首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Relaxin has a unique, clearly identifiable, mixed function receptor-binding region comprising amino acid residues that evolve sequentially from the central portion of the B chain alpha-helix. Two arginine residues in positions B13 and B17 that project like forefinger and middle finger from the helix provide the electrostatic element opposed by the hydrophobic (thumb) element isoleucine (B20), offset from the arginines by about 40 degrees. The binding intensity of relaxin to its receptor decreases by 3 orders of magnitude if alanine is substituted for the newly discovered binding component isoleucine in position B20. The arginine residues cannot be replaced by other positive charges, nor can the guanidinium group be presented on a longer or shorter hydrocarbon chain. In contrast, the hydrophobic interaction is incremental in nature, and the contribution to the total binding energy is roughly proportional to the number of hydrocarbon units in the side chain. It appears that a hydrophobic surface exists on the receptor that offers optimal van der Waals' interaction with beta-branched hydrophobic amino acids. The binding energy increases roughly 10-fold with each methylene group whereby beta-branching is more effective per surface unit than chain elongation. Aromatic side chains appear to demarcate the extent of the binding region in so far as residues larger than phenylalanine decrease receptor binding. The exceptional clarity of binding site geometry in relaxin makes for an excellent opportunity to design peptido-mimetics.  相似文献   

2.
Recent structure/function studies on human relaxin II have led to the conclusion that the arginines B13 and/or B17 are important for biological activity. These studies have been confirmed and extended with the help of chemically synthesized derivatives, i.e. dicitrulline (B13, B17), two monocitrulline (B13 and B17), a dilysine (B13, 17), and alanine (B17) relaxins. The CD spectra of synthetic human relaxin and of the derivatives are indistinguishable. Yet, only the native human relaxin II is biologically active and binds strongly to relaxin receptor preparations in vitro. The inactivation is strictly due to side chain functions, in particular the replacement of either or both arginines in the positions B13 or B17. Binding is mediated by a two-prong electrostatic and hydrogen-binding interaction via arginines B13 and B17. Neither B13 nor B17 alone are sufficient and a positive charge equidistant from the B chain helix is equally insufficient. This binding mechanism appears to be unique, as concerns hormone receptor interaction.  相似文献   

3.
Human gene-2 (H2) relaxin is currently in Phase III clinical trials for the treatment of acute heart failure. It is a 53-amino acid insulin-like peptide comprising two chains and three disulfide bonds. It interacts with two of the relaxin family peptide (RXFP) receptors. Although its cognate receptor is RXFP1, it is also able to cross-react with RXFP2, the native receptor for a related peptide, insulin-like peptide 3. In order to understand the basis of this cross-reactivity, it is important to elucidate both binding and activation mechanisms of this peptide. The primary binding mechanism of this hormone has been extensively studied and well defined. H2 relaxin binds to the leucine-rich repeats of RXFP1 and RXFP2 using B-chain-specific residues. However, little is known about the secondary interaction that involves the A-chain of H2 relaxin and transmembrane exoloops of the receptors. We demonstrate here through extensive mutation of the A-chain that the secondary interaction between H2 relaxin and RXFP1 is not driven by any single amino acid, although residues Tyr-3, Leu-20, and Phe-23 appear to contribute. Interestingly, these same three residues are important drivers of the affinity and activity of H2 relaxin for RXFP2 with additional minor contributions from Lys-9, His-12, Lys-17, Arg-18, and Arg-22. Our results provide new insights into the mechanism of secondary activation interaction of RXFP1 and RXFP2 by H2 relaxin, leading to a potent and RXFP1-selective analog, H2:A(4–24)(F23A), which was tested in vitro and in vivo and found to significantly inhibit collagen deposition similar to native H2 relaxin.  相似文献   

4.
Human relaxin, a two-chain protein hormone, was synthesized by solid-phase peptide synthesis in combination with a novel thiol-protecting group strategy whereby the three disulfide bonds could be synthesized sequentially and without error. The final product was shown to be homogeneous by reversed-phase high performance liquid chromatography and electrophoresis and had the correct amino acid composition and sequence. Tryptic digestion and peptide mapping of the synthetic relaxin by reversed-phase high performance liquid chromatography resulted in a pattern identical with that produced by standard tryptic relaxin fragments synthetized by different methods. Three human relaxin derivatives containing oxidized methionine, formyltryptophan, and bis[B13,B17-citrulline]-relaxin, were produced and their biological activity and structural similarity to human relaxin was assessed. All derivatives, except those containing modified tryptophan residues, showed indistinguishable circular dichroic spectra, indicating that the modifications did not cause significant structural changes. However, only human relaxin and the tryptophan- and methionine-protected relaxin derivatives showed bioactivity. The derivative in which the two arginines in positions B13 and B17 had been replaced by the uncharged isosteric amino acid citrulline were biologically inactive. This observation confirms preliminary studies (Büllesbach, E. E. and Schwabe, C. (1988) Int. J. Pept. Protein Res. 32, 361-367) that suggested that these two conserved arginines located in the midregion of the relaxin B chain are essential for the function of the hormone.  相似文献   

5.
Relaxin, an emerging pharmaceutical treatment for acute heart failure, activates the relaxin family peptide receptor (RXFP1), which is a class A G-protein-coupled receptor. In addition to the classic transmembrane (TM) domain, RXFP1 possesses a large extracellular domain consisting of 10 leucine-rich repeats and an N-terminal low density lipoprotein class A (LDLa) module. Relaxin-mediated activation of RXFP1 requires multiple coordinated interactions between the ligand and various receptor domains including a high affinity interaction involving the leucine-rich repeats and a predicted lower affinity interaction involving the extracellular loops (ELs). The LDLa is essential for signal activation; therefore the ELs/TM may additionally present an interaction site to facilitate this LDLa-mediated signaling. To overcome the many challenges of investigating relaxin and the LDLa module interactions with the ELs, we engineered the EL1 and EL2 loops onto a soluble protein scaffold, mapping specific ligand and loop interactions using nuclear magnetic resonance spectroscopy. Key EL residues were subsequently mutated in RXFP1, and changes in function and relaxin binding were assessed alongside the RXFP1 agonist ML290 to monitor the functional integrity of the TM domain of these mutant receptors. The outcomes of this work make an important contribution to understanding the mechanism of RXFP1 activation and will aid future development of small molecule RXFP1 agonists/antagonists.  相似文献   

6.
Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein-coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.  相似文献   

7.
The primary structure of the ribonuclease inhibitor from pig liver has been determined by amino acid sequence analysis. The N alpha-acetylated polypeptide chain of 456 amino acids consists of 15 homologous leucine-rich repeats, characterized by leucyl residues at constant positions. Two types of alternating repeats occur, 29 (A) and 28 (B) residues long. The degree of identity between repeats of a given type ranged from 25 to 60%. Only one deletion in the B-repeat was necessary to perfectly align the leucyl residues between the two repeats. Leucine-rich repeats have previously been found in four membrane-bound proteins and one extracellular protein, and their amphiphilic character suggested that they could be involved in membrane binding. Ribonuclease inhibitor is the first example of a cytoplasmic protein containing this type of repeat. It seems likely, therefore, that leucine-rich repeats can have functions other than forming membrane binding structures.  相似文献   

8.
The peptide hormone insulin-like peptide 3 (INSL3) is essential for testicular descent and has been implicated in the control of adult fertility in both sexes. The human INSL3 receptor leucine-rich repeat-containing G protein-coupled receptor 8 (LGR8) binds INSL3 and relaxin with high affinity, whereas the relaxin receptor LGR7 only binds relaxin. LGR7 and LGR8 bind their ligands within the 10 leucine-rich repeats (LRRs) that comprise the majority of their ectodomains. To define the primary INSL3 binding site in LGR8, its LRRs were first modeled on the crystal structure of the Nogo receptor (NgR) and the most likely binding surface identified. Multiple sequence alignment of this surface revealed the presence of seven of the nine residues implicated in relaxin binding to LGR7. Replacement of these residues with alanine caused reduced [(125)I]INSL3 binding, and a specific peptide/receptor interaction point was revealed using competition binding assays with mutant INSL3 peptides. This point was used to crudely dock the solution structure of INSL3 onto the LRR model of LGR8, allowing the prediction of the INSL3 Trp-B27 binding site. This prediction was then validated using mutant INSL3 peptide competition binding assays on LGR8 mutants. Our results indicated that LGR8 Asp-227 was crucial for binding INSL3 Arg-B16, whereas LGR8 Phe-131 and Gln-133 were involved in INSL3 Trp-B27 binding. From these two defined interactions, we predicted the complete INSL3/LGR8 primary binding site, including interactions between INSL3 His-B12 and LGR8 Trp-177, INSL3 Val-B19 and LGR8 Ile-179, and INSL3 Arg-B20 with LGR8 Asp-181 and Glu-229.  相似文献   

9.
Nearly all of the insulin-like growth factor (IGF) in the circulation is bound in a heterotrimeric complex composed of IGF, IGF-binding protein-3, and the acid-labile subunit (ALS). Full-length clones encoding ALS have been isolated from human liver cDNA libraries by using probes based on amino acid sequence data from the purified protein. These clones encode a mature protein of 578 amino acids preceded by a 27-amino acid hydrophobic sequence indicative of a secretion signal. Expression of the cDNA clones in mammalian tissue culture cells results in the secretion into the culture medium of ALS activity that can form the expected complex with IGF-I and IGF-binding protein-3. The amino acid sequence of ALS is largely composed of 18-20 leucine-rich repeats of 24 amino acids. These repeats are found in a number of diverse proteins that, like ALS, participate in protein-protein interactions.  相似文献   

10.
Localization of the major heparin-binding site in fibronectin   总被引:15,自引:0,他引:15  
We have identified the major site required for the interaction of fibronectin (FN) with heparin. Affinity chromatography was used to test the binding ability of a library of truncated, monomeric forms of fibronectin (deminectins) containing deletions or two point mutations in the heparin-binding domain. This domain consists of type III repeats 12, 13, and 14. Deletions of individual repeats showed that both III13 and III14 are required for complete binding. Small deletions within these repeats localized a major site of heparin interaction to the amino-terminal half of III13. Site-directed mutagenesis of adjacent arginines within this sequence to uncharged residues reduced heparin binding by 98%, identifying these positively charged amino acids as essential for the interaction. A significant role for the flanking alternatively spliced regions and for repeat III12 was not found. We conclude that, while both repeats III13 and III14 participate in heparin binding, there is a major site of interaction in repeat III13 that accounts for nearly all of the activity. The significance of multiple heparin-binding sites within this domain is discussed and a model is proposed to account for how these sites may function in vivo.  相似文献   

11.
Conjointly, the solvent-exposed residues of the central alpha-helix of the B chain form a well-defined ridge, which is flanked and partly overlapped by the two described insulin receptor binding surfaces on either side of the insulin molecule. To evaluate the importance of this interface in insulin receptor binding, we developed a new powerful method that allows us to introduce all the naturally occurring amino acids into a given position and subsequently determine the receptor binding affinities of the resulting insulin analogues. The total amino acid scanning mutagenesis was performed at positions B9, B10, B12, B13, B16, and B17, and the vast majority of the insulin analogue precursors were expressed and secreted in amounts close to that of the wild-type (human insulin) precursor. The analogue binding data revealed that positions B12 and B16 were the two positions most affected by the amino acid substitutions. Interestingly, the receptor binding affinities of the B13 analogues were also markedly affected by the amino acid substitutions, suggesting that GluB13 indeed is a part of insulin's binding surface. The B10 library screen generated analogues covering a wide range of (20-340%) of relative binding affinities, and the results indicated that a structural stabilization of the central alpha-helix and thereby a more rigid presentation of the binding epitope at the insulin receptor is important for receptor recognition. In conclusion, systematic amino acid scanning mutagenesis allowed us to confirm the importance of the B chain alpha-helix as a central recognition element serving as a linker of a continual binding surface.  相似文献   

12.
Relaxin-like bioactivity of ovine Insulin 3 (INSL3) analogues.   总被引:2,自引:0,他引:2  
Relaxin is an insulin-like peptide consisting of two separate chains (A and B) joined by two inter- and one intrachain disulfide bonds. Binding to its receptor requires an Arg-X-X-X-Arg-X-X-Ile motif in the B-chain. A related member of the insulin superfamily, INSL3, has a tertiary structure that is predicted to be similar to relaxin. It also possesses an Arg-X-X-X-Arg motif within its B-chain, although this is displaced by four amino acids towards the C-terminus from the corresponding position within relaxin. We have previously shown that synthetic INSL3 itself does not display relaxin-like activity although analogue (Analogue A) with an introduced arginine residue in the B-chain giving it an Arg cassette in the exact relaxin position does possess weak activity. In order to identify further the structural features that impart relaxin function, solid phase peptide synthesis was used to prepare three additional analogues for bioassay. Each of these contained point substitutions within the arginine cassette. Analogue D contained the full human relaxin binding cassette, Analogue G consisted of the native INSL3 sequence containing an Arg to Ala substitution, and Analogue E was a further modification of Analogue A, with the same substitution. Each analogue was fully chemically characterized by a number of criteria. Detailed circular dichroism spectroscopy analyses showed that the changes caused little alteration of secondary structure and, hence, overall conformation. However, each analogue displayed only weak relaxin-like activity. These results indicate that while the arginine cassette is vital for relaxin-like activity, there are additional, as yet unidentified structural requirements for relaxin binding.  相似文献   

13.
The extracellular region of the thyrotropin receptor (TSHR) can be subdivided into the leucine-rich repeat domain (LRRD) and the hinge region. Both the LRRD and the hinge region interact with thyrotropin (TSH) or autoantibodies. Structural data for the TSHR LRRD were previously determined by crystallization (amino acids Glu(30)-Thr(257), 10 repeats), but the structure of the hinge region is still undefined. Of note, the amino acid sequence (Trp(258)-Tyr(279)) following the crystallized LRRD comprises a pattern typical for leucine-rich repeats with conserved hydrophobic side chains stabilizing the repeat fold. Moreover, functional data for amino acids between the LRRD and the transmembrane domain were fragmentary. We therefore investigated systematically these TSHR regions by mutagenesis to reveal insights into their functional contribution and potential structural features. We found that mutations of conserved hydrophobic residues between Thr(257) and Tyr(279) cause TSHR misfold, which supports a structural fold of this peptide, probably as an additional leucine-rich repeat. Furthermore, we identified several new mutations of hydrophilic amino acids in the entire hinge region leading to partial TSHR inactivation, indicating that these positions are important for intramolecular signal transduction. In summary, we provide new information regarding the structural features and functionalities of extracellular TSHR regions. Based on these insights and in context with previous results, we suggest an extracellular activation mechanism that supports an intramolecular agonistic unit as a central switch for activating effects at the extracellular region toward the serpentine domain.  相似文献   

14.
The relaxin-like factor (RLF, also named INSL3) is a critical component in the chain of events that lead to the normal positioning of the gonads in the male fetus. RLF and relaxin share features of the secondary structure to the extent that relaxin cross-reacts with the LGR8, the RLF receptor. Although both hormones interact with their receptors essentially via the B chain, the sharply defined binding cassette of relaxin is not present in RLF. Structure and function analysis of RLF derivatives with single amino acid replacements revealed that the most important binding residues are tryptophan B27, followed by arginine B16 and valine B19. Single alanine replacements for each individual position resulted in a relative receptor affinity of 4.0% (B16), 6.1% (B19), and 0.5% (B27). Tryptophan B27 is located on an extended structure, and arginine B16 and valine B19 are positioned on the exposed surface of the B chain helix. The 3 residues could be brought together to form a contiguous binding area if the C-terminal end of the B chain were free to fold back against the central portion of the B chain helix. Such a movement depends critically on the flexibility of the C-terminal end, which is controlled by positions B23-25. In as much as these major binding residues seem hardly sufficient to explain the strong binding of RLF to LGR8 we searched for and found an extended region where little contributions by individual residues added up to a strong receptor affinity. This mode of interaction could drive the binding energy sufficiently high to account for the picomolar binding constant of RLF and its receptor.  相似文献   

15.
The isoleucine-23 residue of human epidermal growth factor (hEGF) was substituted by a variety of amino acid residues and the receptor-binding activities of variant hEGFs were determined by the use of human KB cell. Tight receptor binding was found of variants with hydrophobic amino acid residues in position 23. The size of the isoleucine residue was nearly optimum for the receptor binding as compared with other hydrophobic residues. The structure analysis by two-dimensional nuclear magnetic resonance spectroscopy showed that the substitution at position 23 only slightly affected the tertiary structure of hEGF. These indicate that the side chain of isoleucine residue in position 23, which is exposed on the protein surface, directly binds to a hydrophobic pocket of the receptor.  相似文献   

16.
The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true “ligand” of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation.  相似文献   

17.
The receptors for the peptide hormones relaxin and insulin-like peptide 3 (INSL3) are the leucine-rich repeat-containing G-protein-coupled receptors LGR7 and LGR8 recently renamed as the relaxin family peptide (RXFP) receptors, RXFP1 and RXFP2, respectively. These receptors differ from other LGRs by the addition of an N-terminal low density lipoprotein receptor class A (LDLa) module and are the only human G-protein-coupled receptors to contain such a domain. Recently it was shown that the LDLa module of the RXFP1 and RXFP2 receptors is essential for ligand-stimulated cAMP signaling. The mechanism by which the LDLa module modulates receptor signaling is unknown; however, it represents a unique paradigm in understanding G-protein-coupled receptor signaling. Here we present the structure of the RXFP1 receptor LDLa module determined by solution NMR spectroscopy. The structure is similar to other LDLa modules but shows small differences in side chain orientations and inter-residue packing. Interchange of the module with the second ligand binding domain of the LDL receptor, LB2, results in a receptor that binds relaxin with full affinity but is unable to signal. Furthermore, we demonstrate via structural studies on mutated LDLa modules and functional studies on mutated full-length receptors that a hydrophobic surface within the N-terminal region of the module is essential for activation of RXFP1 receptor signal in response to relaxin stimulation. This study has highlighted the necessity to understand the structural effects of single amino acid mutations on the LDLa module to fully interpret the effects of these mutations on receptor activity.  相似文献   

18.
A novel heterozygous mutation A340T leading to the substitution of Phe for the conserved amino acid Ile114 was identified by nucleotide sequencing of the human LH/chorionic gonadotropin receptor (hLHR) of a patient with Leydig cell hypoplasia. This mutation is located in the third leucine-rich repeat in the ectodomain of the hLHR. In vitro expression studies demonstrated that this mutation results in reduced ligand binding and signal transduction of the receptor. Studies of hLHR constructs in which various amino acids were substituted for the conserved Ile114 showed that receptor activity is sensitive to changes in size, shape, and charge of the side chain. A homology model of the wild-type hLHR ectodomain was made, illustrating the packing of conserved hydrophobic side chains in the protein core. Substitution of Ile114 by Phe might disrupt intermolecular contacts between hormone and receptor. This mutation might also affect an LHR-dimer interaction. Thus, the I114F mutation reduces ligand binding and signal transduction by the hLHR, and it is partially responsible for Leydig cell hypoplasia in the patient.  相似文献   

19.
The amino acid sequences for the ovarian hormone relaxin, now determined for pig, rat and shark, indicate that the molecule may have an internal structure similar to that of insulin. The combined results from six secondary structure prediction methods applied to the sequences of both relaxin and insulin support the concept of a similar folding for the B chain between the disulphide bridges. Model building with a computer graphics system has shown that the rat relaxin sequence cannot be superimposed on the 2Zn insulin structure without close contacts occurring between the residues in the central core. However, the residues can be accommodated in the more open framework assumed by 4Zn insulin (molecule I). With the relaxin models built according to the insulin fold, surface residues shared by the three relaxin sequences (B9(Arg), B13(Arg), A13 and A14 (Lys or Arg)) all lie in a localized area on the molecule. This group of residues focuses attention on a larger area on the molecule's surface which may well be the receptor binding site.  相似文献   

20.
The gene for protein L, an immunoglobulin (Ig) light chain-binding protein expressed by some strains of the anaerobic bacterial species Peptostreptococcus magnus, was cloned and sequenced. The gene translates into a protein of 719 amino acid residues. Following a signal sequence of 18 amino acids and a NH2-terminal region ("A") of 79 residues, the molecule contains five homologous "B" repeats of 72-76 amino acids each. Further, toward the COOH terminus, two additional repeats ("C") were found. These are not related to the "B" repeats, but are highly homologous to each other. After the C repeats (52 amino acids each), a hydrophilic, proline-rich putative cell wall-spanning region ("W") was found, followed at the COOH-terminal end by a hydrophobic membrane anchor ("M"). Fragments of the gene were expressed, and the corresponding peptides were analyzed for Ig-binding activity. The B repeats were found to be responsible for the interaction with Ig light chains. An Escherichia coli high level expression system was adapted for the production of large amounts of two Ig-binding protein L fragments comprising one and four B repeats, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号