首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chaperoning the histone H3 family   总被引:1,自引:0,他引:1  
  相似文献   

2.
We report a sensitive peptide pull‐down approach in combination with protein identification by LC‐MS/MS and qualitative abundance measurements by spectrum counting to identify proteins binding to histone H3 tail containing dimethyl lysine 4 (H3K4me2), dimethyl lysine 9 (H3K9me2), or acetyl lysine 9 (H3K9ac). Our study identified 86 nuclear proteins that associate with the histone H3 tail peptides examined, including seven known direct binders and 16 putative direct binders with conserved PHD finger, bromodomain, and WD40 domains. The reliability of our proteomic screen is supported by the fact that more than one‐third of the proteins identified were previously described to associate with histone H3 tail directly or indirectly. To our knowledge, the results presented here are the most comprehensive analysis of H3K4me2, H3K9me2, and H3K9ac associated proteins and will provide a useful resource for researchers studying the mechanisms of histone code effector proteins.  相似文献   

3.
Recently, four Xenopus sperm proteins thought to be involved in binding to the egg envelope were identified (Lindsay and Hedrick, J. Exp. Zool., 245:286-293, '88). We have studied the three more abundant ones of apparent molecular weight of 14, 19, and 25 kd in SDS-PAGE. We have shown that these proteins are indeed nuclear basic proteins: the 14 kd is the histone H4, the 19 kd is the histone H3, and the 25 kd is the sperm-specific protein SP2.  相似文献   

4.
5.
[3H]Luteolin binds covalently to uterine nuclear type II sites [B. Markaverich, K. Shoulars, M.A. Alejandro, T. Brown, Steroids 66 (2001) 707] and was used to identify this protein(s). SDS-PAGE analyses of [3H]luteolin-labeled type II site preparations revealed specific binding to 11- and 35-kDa proteins. The 11-kDa protein was identified as histone H4 by amino acid sequencing. Western blotting confirmed that the 11- and 35-kDa proteins were acetylated forms of histone H4. Anti-histone H4 antibodies (but not H2A, H2B, or H3 antibodies) quantitatively immunoadsorbed type II binding sites from nuclear extracts. Binding analyses by [3H]estradiol exchange, using luteolin as a competitor, detected specific type II binding activity to histone H4 (but not histones H2A, H2B, or H3) generated in a rabbit reticulocyte lysate translation system and confirmed that histone H4 is the type II site.  相似文献   

6.
The ability of regulatory factors to access their nucleosomal targets is modulated by nuclear proteins such as histone H1 and HMGN (previously named HMG-14/-17 family) that bind to nucleosomes and either stabilize or destabilize the higher-order chromatin structure. We tested whether HMGN proteins affect the interaction of histone H1 with chromatin. Using microinjection into living cells expressing H1–GFP and photobleaching techniques, we found that wild-type HMGN, but not HMGN point mutants that do not bind to nucleosomes, inhibits the binding of H1 to nucleosomes. HMGN proteins compete with H1 for nucleosome sites but do not displace statically bound H1 from chromatin. Our results provide evidence for in vivo competition among chromosomal proteins for binding sites on chromatin and suggest that the local structure of the chromatin fiber is modulated by a dynamic interplay between nucleosomal binding proteins.  相似文献   

7.
Bromo-adjacent homology (BAH) domains are commonly found in chromatin-associated proteins and fall into two classes; Remodels the Structure of Chromatin (RSC)-like or Sir3-like. Although Sir3-like BAH domains bind nucleosomes, the binding partners of RSC-like BAH domains are currently unknown. The Rsc2 subunit of the RSC chromatin remodeling complex contains an RSC-like BAH domain and, like the Sir3-like BAH domains, we find Rsc2 BAH also interacts with nucleosomes. However, unlike Sir3-like BAH domains, we find that Rsc2 BAH can bind to recombinant purified H3 in vitro, suggesting that the mechanism of nucleosome binding is not conserved. To gain insight into the Rsc2 BAH domain, we determined its crystal structure at 2.4 Å resolution. We find that it differs substantially from Sir3-like BAH domains and lacks the motifs in these domains known to be critical for making contacts with histones. We then go on to identify a novel motif in Rsc2 BAH that is critical for efficient H3 binding in vitro and show that mutation of this motif results in defective Rsc2 function in vivo. Moreover, we find this interaction is conserved across Rsc2-related proteins. These data uncover a binding target of the Rsc2 family of BAH domains and identify a novel motif that mediates this interaction.  相似文献   

8.
9.
Histone chaperones regulate all aspects of histone metabolism. NASP is a major histone chaperone for H3–H4 dimers critical for preventing histone degradation. Here, we identify two distinct histone binding modes of NASP and reveal how they cooperate to ensure histone H3–H4 supply. We determine the structures of a sNASP dimer, a complex of a sNASP dimer with two H3 α3 peptides, and the sNASP–H3–H4–ASF1b co-chaperone complex. This captures distinct functionalities of NASP and identifies two distinct binding modes involving the H3 α3 helix and the H3 αN region, respectively. Functional studies demonstrate the H3 αN-interaction represents the major binding mode of NASP in cells and shielding of the H3 αN region by NASP is essential in maintaining the H3–H4 histone soluble pool. In conclusion, our studies uncover the molecular basis of NASP as a major H3–H4 chaperone in guarding histone homeostasis.  相似文献   

10.
S C Wu  J Gyrgyey    D Dudits 《Nucleic acids research》1989,17(8):3057-3063
Histone H3 mRNAs were found in polyA(+) fractions of total RNA prepared from alfalfa plants, calli and somatic embryos. The sequence analysis of cDNAs revealed the presence of a polyA tail on independent alfalfa H3 mRNAs. A highly conserved sequence motif AAUGAAA identified about 20bp upstream from the 3' ends of the alfalfa H3 cDNAs was suggested to be one of the possible regulatory elements in the 3' end formation and polyadenylation. Three out of the four analysed H3 cDNAs have more than 97% homology with a genomic clone and encode the same protein. While the fourth represents a minor species with only 78.8% homology to the coding region of the genomic clone and encodes a H3 histone with four amino acid replacements. On the basis of compilation analysis we suggest a consensus sequence for plant H3 histones which differs from that of animal's by four amino acid changes.  相似文献   

11.
12.
13.
14.
Two H3 histone variants are found in equal amount in HeLa cells, and they have been characterized by two-dimensional gel electrophoresis followed by reaction with specific antibodies. These molecules are the only cysteine-containing histones, and they have been used as the target for thiol-specific reagents, in intact nuclei, isolated nucleosomes, histone complexes, and purified histones. Cysteine residues are available toN-ethylmaleimide only when histones are disassembled from the core particles. Upon reaction with these reagents, one of the H3 variants undergoes profound conformational changes, as revealed by an altered electrophoretic mobility.  相似文献   

15.
Until recently, the RFX family of DNA binding proteins consisted exclusively of four mammalian members (RFX1-RFX4) characterized by a novel highly conserved DNA binding domain. Strong conservation of this DNA binding domain precluded a precise definition of the motif required for DNA binding. In addition, the biological systems in which these RFX proteins are implicated remained obscure. The recent identification of four new RFX genes has now shed light on the evolutionary conservation of the RFX family, contributed greatly to a detailed characterization of the RFX DNA binding motif, and provided clear evidence for the function of some of the RFX proteins. RFX proteins have been conserved throughout evolution in a wide variety of species, including Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, mouse and man. The characteristic RFX DNA binding motif has been recruited into otherwise very divergent regulatory factors functioning in a diverse spectrum of unrelated systems, including regulation of the mitotic cell cycle in fission yeast, the control of the immune response in mammals, and infection by human hepatitis B virus.  相似文献   

16.
Histones are highly basic, relatively small proteins that complex with DNA to form higher order structures that underlie chromosome topology. Of the four core histones H2A, H2B, H3 and H4, it is H3 that is most heavily modified at the post-translational level. The human genome harbours 16 annotated bona fide histone H3 genes which code for four H3 protein variants. In 2010, two novel histone H3.3 protein variants were reported, carrying over twenty amino acid substitutions. Nevertheless, they appear to be incorporated into chromatin. Interestingly, these new H3 genes are located on human chromosome 5 in a repetitive region that harbours an additional five H3 pseudogenes, but no other core histone ORFs. In addition, a human-specific novel putative histone H3.3 variant located at 12p11.21 was reported in 2011. These developments raised the question as to how many more human histone H3 ORFs there may be. Using homology searches, we detected 41 histone H3 pseudogenes in the current human genome assembly. The large majority are derived from the H3.3 gene H3F3A, and three of those may code for yet more histone H3.3 protein variants. We also identified one extra intact H3.2-type variant ORF in the vicinity of the canonical HIST2 gene cluster at chromosome 1p21.2. RNA polymerase II occupancy data revealed heterogeneity in H3 gene expression in human cell lines. None of the novel H3 genes were significantly occupied by RNA polymerase II in the data sets at hand, however. We discuss the implications of these recent developments.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号