首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytotoxic and mutagenic effects of high-LET charged iron (56Fe) particles were measured quantitatively using primary cultures of human skin fibroblasts. Argon and lanthanum particles and gamma rays were used in comparative studies. The span of LETs selected was from 150 keV/microns (330 MeV/u) to 920 keV/microns (600 MeV/u). Mutations were scored at the hypoxanthine guanine phosphoribosyl transferase (HPRT) locus using 6-thio-guanine (6-TG) for selection. Exposure to these high-LET charged particles resulted in exponential survival curves. Mutation induction, however, was fitted by the linear model. The relative biological effectiveness (RBE) for cell killing ranged from 3.7 to 1.3, while that for mutation induction ranged from 5.7 to 0.5. Both the RBE for cell killing and the RBE for mutagenesis decreased with increasing LET over the range of 1.50 to 920 keV/microns. The inactivation cross section (sigma i) and the action cross section for mutation induction (sigma m) ranged from 32.9 to 92.0 microns2 and 1.45 to 5.56 X 10(-3) microns2; the maximum values were obtained by 56Fe with an LET of 200 keV/microns. The mutagenicity (sigma m/sigma i) ranged from 2.05 to 7.99 X 10(-5) with an inverse relationship to LET.  相似文献   

2.
To clarify the relationship between cell death and chromosomal aberrations following exposure to heavy-charged ion particles beams, exponentially growing Human Salivary Gland Tumor cells (HSG cells) were irradiated with various kinds of high energy heavy ions; 13 keV/μm carbon ions as a low-LET charged particle radiation source, 120 keV/μm carbon ions and 440 keV/μm iron ions as high-LET charged particle radiation sources. X-rays (200 kVp) were used as a reference. Reproductive cell death was evaluated by clonogenic assays, and the chromatid aberrations in G2/M phase and their repairing kinetics were analyzed by the calyculin A induced premature chromosome condensation (PCC) method. High-LET heavy-ion beams introduced much more severe and un-repairable chromatid breaks and isochromatid breaks in HSG cells than low-LET irradiation. In addition, the continuous increase of exchange aberrations after irradiation occurred in the high-LET irradiated cells. The cell death, initial production of isochromatid breaks and subsequent formation of chromosome exchange seemed to be depend similarly on LET with a maximum RBE peak around 100–200 keV/μm of LET value. Conversely, un-rejoined isochromatid breaks or chromatid breaks/gaps seemed to be less effective in reproductive cell death. These results suggest that the continuous yield of chromosome exchange aberrations induced by high-LET ionizing particles is a possible reason for the high RBE for cell death following high-LET irradiation, alongside other chromosomal aberrations additively or synergistically.  相似文献   

3.
Non-homologous end-joining (NHEJ) and homologous recombination repair (HRR), contribute to repair ionizing radiation (IR)-induced DNA double-strand breaks (DSBs). Mre11 binding to DNA is the first step for activating HRR and Ku binding to DNA is the first step for initiating NHEJ. High-linear energy transfer (LET) IR (such as high energy charged particles) killing more cells at the same dose as compared with low-LET IR (such as X or γ rays) is due to inefficient NHEJ. However, these phenomena have not been demonstrated at the animal level and the mechanism by which high-LET IR does not affect the efficiency of HRR remains unclear. In this study, we showed that although wild-type and HRR-deficient mice or DT40 cells are more sensitive to high-LET IR than to low-LET IR, NHEJ deficient mice or DT40 cells are equally sensitive to high- and low-LET IR. We also showed that Mre11 and Ku respond differently to shorter DNA fragments in vitro and to the DNA from high-LET irradiated cells in vivo. These findings provide strong evidence that the different DNA DSB binding properties of Mre11 and Ku determine the different efficiencies of HRR and NHEJ to repair high-LET radiation induced DSBs.  相似文献   

4.
The results of the induction of the point and the deletion mutations by the radiation with broad region of linear energy transfer (LET) ox Escherichia coli cells. The linear-quadratic function for point mutation induction was shown in comparison with linear dependence for deletion mutations. The relative biological effectiveness (RBE) is described as a function of LET by dependence with a local maximum. The greatest RBE coefficients for the lethal effects, gene and deletion mutation induction realize under different LET of heavy charged particles.  相似文献   

5.
A new mouse model (Mutatect) that permits detection of mutations at the hprt (hypoxanthine phosphoribosyltransferase) locus is described. It is highly sensitive to detection of mutants induced by clastogenic agents such as ionizing radiation. MN-11 cells are grown as a subcutaneous tumour in C57BL/6 mice for a period of 2 weeks, during which time they can be exposed to mutagenic treatments. Cells taken from the animal are cultured ex vivo and 6-thioguanine (6-TG)-resistant mutant clones can be readily identified and scored. This model system may have special utility for detecting multi-locus deletion events (chromosomal mutations) induced by high LET forms of radiation that might be encountered in space.  相似文献   

6.
DNA recombinational repair, and an increase in its capacity induced by DNA damage, is believed to be the major mechanism that confers resistance to killing by ionizing radiation in yeast. We have examined the nature of the DNA lesions generated by ionizing radiation that induce this mechanism, using two different end points: resistance to cell killing and ability of the error-free recombinational repair system to compete for other DNA lesions and thereby suppress chemical mutation. Under the various conditions examined in this study, the "maximum" inducible radiation resistance was increased approximately 1.5- to 3-fold and suppression of mutation about 10-fold. DNA lesions produced by low-LET gamma rays at doses greater than about 20 Gy given in oxygen were shown to be more efficient, per unit dose, at inducing radioresistance to killing than were lesions produced by neutrons (high-LET radiation). This suggests that DNA single-strand breaks are more important lesions in the induction of radioresistance than DNA double-strand breaks. Oxygen-modified lesions produced by gamma rays (low-LET radiation) were particularly efficient as induction signals. DNA damage due to hydroxyl radicals (OH.) derived from the radiolytic decomposition of H2O produced lesions that strongly induced this DNA repair mechanism. Similarly, OH. derived from aqueous electrons (e-aq) in the presence of N2O also efficiently induced the response. Cells induced to radioresistance to killing with high-LET radiation did not suppress N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-generated mutations as well as cells induced with low-LET radiation, supporting the conclusion that the type of DNA damage produced by low-LET radiation is a better inducer of recombinational repair. Surprisingly, however, cells induced with gamma radiation in the presence of N2O that became radioresistant to killing were unable to suppress MNNG mutations. This result indicates that OH. generated via e-aq (in N2O) may produce unusual DNA lesions which retard normal repair and render the system unavailable to compete for MNNG-generated lesions. We suggest that the repairability of these unique lesions is restricted by either their chemical nature or topological accessibility. Attempted repair of these lesions has lethal consequences and accounts for N2O radiosensitization of repair-competent but not incompetent cells. We conclude that induction of radioresistance in yeast by ionizing radiation responds variably to different DNA lesions, and these affect the availability of the induced recombinational repair system to deal with subsequent damage.  相似文献   

7.
Mutation and killing induced by X radiation and 60CO gamma radiation were studied in six different histidine-requiring auxotrophs of Salmonella typhimurium. Strain TA100, which is sensitive to base-pair substitutions, and strains TA2637 and TA98, which are sensitive to frameshifts, carry the pKM101 plasmid and exhibit significantly higher radiation-induced mutations compared to their plasmidless parent strains TA1535, TA1537, and TA1538, respectively. Among the plasmid-containing strains, TA98 and TA2637 are much more sensitive to the mutagenic action of radiation than is TA100 based on a comparison with their respective spontaneous mutation rates; however, no uniformity was observed in the responses of the strains to the lethal action of ionizing radiation. The pKM101 plasmid provides partial protection against lethality in TA100 and TA2637, whereas the same plasmid enhances the lethal action of ionizing radiation in TA98. The following conclusions are consistent with these observations: (1) the standard Ames Salmonella assay correctly identifies ionizing radiation as a mutagenic agent; (2) frameshift-sensitive parent strains are more sensitive to the mutagenic effects of ionizing radiation than is the only strain studied that is sensitive to base-pair substitutions; and (3) enhancement of mutagenesis and survival is related to plasmid-mediated repair of DNA damage induced by ionizing radiation and does not involve damage induced by Cerenkov-generated uv radiation which is negligible for our irradiation conditions.  相似文献   

8.
Clustered DNA damage (locally multiply damaged site) is thought to be a critical lesion caused by ionizing radiation, and high LET radiation such as heavy ion particles is believed to produce high yields of such damage. Since heavy ion particles are major components of ionizing radiation in a space environment, it is important to clarify the chemical nature and biological consequences of clustered DNA damage and its relationship to the health effects of exposure to high LET particles in humans. The concept of clustered DNA damage emerged around 1980, but only recently has become the subject of experimental studies. In this article, we review methods used to detect clustered DNA damage, and the current status of our understanding of the chemical nature and repair of clustered DNA damage.  相似文献   

9.
As therapeutic uses of high-LET radiation become more prevalent and human space exploration continues to be a focus of NASA, it is important to understand the biological effects of high-LET radiation and the role of genetics in sensitivity to high-LET radiation. To study genetic susceptibility to radiation, we used mice deficient in Atm activity (AtmΔSRI). ATM is important in DNA repair, apoptosis and cell cycle regulation. Although homozygous mutations in ATM are rare, the prevalence of ATM heterozygosity is estimated to be 1% and results in an increased cancer risk. We found that the effects of 1 Gy 1 GeV/nucleon ??Fe particles on life span and tumorigenesis are genotype- and sex-specific. Significant effects of 1 Gy 1 GeV/nucleon ??Fe particles on incidence of non-cancer end points were seen; however, 2 Gy 1 GeV/nucleon ??Fe particles significantly affected neuromotor ability. Our results represent an extensive investigation into the late effects of high-LET radiation exposure in a sex- and genotype-dependent manner and provide a baseline for understanding the long-term risks of high-LET radiation.  相似文献   

10.
Adaptive response (AR) and bystander effect are two important phenomena involved in biological responses to low doses of ionizing radiation (IR). Furthermore, there is a strong interest in better understanding the biological effects of high-LET radiation. We previously demonstrated the ability of low doses of X-rays to induce an AR to challenging heavy-ion radiation [8]. In this study, we assessed in vitro the ability of priming low doses (0.01Gy) of heavy-ion radiation to induce a similar AR to a subsequent challenging dose (1-4Gy) of high-LET IR (carbon-ion: 20 and 40keV/μm, neon-ion: 150keV/μm) in TK6, AHH-1 and NH32 cells. Our results showed that low doses of high-LET radiation can induce an AR characterized by lower mutation frequencies at hypoxanthine-guanine phosphoribosyl transferase locus and faster DNA repair kinetics, in cells expressing p53.  相似文献   

11.
Space radiation contains a complex mixture of particles comprised primarily of protons and high-energy heavy ions. Radiation risk is considered one of the major health risks for astronauts who embark on both orbital and interplanetary space missions. Ionizing radiation dose-dependently kills cells, damages genetic material, and disturbs cell differentiation and function. The immediate response to ionizing radiation-induced DNA damage is stimulation of DNA repair machinery and activation of cell cycle regulatory checkpoints. To date, little is known about cell cycle regulation after exposure to space-relevant radiation, especially regarding bone-forming osteoblasts. Here, we assessed cell cycle regulation in the osteoblastic cell line OCT-1 after exposure to various types of space-relevant radiation. The relative biological effectiveness (RBE) of ionizing radiation was investigated regarding the biological endpoint of cellular survival ability. Cell cycle progression was examined following radiation exposure resulting in different RBE values calculated for a cellular survival level of 1 %. Our findings indicate that radiation with a linear energy transfer (LET) of 150 keV/μm was most effective in inducing reproductive cell killing by causing cell cycle arrest. Expression analyses indicated that cells exposed to ionizing radiation exhibited significantly up-regulated p21(CDKN1A) gene expression. In conclusion, our findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression.  相似文献   

12.
The fem-3 gene of Caenorhabditis elegans was employed to determine the mutation frequency as well as the nature of mutations induced by low earth orbit space radiation ambient to Space Shuttle flight STS-76. Recovered mutations were compared to those induced by accelerated iron ions generated by the AGS synchrotron accelerator at Brookhaven National Laboratory. For logistical reasons, dauer larvae were prepared at TCU, transported to either Kennedy Space Center or Brookhaven National Laboratory, flown in space or irradiated, returned to TCU and screened for mutants. A total of 25 fem-3 mutants were recovered after the shuttle flight and yielded a mutation frequency of 2.1x10(-5), roughly 3.3-fold higher than the spontaneous rate of 6.3x10(-6). Four of the mutations were homozygous inviable, suggesting that they were large deletions encompassing fem-3 as well as neighboring, essential genes. Southern blot analyses revealed that one of the 25 contained a polymorphism in fem-3, further evidence that space radiation can induce deletions. While no polymorphisms were detected among the iron ion-induced mutations, three of the 15 mutants were homozygous inviable, which is in keeping with previous observations that high LET iron particles generate deficiencies. These data provide evidence, albeit indirect, that an important mutagenic component of ambient space radiation is high LET charged particles such as iron ions.  相似文献   

13.
Miazaki, Watanabe, Kumagai and their colleagues reported that induction of HPRT(-) mutants by X-rays in cultured human cells was prevented by ascorbate added 30min after irradiation. They attributed extinction of induced mutation to neutralization by ascorbate of radiation-induced long-lived mutagenic radicals (LLR), found using spectroscopy to have half-lives of minutes or hours. We find that post-irradiation treatment with ascorbate reduces, but does not eliminate, induction of CD59(-) mutants in human-hamster hybrid A(L) cells exposed to high-LET carbon-ions (LET of 100KeV/microm). A(L) cells contain a standard set of Chinese hamster ovary (CHO) chromosomes and a single copy of human chromosome 11 containing the CD59 gene which encodes the CD59 cell surface antigen, a convenient marker for mutation. RibCys [2(R, S)-D-ribo-(1',2',3',4'-tetrahydroxybutyl)thiazolidine-4(R)-carboxylic acid] a 'prodrug' of l-cysteine which also scavenges LLR, had a similar but lesser effect on induced mutation. DMSO, which scavenges classical radicals like H* and OH* but not LLR, also reduced mutation, but only when it was present during irradiation. The lethality of carbon-ions was not altered by ascorbate, RibCys no matter when added. Post-radiation addition of ascorbate and RibCys also affected the quality of CD59(-) mutations induced by carbon-ions. The major change in mutant spectra was a reduction in the prevalence of small, intragenic mutations (mutations not detected by PCR) and in the prevalence of unstable, complicated mutants, which display high levels of persistent chromosomal instability. Thus, ascorbate and RibCys may suppress some kinds of mutations induced by ionizing radiation including those displaying aspects of radiation-induced genomic instability. Countering the effects of both classical radicals and LLR may be important in preventing genetic diseases.  相似文献   

14.
High linear energy transfer (LET) ionising radiation (IR) such as radon-derived alpha particles and high mass, high energy (HZE) particles of cosmic radiation are the predominant forms of IR to which humanity is exposed throughout life. High-LET forms of IR are established carcinogens relevant to human cancer, and their potent mutagenicity is believed, in part, to be due to a greater incidence of clustered DNA double strand breaks (DSBs) and associated lesions, as ionization events occur within a more confined genomic space. The repair of such DNA damage is now well-documented to occur with slower kinetics relative to that induced by low-LET IR, and to be more reliant upon homology-directed repair pathways. Underlying these phenomena is the relative inability of non-homologous end-joining (NHEJ) to adequately resolve high-LET IR-induced DSBs. Current findings suggest that the functionality of the DNA-dependent protein kinase (DNA-PK), comprised of the Ku70-Ku80 heterodimer and the DNA-PK catalytic subunit (DNA-PKcs), is particularly perturbed by high-LET IR-induced clustered DSBs, rendering DNA-PK dependent NHEJ less relevant to resolving these lesions. By contrast, the NHEJ-associated DNA processing endonuclease Artemis shows a greater relevance to high-LET IR-induced DSB repair. Here, we will review the cellular response to high-LET irradiation, the implications of the chronic, low-dose modality of this exposure and molecular pathways that respond to high-LET irradiation induced DSBs, with particular emphasis on NHEJ factors.  相似文献   

15.
When cells are exposed to ionizing radiation, DNA damages in the form of single strand breaks (SSBs), double strand breaks (DSBs), base damage or their combinations are frequent events. It is known that the complexity and severity of DNA damage depends on the quality of radiation, and the microscopic dose deposited in small segments of DNA, which is often related to the linear transfer energy (LET) of the radiation. Experimental studies have suggested that under the same dose, high LET radiation induces more small DNA fragments than low-LET radiation, which affects Ku efficiently binding with DNA end and might be a main reason for high-LET radiation induced RBE [1] since DNA DSB is a major cause for radiation-induced cell death. In this work, we proposed a mathematical model of DNA fragments rejoining according to non-homologous end joining (NHEJ) mechanism. By conducting Gillespie''s stochastic simulation, we found several factors that impact the efficiency of DNA fragments rejoining. Our results demonstrated that aberrant DNA damage repair can result predominantly from the occurrence of a spatial distribution of DSBs leading to short DNA fragments. Because of the low efficiency that short DNA fragments recruit repair protein and release the protein residue after fragments rejoining, Ku-dependent NHEJ is significantly interfered with short fragments. Overall, our work suggests that inhibiting the Ku-dependent NHEJ may significantly contribute to the increased efficiency for cell death and mutation observed for high LET radiation.  相似文献   

16.
Astronauts can be exposed to charged particles, including protons, alpha particles and heavier ions, during space flights. Therefore, studying the biological effectiveness of these sparsely and densely ionizing radiations is important to understanding the potential health effects for astronauts. We evaluated the mutagenic effectiveness of sparsely ionizing 55 MeV protons and densely ionizing 32 MeV/nucleon nitrogen ions using cells of two human-hamster cell lines, A(L) and A(L)C. We have previously characterized a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in the human-hamster hybrid cell lines A(L)C and A(L). CD59(-) mutants have lost expression of a human cell surface antigen encoded by the CD59 gene located at 11p13. Deletion of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the A(L) hybrid, so that CD59 mutants that lose the entire chromosome 11 die and escape detection. In contrast, deletion of the 11p15.5 region is not lethal in the hybrid A(L)C, allowing for the detection of chromosome loss or other chromosomal mutations involving 11p15.5. The 55 MeV protons and 32 MeV/nucleon nitrogen ions were each about 10 times more mutagenic per unit dose at the CD59 locus in A(L)C cells than in A(L) cells. In the case of nitrogen ions, the mutations observed in A(L)C cells were predominantly due to chromosome loss events or 11p deletions, often containing a breakpoint in the pericentromeric region. The increase in the CD59(-) mutant fraction for A(L)C cells exposed to protons was associated with either translocation of portions of 11q onto a hamster chromosome, or discontinuous or "skipping" mutations. We demonstrate here that A(L)C cells are a powerful tool that will aid in the understanding of the mutagenic effects of different types of ionizing radiation.  相似文献   

17.
High linear energy transfer (LET) radiation from space heavy charged particles or a heavier ion radiotherapy machine kills more cells than low LET radiation, mainly because high LET radiation-induced DNA damage is more difficult to repair. Relative biological effectiveness (RBE) is the ratio of the effects generated by high LET radiation to low LET radiation. Previously, our group and others demonstrated that the cell-killing RBE is involved in the interference of high LET radiation with non-homologous end joining but not homologous recombination repair. This effect is attributable, in part, to the small DNA fragments (≤40 bp) directly produced by high LET radiation, the size of which prevents Ku protein from efficiently binding to the two ends of one fragment at the same time, thereby reducing non-homologous end joining efficiency. Here we demonstrate that Ape1, an enzyme required for processing apurinic/apyrimidinic (known as abasic) sites, is also involved in the generation of small DNA fragments during the repair of high LET radiation-induced base damage, which contributes to the higher RBE of high LET radiation-induced cell killing. This discovery opens a new direction to develop approaches for either protecting astronauts from exposure to space radiation or benefiting cancer patients by sensitizing tumor cells to high LET radiotherapy.  相似文献   

18.
To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425keV/μm) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113keV/μm). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113keV/μm carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>~30kb) were six times more frequently induced by carbon ions near the range end. When 352keV/μm neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113keV/μm carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.  相似文献   

19.
Clustered damage sites other than double-strand breaks (DSBs) have the potential to contribute to deleterious effects of ionizing radiation, such as cell killing and mutagenesis. In the companion article (Semenenko et al., Radiat. Res. 164, 180-193, 2005), a general Monte Carlo framework to simulate key steps in the base and nucleotide excision repair of DNA damage other than DSBs is proposed. In this article, model predictions are compared to measured data for selected low-and high-LET radiations. The Monte Carlo model reproduces experimental observations for the formation of enzymatic DSBs in Escherichia coli and cells of two Chinese hamster cell lines (V79 and xrs5). Comparisons of model predictions with experimental values for low-LET radiation suggest that an inhibition of DNA backbone incision at the sites of base damage by opposing strand breaks is active over longer distances between the damaged base and the strand break in hamster cells (8 bp) compared to E. coli (3 bp). Model estimates for the induction of point mutations in the human hypoxanthine guanine phosphoribosyl transferase (HPRT) gene by ionizing radiation are of the same order of magnitude as the measured mutation frequencies. Trends in the mutation frequency for low- and high-LET radiation are predicted correctly by the model. The agreement between selected experimental data sets and simulation results provides some confidence in postulated mechanisms for excision repair of DNA damage other than DSBs and suggests that the proposed Monte Carlo scheme is useful for predicting repair outcomes.  相似文献   

20.
This paper presents data on modelling of DNA damage induced by electrons, protons and alpha-particles to provide an insight into factors which determine the biological effectiveness of radiations of high and low linear energy transfer (LET). These data include the yield of single- and double-strand breaks (ssb, dsb) and base damage in a cellular environment. We obtain a ratio of 4–15 for ssb:dsb for solid and cellular DNA and a preliminary ratio of about 2 for base damage to strand breakage. Data are also given on specific characteristics of damage at the DNA level in the form of clustered damage of varying complexity, that challenge the repair processes and if not processed adequately could lead to the observed biological effects. It is shown that nearly 30% of dsb are of complex form for low-LET radiation, solely by virtue of additional breaks, rising to about 70% for high-LET radiation. Inclusion of base damage increases the complex proportion to about 60% and 90% for low- and high-LET radiation, respectively. The data show a twofold increase in frequencies of complex dsb from low-LET radiation when base damage is taken into account. It is shown that most ssb induced by high-LET radiation have associated base damages, and also a substantial proportion is induced by low-energy electrons. Received: 20 September 1998 / Accepted in revised form: 15 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号