264, 14853-14859). In this study we have identified the pertussis toxin-sensitive G protein subunits that co-purify with A1 adenosine receptors by immunoblotting with specific antipeptide antisera. Gi alpha 1, Gi alpha 2, Go alpha, G beta 35, and G beta 36 were detected. Of the total [35S]guanosine 5'-O-(3-thio)triphosphate [( 35S]GTP gamma S) binding sites, Gi alpha 1 and Go alpha each accounted for greater than 37% whereas Gi alpha 2 comprised less than 13%. G beta 35 was found in excess over G beta 36. Low molecular mass (21-25 kDa) GTP-binding proteins were not detected. We also examined the characteristics of purified receptors and various purified bovine brain G proteins reconstituted into phospholipid vesicles. All three alpha-subunits restored GTP gamma S-sensitive high affinity binding of the agonist 125I-aminobenzyladenosine to a fraction (25%) of reconstituted receptors with a selectivity order of Gi2 greater than Go greater than or equal to Gi1 (ED50 values of G proteins measured as fold excess over the receptor concentration were 4.7 +/- 1.2, 24 +/- 5, and 34 +/- 7, respectively). Furthermore, receptors occupied with the agonist R-phenylisopropyladenosine catalytically increased the rate of binding of [35S]GTP gamma S to reconstituted G proteins by 6.5-8.5-fold. These results suggest that A1 adenosine receptors couple indiscriminately to pertussis toxin-sensitive G proteins.  相似文献   

11.
S C Tsai  R Adamik  Y Kanaho  J L Halpern  J Moss 《Biochemistry》1987,26(15):4728-4733
Guanyl nucleotide binding proteins couple agonist interaction with cell-surface receptors to an intracellular enzymatic response. In the adenylate cyclase system, inhibitory and stimulatory effects are mediated through guanyl nucleotide binding proteins, Gi and Gs, respectively. In the visual excitation complex, the photon receptor rhodopsin is linked to its target, cGMP phosphodiesterase, through transducin (Gt). Bovine brain contains another guanyl nucleotide binding protein, Go. The proteins are heterotrimers of alpha, beta, and gamma subunits; the alpha subunits catalyze receptor-stimulated GTP hydrolysis. To examine the interaction of Go alpha with beta gamma subunits and rhodopsin, the proteins were reconstituted in phosphatidylcholine vesicles. The GTPase activity of Go alpha purified from bovine brain was stimulated by photolyzed, but not dark, rhodopsin and was enhanced by bovine retinal Gt beta gamma or by rabbit liver G beta gamma. Go alpha in the presence of G beta gamma is a substrate for pertussis toxin catalyzed ADP-ribosylation; the modification was inhibited by photolyzed rhodopsin and enhanced by guanosine 5'-O-(2-thiodiphosphate). ADP-Ribosylation of Go alpha by pertussis toxin inhibited photolyzed rhodopsin-stimulated, but not basal, GTPase activity. It would appear from this and prior studies that Go alpha is similar to Gt alpha and Gi alpha; all three proteins exhibit photolyzed rhodopsin-stimulated GTPase activity, are pertussis toxin substrates, and functionally couple to Gt beta gamma. Go alpha (39K) can be distinguished from Gi alpha (41K) but not from Gt alpha (39K) by molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Antisera AS/6 and 7, raised against a synthetic peptide KENLKDCGLF corresponding to the carboxyl-terminal decapeptide of transducin-alpha, react on immunoblots with purified transducin-alpha and with proteins of 40-41 kDa in all tissues tested. The latter represent one or more forms of Gi alpha but not Go alpha, since a synthetic peptide, KNNLKDCGLF, corresponding to the carboxyl-terminal decapeptide of two forms of Gi alpha blocks AS/6 and 7 reactivity with transducin-alpha and Gi alpha on immunoblots, whereas the corresponding Go-related peptide, ANNLRGCGLY, does not. Antisera LE/2 and 3, raised against the synthetic peptide LERIAQSDYI, corresponding to an internal sequence predicted by one form of Gi alpha cDNA (Gi alpha-2) and differing by 3 residues from the sequence of another form, Gi alpha-1, react strongly with a 40-kDa protein abundant in neutrophil membranes and with the major pertussis toxin substrate purified from bovine neutrophils. LE/2 and 3 reveal a relatively faint 40-kDa band on immunoblots of crude brain membranes or of purified brain Gi/Go. LE/2 and 3 do not react with transducin-alpha or Go alpha nor with the 41-kDa form of pertussis toxin substrate in brain, Gi alpha-1. These antisera distinguish between the major pertussis toxin substrates of brain and neutrophil and tentatively identify the latter as Gi alpha-2.  相似文献   

13.
The ADP-ribosyl moiety of NAD was transferred to a 40-kDa protein when rat liver nuclei were incubated with pertussis toxin. The 40-kDa substrate in the nuclei displayed unique properties as follows, some of which were apparently distinct from those observed with the toxin-substrate GTP-binding protein (Gi) in the liver plasma membranes. 1) The nuclear 40-kDa protein was recognized with antibodies reacting with the alpha-subunits (alpha i-1 and alpha i-2) of Gi, but not with anti-Go-alpha-subunit antibody. 2) The nuclear protein had a higher mobility than alpha-subunit of the plasma membrane-bound Gi upon electrophoresis with a urea/sodium dodecyl sulfate-containing polyacrylamide gel. 3) The nuclear protein was not extracted from the nuclei with 1% Triton X-100, whereas Gi was easily solubilized from the plasma membranes. 4) There was a beta gamma-subunit-like activity in the nuclei, which was assayed by an ability to support pertussis toxin-catalyzed ADP-ribosylation of a purified alpha-subunit of Gi. Moreover, a 36-kDa protein in the nuclei was recognized with antibody raised against purified beta-subunits of Gi. 5) Pertussis toxin-induced ADP-ribosylation of the nuclear protein was selectively inhibited by the addition of a nonhydrolyzable GTP analogue, and its inhibitory action was competitively blocked by the simultaneous addition of GDP or its analogues, as had been observed with plasma membrane-bound Gi. It thus appeared that a novel form of alpha beta gamma-trimeric GTP-binding protein serving as the substrate of pertussis toxin was present in rat liver nuclei. In order to examine a possible role of the nuclear GTP-binding protein, rats were injected with carbon tetrachloride, a necrosis inducer of hepatocytes. There was a marked increase in the nuclear substrate activity from 3-6 days after the injection, without a significant change in the activity of Gi in the plasma membranes. The time course of the increase corresponded with a recovering stage from the hepatocyte necrosis. These results suggested that the nuclear GTP-binding protein found in the present study might be involved at some stages in the hepatocyte growth.  相似文献   

14.
A 40-kDa protein, in addition to the alpha-subunits of Gs (a GTP-binding protein involved in adenylate cyclase stimulation), was [32P]ADP-ribosylated by cholera toxin (CT) in the membranes of neutrophil-like HL-60 cells, only if formyl Met-Leu-Phe (fMLP) was added to the ADP-ribosylation mixture. The 40-kDa protein proved to be the alpha-subunit of Gi serving as the substrate of pertussis toxin, islet-activating protein (IAP). No radioactivity was incorporated into this protein in membranes isolated from HL-60 cells that had been exposed to IAP. Gi-alpha purified from bovine brain and reconstituted into IAP-treated cell membranes was ADP-ribosylated by CT plus fMLP. Gi-alpha was ADP-ribosylated by IAP, but not by CT plus fMLP, in membranes from cells that had been pretreated with CT plus fMLP. When membrane Gi-alpha [32P]ADP-ribosylated by CT plus fMLP or IAP was digested with trypsin, the radiolabeled fragments arising from the two proteins were different from each other. These results suggest that CT ADP-ribosylates Gi-alpha in intact cells when coupled fMLP receptors are stimulated and that the sites modified by two toxins are not identical. CT-induced and fMLP-supported ADP-ribosylation of Gi-alpha was favored by Mg2+ and allow concentrations of GTP or its analogues but suppressed by GDP. The ADP-ribosylation did not occur at all, even in the presence of ADP-ribosylation factor that supported CT-induced modification of Gs, in phospholipid vesicles containing crude membrane extract in which Gi was functionally coupled to stimulated fMLP receptors. Thus, Gi activated via coupled receptors is the real substrate of CT-catalyzed ADP-ribosylation. This reaction may depend on additional factor(s) that are too labile to survive the process of membrane extraction.  相似文献   

15.
The GTP-binding proteins involved in signal transduction now constitute a large family of so called 'G proteins'. Among them, Gs and Gi mediate the stimulation and inhibition of adenyl cyclase, respectively. Recently, another G protein (Go) abundant in brain was purified, but its function is still unknown. Like other G proteins, Go is a heterotrimer (alpha, beta, gamma) and the beta-gamma subunits seem to be identical to those of Gs and Gi. The alpha subunit of Go (Go-alpha) has a molecular weight of 39 kDa lower than those of Gi (41 kDa) or Gs (45-52 kDa). A positive immunoreativity with antibodies against Go-alpha was found in peripheral nervous tissues, adrenal medulla, heart, adenohypophysis and adipocytes. Go ressembles Gi in its ability to be ADP-ribosylated by pertussis toxin, and sequence analysis reveals a 68% homology between their alpha subunits. The GTPase activity of Go is several times higher than that of Gi. The affinity of the beta-gamma entity is about 3 times higher for Gi than for Go. In reconstitution studies, Go does not mimic the inhibitory effect of Gi on adenyl cyclase-stimulated by Gs. On the contrary, Go is as efficient as Gi in reconstituting the functional coupling with the muscarinic, alpha 2-adrenergic and chemotactic agent f-Met-Leu-Phe (fMLP), receptors. Recent studies seem to rule out Go as the coupling G protein of phospholipase C, the enzyme involved in phosphatidyl inositol trisphosphate hydrolysis. However, Go remains a putative candidate for transduction mechanisms coupled to a potassium channel or to a voltage-dependent calcium channel.  相似文献   

16.
We have characterized the pertussis toxin substrate in NG 108-15 cell membranes using site-specific antisera and ADP-ribosylation. Cell membranes contain two pertussis toxin-sensitive guanine nucleotide-binding protein alpha-subunits (G alpha) whose Rf values in gel electrophoresis coincide with those of G alpha o and G alpha i2. The total quantity of Gi and Go immunoreactivity amounted to 24.3 +/- 2.8 pmol/mg, whereas only 1.5 +/- 0.2 pmol/mg are capable of undergoing ADP-ribosylation catalyzed by pertussis toxin. Pretreatment of cells with the agonist [D-Ala2,D-Leu2]-enkephalin (DADLE) for 24 h and DADLE or morphine for 72 h did not alter the incorporation of ADP-ribose or the immunoreactive amount of Gi and Go subunits. However, pretreatment for 72 h with naloxone increased the incorporation of ADP-ribose without an apparent change in affinity or in the immunochemically determined protein levels of Gi and Go. This indicates that the process of down-regulation and desensitization of the delta-opioid receptor neither requires quantitative alterations in the levels of Gi and Go nor changes in the degree of coupling among their subunits. In contrast, chronic exposure to antagonists seems to alter the degree of precoupling between alpha- and beta-subunits of Gi and/or Go.  相似文献   

17.
The predominant guanine nucleotide-binding protein (G-protein) of bovine lung membranes, termed GL, has been purified and compared biochemically, immunochemically and functionally with Gi and Go purified from rabbit brain. The purified GL appeared to have a similar subunit structure to Gi and Go, being composed of alpha, beta and possibly gamma subunits. On Coomassie Blue-stained SDS/polyacrylamide gels and immunoblots, the alpha subunit of GL (GL alpha) displayed an intermediate mobility (40 kDa) between those of Gi and Go (Gi alpha and Go alpha). GL alpha was [32P]ADP-ribosylated in the presence of pertussis toxin and [32P]NAD+. Analysis of [32P]ADP-ribosylated alpha subunits by SDS/polyacrylamide-gel electrophoresis and isoelectric focusing showed that GL alpha was distinct from Gi alpha and Go alpha, but very similar to the predominant G-protein in neutrophil membranes. Immunochemical characterization also revealed that GL was distinct from Gi and Go, but was indistinguishable from the G-protein of neutrophils, which has been tentatively identified as Gi2 [Goldsmith, Gierschik, Milligan, Unson, Vinitsky, Maleck & Spiegel (1987) J. Biol. Chem. 262, 14683-14688]. In functional studies, higher Mg2+ concentrations were required for guanosine 5'-[gamma-[35S]thio]triphosphate (GTP[35S]) binding to GL than were required for nucleotide binding to Go, whereas Gi showed a Mg2+-dependence similar to that of GL. The kinetics of GTP[35S] binding to GL was quite different from those of Gi and Go; t1/2 values of maximal binding were 30, 15 and 5 min respectively. In contrast, the rate of hydrolysis of [gamma-32P]GTP by GL (t1/2 approximately 1 min) was approx. 4 times faster than that by Gi or Go. These results indicated that the predominant G-protein purified from lung is structurally and functionally distinct from Gi and Go of brain, but structurally indistinguishable from Gi2 of neutrophils.  相似文献   

18.
Muscarinic acetylcholine receptors purified from porcine brain were reconstituted with two kinds of GTP-binding proteins (Gi and Go). The binding of agonists was affected by guanine nucleotides when the receptor was reconstituted with either Gi or Go, but not in the absence of one of the GTP-binding proteins. The displacement curves with agonists for the [3H]quinuclidinyl benzylate [( 3H]QNB) binding were explained by assuming there are two sites with different affinities for a given agonist. The proportion of the high affinity site increased with increasing concentrations of the GTP-binding proteins, and the maximum value represented 50-70% of the total [3H]QNB-binding sites. Reconstitution of the receptor with both Gi and Go did not increase the proportion any further. These results indicate that Gi and Go interact with the same site, which rules out the possibility that there are two kinds of muscarinic receptors, one interacting with Gi and the other with Go. GDP as well as GTP decreased the affinity for the agonists of the muscarinic receptors reconstituted with Gi or Go. The conversion of GDP to GTP during the incubation was less than 1%, indicating that the effect of GDP is not due to its conversion to GTP, and that the binding of either GTP or GDP with the GTP-binding proteins suppresses their interaction with the receptor.  相似文献   

19.
T Asano  R Morishita  R Semba  H Itoh  Y Kaziro  K Kato 《Biochemistry》1989,28(11):4749-4754
Antisera were raised in rabbits against the 40-kDa alpha subunit of bovine lung GTP-binding protein, which were identified as the alpha subunit of Gi2 (Gi2 alpha) by the analysis of the partial amino acid sequence. Antibodies were purified with a Gi2 alpha-coupled Sepharose column and then were passed through a Gi1 alpha-coupled Sepharose column to remove antibodies reactive also with 41-kDa alpha. Purified antibodies reacted with Gi2 alpha, but not with Gi1 alpha, Gi3 alpha, or Go alpha in an immunoblot assay. A sensitive enzyme immunoassay method for the quantification of Gi2 alpha was developed by using these purified antibodies. The assay system consisted of polystyrene balls with immobilized antibody F(ab')2 fragments and the same antibody Fab' fragments labeled with beta-D-galactosidase from Escherichia coli. The minimal detection limit of the assay was 1 fmol, or 40 pg. Samples from various tissues were solubilized with 2% sodium cholate and 1 M NaCl, and the concentrations of Gi2 alpha were determined. Gi2 alpha was detected in all the tissues examined in the rat. The highest concentration was found in platelets and leukocytes when the data were expressed as picomoles per milligram of protein. The spleen, lung, and cerebral cortex contained relatively high levels of Gi2 alpha. In the bovine brain, Gi2 alpha was distributed almost uniformly among the various regions. The concentrations of Gi2 alpha were constant in the rat brain throughout ontogenic development, in contrast with those of Go alpha which were markedly increased with age.  相似文献   

20.
Identification of the GTP-binding protein encoded by Gi3 complementary DNA   总被引:11,自引:0,他引:11  
Three closely related, but distinct, GTP-binding proteins (G-proteins) are encoded by cDNAs arbitrarily designated Gi1, Gi2, and Gi3. The in vitro translated products of mRNAs prepared from Gi1, Gi2, and Gi3 cDNAs migrate as 41-, 40-, and 41-kDa proteins, respectively, on sodium dodecyl sulfate-polyacrylamide gels. Antisera were raised against synthetic decapeptides corresponding to a divergent sequence (residues 159-168 for Gi1 and Gi3; 160-169 for Gi2) of the three cDNAs and tested on immunoblots for reactivity with three purified G-proteins, G41 and G40 from brain and G41 from HL-60 cells. LD antisera (Gi1 peptide) react only with brain G41. LE antisera (Gi2 peptide) react only with brain G40, and SQ antisera (Gi3 peptide) react exclusively with HL-60 G41. The results indicate that the 41-kDa G-protein purified from HL-60 cells differs from the purified brain 41-kDa protein and suggest that the HL-60 cell protein corresponds to that encoded by Gi3 cDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号