首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Phytomedicine》2015,22(10):885-893
BackgroundPure apocynin, which can be traditionally isolated and purified from several plant species such as Picrorhiza kurroa Royle ex Benth (Scrophulariaceae), acts as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity inhibiting its production of reactive oxygen species (ROS). Transforming growth factor type beta 1 (TGF-β1) is a growth factor that produces inhibition of myogenesis, diminution of regeneration and induction of atrophy in skeletal muscle. The typical signalling that is activated by TGF-β involves the Smad pathway.PurposeTo evaluate the effect of TGF-β and the effect of apocynin on TGF-β1 expression in skeletal muscle cells.Study designControlled laboratory study. In vitro assays were performed with C2C12 cells incubated with TGF-β1 in presence or absence of apocynin (NOX inhibitor), SB525334 (TGF-β-receptor I inhibitor), or chelerythrine (PKC inhibitor).MethodsTGF-β1 and atrogin-1 expression was evaluated by RT-qPCR and/or ELISA; Smad3 phosphorylation by western blot; Smad4 nuclear translocation by indirect immunofluorescence; and ROS levels by DCF probe fluorescent measurements.ResultsWe show that myoblasts respond to TGF-β1 by increasing its own gene expression in a time- and dose-dependent fashion which was abolished by SB525334 and siRNA for Smad2/3. TGF-β1 also induced ROS. Remarkably, apocynin inhibited the TGF-β1 induced ROS as well as the autoinduction of TGF-β1 gene expression. We also show that TGF-β-induced ROS production and TGF-β1 expression require PKC activity as indicated by the inhibition using chelerythrine.ConclusionThese results strongly suggest that TGF-β induces its own expression through a TGF-β-receptor/Smad-dependent mechanism and apocynin is able to inhibit this process, suggesting that requires NOX-induced ROS in skeletal muscle cells.  相似文献   

2.

Background

Transforming growth factor beta 1 (TGF-β1) is a classical modulator of skeletal muscle and regulates several processes, such as myogenesis, regeneration and muscle function in skeletal muscle diseases. Skeletal muscle atrophy, characterized by the loss of muscle strength and mass, is one of the pathological conditions regulated by TGF-β1, but the underlying mechanism involved in the atrophic effects of TGF-β1 is not fully understood.

Methods

Mice sciatic nerve transection model was created and gastrocnemius were analysed by western blot, immunofluorescence staining and fibre diameter quantification after 2 weeks. Exogenous TGF-β1 was administrated and high-mobility group box-1 (HMGB1), autophagy were blocked by siRNA and chloroquine (CQ) respectively to explore the mechanism of the atrophic effect of TGF-β1 in denervated muscle. Similar methods were performed in C2C12 cells.

Results

We found that TGF-β1 was induced in denervated muscle and it could promote atrophy of skeletal muscle both in vivo and in vitro, up-regulated HMGB1 and increased autophagy activity were also detected in denervated muscle and were further promoted by exogenous TGF-β1. The atrophic effect of TGF-β1 could be inhibited when HMGB1/autophagy pathway was blocked.

Conclusions

Thus, our data revealed that TGF-β1 is a vital regulatory factor in denervated skeletal muscle in which HMGB1/ autophagy pathway mediates the atrophic effect of TGF-β1. Our findings confirmed a new pathway in denervation-induced skeletal muscle atrophy and it may be a novel therapeutic target for patients with muscle atrophy after peripheral nerve injury.
  相似文献   

3.
Recently, miR-22 was found to be differentially expressed in different skeletal muscle growth period, indicated that it might have function in skeletal muscle myogenesis. In this study, we found that the expression of miR-22 was the most in skeletal muscle and was gradually up-regulated during mouse myoblast cell (C2C12 myoblast cell line) differentiation. Overexpression of miR-22 repressed C2C12 myoblast proliferation and promoted myoblast differentiation into myotubes, whereas inhibition of miR-22 showed the opposite results. During myogenesis, we predicted and verified transforming growth factor beta receptor 1 (TGFBR1), a key receptor of the TGF-β/Smad signaling pathway, was a target gene of miR-22. Then, we found miR-22 could regulate the expression of TGFBR1 and down-regulate the Smad3 signaling pathway. Knockdown of TGFBR1 by siRNA suppressed the proliferation of C2C12 cells but induced its differentiation. Conversely, overexpression of TGFBR1 significantly promoted proliferation but inhibited differentiation of the myoblast. Additionally, when C2C12 cells were treated with different concentrations of transforming growth factor beta 1 (TGF-β1), the level of miR-22 in C2C12 cells was reduced. The TGFBR1 protein level was significantly elevated in C2C12 cells treated with TGF-β1. Moreover, miR-22 was able to inhibit TGF-β1-induced TGFBR1 expression in C2C12 cells. Altogether, we demonstrated that TGF-β1 inhibited miR-22 expression in C2C12 cells and miR-22 regulated C2C12 cell myogenesis by targeting TGFBR1.  相似文献   

4.
Wu X  Pang L  Lei W  Lu W  Li J  Li Z  Frassica FJ  Chen X  Wan M  Cao X 《Cell Stem Cell》2010,7(5):571-580
The anabolic effects of parathyroid hormone (PTH) on bone formation are impaired by concurrent use of antiresorptive drugs. We found that the release of active transforming growth factor (TGF)-β1 during osteoclastic bone resorption is inhibited by alendronate. We showed that mouse Sca-1-positive (Sca-1(+)) bone marrow stromal cells are a skeletal stem cell subset, which are recruited to bone remodeling sites by active TGF-β1 in response to bone resorption. Alendronate inhibits the release of active TGF-β1 and the recruitment of Sca-1(+) skeletal stem cells for the bone formation. The observation was validated in a Tgfb1(-/-) mouse model, in which the anabolic effects of PTH on bone formation are diminished. The PTH-stimulated recruitment of injected mouse Sca-1(+) cells to the resorptive sites was inhibited by alendronate. Thus, inhibition of active TGF-β1 release by alendronate reduces the recruitment of Sca-1(+) skeletal stem cells and impairs the anabolic action of PTH in bone.  相似文献   

5.
《Cytokine》2015,72(2):394-396
Retinal pigmented epithelium (RPE) secretes transforming growth factor beta 1 and 2 (TGF-β1 and -β2) cytokines involved in fibrosis, immune privilege, and proliferative vitreoretinopathy (PVR). Since RPE cell polarity may be altered in various disease conditions including PVR and age-related macular degeneration, we determined levels of TGF-β from polarized human RPE (hRPE) and human stem cell derived RPE (hESC-RPE) as compared to nonpolarized cells. TGF-β2 was the predominant isoform in all cell culture conditions. Nonpolarized cells secreted significantly more TGF-β2 supporting the contention that loss of polarity of RPE in PVR leads to rise of intravitreal TGF-β2. Active TGF-β2, secreted mainly from apical side of polarized RPE, represented 6–10% of total TGF-β2. In conclusion, polarity is an important determinant of TGF-β2 secretion in RPE. Low levels of apically secreted active TGF-β2 may play a role in the normal physiology of the subretinal space. Comparable secretion of TGF-β from polarized hESC-RPE and hRPE supports the potential for hESC-RPE in RPE replacement therapies.  相似文献   

6.
The cervix is central to the female genital tract immune response to pathogens and foreign male Ags introduced at coitus. Seminal fluid profoundly influences cervical immune function, inducing proinflammatory cytokine synthesis and leukocyte recruitment. In this study, human Ect1 cervical epithelial cells and primary cervical cells were used to investigate agents in human seminal plasma that induce a proinflammatory response. TGF-β1, TGF-β2, and TGF-β3 are abundant in seminal plasma, and Affymetrix microarray revealed that TGF-β3 elicits changes in Ect1 cell expression of several proinflammatory cytokine and chemokine genes, replicating principal aspects of the Ect1 response to seminal plasma. The differentially expressed genes included several induced in the physiological response of the cervix to seminal fluid in vivo. Notably, all three TGF-β isoforms showed comparable ability to induce Ect1 cell expression of mRNA and protein for GM-CSF and IL-6, and TGF-β induced a similar IL-6 and GM-CSF response in primary cervical epithelial cells. TGF-β neutralizing Abs, receptor antagonists, and signaling inhibitors ablated seminal plasma induction of GM-CSF and IL-6, but did not alter IL-8, CCL2 (MCP-1), CCL20 (MIP-3α), or IL-1α production. Several other cytokines present in seminal plasma did not elicit Ect1 cell responses. These data identify all three TGF-β isoforms as key agents in seminal plasma that signal induction of proinflammatory cytokine synthesis in cervical cells. Our findings suggest that TGF-β in the male partner's seminal fluid may influence cervical immune function after coitus in women, and potentially be a determinant of fertility, as well as defense from infection.  相似文献   

7.
The profound effects of transforming growth factor β1 (TGF-β1) on the immune system, cardiogenesis, in yolk sac hematopoeisis and in differentiation of endothelium have been demonstrated by detailed analyses of TGF-β1 knockout mice during embryogenesis. We have systematically examined the autocrine and paracrine roles of TGF-β1 in cell proliferation and in its ability to modulate the gene expression of selected components of extracellular matrix (ECM) using embryonic fibroblasts from TGF-β1 null mice (TGF-β1−/−). The rates of cell proliferation of embryonic fibroblasts from normal mice (TGF-β1+/+) and TGF-β1 null mice were compared by cell counting, by 3H thymidine incorporation, and by measuring the fraction of cells in the G1, S, and G2/M phases of the cell cycle by fluorescent activated cell sorting (FACS). Concurrently, the expression of pro-α1(I) collagen, fibronectin, and plasminogen activator inhibitor-1 (PAI-1) was also quantified by hybridization of total mRNA from TGF-β1+/+ and TGF-β1−/− embryonic fibroblasts. We report that TGF-β1−/− cells proliferated at about twice the rate of TGF-β1+/+ cells. Further, TGF-β1 null fibroblasts accumulated and synthesized lower constitutive levels of pro-α1(I) collagen, fibronectin, and PAI-1 mRNA. The quantitative differences in the rates of cell proliferation and ECM gene expression between TGF-β1+/+ and TGF-β1−/− cells could be eliminated by treatment of TGF-β1+/+ cells with a neutralizing antibody of TGF-β1. Thus, our results are consistent with the hypothesis that TGF-β1 acts as a negative autocrine regulator of growth and a positive autocrine regulator of ECM biosynthesis in embryonic fibroblasts. 176:67–75, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article was prepared by a group of United States government employees and non-United States government employees, and as such is subject to 17 U.S.C. Sec. 105.
  •   相似文献   

    8.
    9.
    Satellite cells are a quiescent heterogenous population of mononuclear stem and progenitor cells which, once activated, differentiate into myotubes and facilitate skeletal muscle repair or growth. The Transforming Growth Factor-β (TGF-β) superfamily members are elevated post-injury and their importance in the regulation of myogenesis and wound healing has been demonstrated both in vitro and in vivo. Most studies suggest a negative role for TGF-β on satellite cell differentiation. However, none have compared the effect of these three isoforms on myogenesis in vitro. This is despite known isoform-specific effects of TGF-β1, -β2 and -β3 on wound repair in other tissues. In the current study we compared the effect of TGF-β1, -β2 and -β3 on proliferation and differentiation of the C2C12 myoblast cell-line. We found that, irrespective of the isoform, TGF-β increased proliferation of C2C12 cells by changing the cellular localisation of PCNA to promote cell division and prevent cell cycle exit. Concomitantly, TGF-β1, -β2 and -β3 delayed myogenic commitment by increasing MyoD degradation and decreasing myogenin expression. Terminal differentiation, as measured by a decrease in myosin heavy chain (MHC) expression, was also delayed. These results demonstrate that TGF-β promotes proliferation and delays differentiation of C2C12 myoblasts in an isoform-independent manner.  相似文献   

    10.
    为探讨转化生长因子β1(TGF-β1)在蜕膜基质细胞中发挥免疫调节作用的机制,本研究以人妊娠初期的蜕膜基质细胞为研究对象,经0 ng/ml、1 ng/ml、5 ng/ml和10 ng/ml的TGF-β1处理后,运用RT-PCR方法检测趋化因子mRNA的表达,Western-blot检测趋化因子蛋白质的表达。结果表明:在mRNA水平和蛋白水平,高浓度的TGF-β1能够显著的下调蜕膜基质细胞中趋化因子配体CX3CL1、CXCL12和CXCL16的表达,有意义的上调趋化因子受体CXCR4和CXCR6的表达。研究结果提示,TGF-β1对趋化因子配体/受体有显著的调节作用,并通过趋化因子参与母胎界面的免疫调节。  相似文献   

    11.
    张威  许梅辛  孟庆刚 《生物磁学》2011,(16):3034-3037
    目的:研究局部含注射转化生长因子β1(TGF-β1)基因的质粒时大鼠同种异体骨移植的免疫排斥反应的影响。方法:将64只Wister大鼠完全随机分成4组,每组16只,切取SD大鼠的胫骨移植到Wister大鼠人工建模后形成的胫骨缺损区。TGF-β1组于移植骨局部一次性注射含有TGF-β1基因的质粒(40μg/只);空质粒组于移植局部注射空质粒;免疫抑制剂组术前3天开始腹腔内注射环孢素A(10mg/kg)直至处死;异体移植组仅行异体骨移植,不予特殊处理。术后3、6、12周行光镜和电镜检查。结果:异体移植组和空质粒组骨基质排列紊乱,骨细胞消失,基质区内见块状低电子密度区。TGF-β1组和免疫抑制剂组可见骨细胞和完整的成骨细胞,骨小管状态良好。混合淋巴细胞培养(MLC)结果显示TGF-β1组(0-331±0.017)与免疫抑制剂组(0.501±0.004)差异无统计学意义(P〉0.05),TGF-β1组与空质粒组(1.104±0.023)和异体移植组(1.206±0.019)差异有统计学意义(P〈0.05)。结论:新鲜骨移植过程中局部注射TGF-β1质粒可发挥免疫抑制作用,降低宿主的免疫排斥反应:  相似文献   

    12.
    Decorin is a small proteoglycan, composed of 12 leucine-rich repeats (LRRs) that modulates the activity of transforming growth factor type β (TGF-β) and other growth factors, and thereby influences proliferation and differentiation in a wide array of physiological and pathological processes, such as fibrosis, in several tissues and organs. Previously we described two novel modulators of the TGF-β-dependent signaling pathway: LDL receptor-related protein (LRP-1) and decorin. Here we have determined the regions in decorin that are responsible for interaction with LRP-1 and are involved in TGF-β-dependent binding and signaling. Specifically, we used decorin deletion mutants, as well as peptides derived from internal LRR regions, to determine the LRRs responsible for these decorin functions. Our results indicate that LRR6 and LRR5 participate in the interaction with LRP-1 and TGF-β as well as in its dependent signaling. Furthermore, the internal region (LRR6i), composed of 11 amino acids, is responsible for decorin binding to LRP-1 and subsequent TGF-β-dependent signaling. Furthermore, using an in vivo approach, we also demonstrate that the LRR6 region of decorin can inhibit TGF-β mediated action in response to skeletal muscle injury.  相似文献   

    13.
    Fibrotic disorders are typically characterised by excessive connective tissue and extracellular matrix (ECM) deposition that preclude the normal healing of different tissues. Several skeletal muscle dystrophies are characterised by extensive fibrosis. Among the factors involved in skeletal muscle fibrosis is angiotensin II (Ang-II), a key protein of the renin-angiotensin system (RAS). We previously demonstrated that myoblasts responded to Ang-II by increasing the ECM protein levels mediated by AT-1 receptors, implicating an Ang-II-induced reactive oxygen species (ROS) by a NAD(P)H oxidase-dependent mechanism. In this paper, we show that in myoblasts, Ang-II induced the increase of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor (CTGF) expression through its AT-1 receptor. This effect is dependent of the NAD(P)H oxidase (NOX)-induced ROS, as indicated by a decrease of the expression of both pro-fibrotic factors when the ROS production was inhibited via the NOX inhibitor apocynin. The increase in pro-fibrotic factors levels was paralleled by enhanced p38MAPK and ERK1/2 phosphorylation in response to Ang-II. However, only the p38MAPK activity was critical for the Ang-II-induced fibrotic effects, as indicated by the decrease in the Ang-II-induced TGF-β1 and CTGF expression and fibronectin levels by SB-203580, an inhibitor of the p38MAPK, but not by U0126, an inhibitor of ERK1/2 phosphorylation. Furthermore, we showed that the Ang-II-dependent p38MAPK activation, but not the ERK1/2 phosphorylation, was necessary for the NOX-derived ROS. In addition, we demonstrated that TGF-β1 expression was required for the Ang-II-induced pro-fibrotic effects evaluated by using SB-431542, an inhibitor of TGF-βRI kinase activity, and by knocking down TGF-β1 levels by shRNA technique. These results strongly suggest that the fibrotic response to Ang-II is mediated by the AT-1 receptor and requires the p38MAPK phosphorylation, NOX-induced ROS, and TGF-β1 expression increase mediated by Ang-II in skeletal muscle cells.  相似文献   

    14.
    The rainbow trout (Oncorhynchus mykiss) TGF-β1 sequence was one of the first fish cytokines described. Studies of its expression suggest it is constitutively expressed but displays refractory inducibility. Here we describe a second TGF-β1 (TGF-β1b) gene that is novel in several respects. TGF-β1b possesses typical TGF-β features, including a CXC motif and an integrin binding site, a tetrabasic cut site and a mature peptide of 112 amino acids (aa) containing nine conserved cysteine residues. The mature peptide is 83% identical to the first TGF-β1 sequence described in rainbow trout, that we designate TGF-β1a, and relative to TGF-β1a shows higher homology to Atlantic salmon TGF-β1b, zebrafish TGF-β1a, and sea bass and seabream TGF-β1. The gene organisation of salmonid TGF-β1b genes, as inferred from Atlantic salmon whole genome shotgun contigs, is a 6 exon/5 intron structure with exons 3 and 4 of salmonid TGF-β1a genes apparently fused together. The two trout TGF-β1 genes have a wide distribution in vivo, with highest expression found in immune tissues for both isoforms indicating that TGF-β1 has a predominant role in immunity of fish. Expression of both genes was also seen during the ontogeny of trout, with TGF-β1a relatively constant in expression level but TGF-β1b increasing over time. Immune responses in head kidney (HK) macrophages induced by pathogen associated molecular patterns (PAMPs), pro-inflammatory cytokines, mitogens and pathway activators highly elevated the expression level of TGF-β1b but not that of TGF-β1a. TGF-β1b expression was also increased by polyinosinic:polycytidylic acid (poly(I:C)) and/or lipopolysaccharide (LPS) stimulation in three different trout cell lines studied. Finally we show that TGF-β1b is potentially involved in defense against infection with viral haemorrhagic septicemia virus (VHSV), which had no effect on TGF-β1a expression. Thus, it is likely the TGF-β1b gene represents a copy which fulfils the major immune orchestrating functions of TGF-β1 as seen in other vertebrates.  相似文献   

    15.
    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type β (TGF-β), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-β-receptors (TGF-β-Rs) during skeletal muscle differentiation. We found a decrease of TGF-β signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-β. No change in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-β-R type I (TGF-β-RI) and type II (TGF-β-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-β-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-β-RII lacking the cytoplasmic domain. The TGF-β-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-β-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-β receptors independent of Smad proteins are essential for skeletal muscle differentiation.  相似文献   

    16.
    《Cytotherapy》2019,21(5):535-545
    BackgroundRegulatory T cells (Tregs) suppress excessive immune responses and play a crucial protective role in acute kidney injury (AKI). The aim of this study was to examine the therapeutic potential of transforming growth factor (TGF)-β1-overexpressing mesenchymal stromal cells (MSCs) in inducing local generation of Tregs in the kidney after ischemia/reperfusion (I/R) injury.MethodsMSCs were transduced with a lentiviral vector expressing the TGF-β1 gene; TGF-β1-overexpressing MSCs (designated TGF-β1/MSCs) were then transfused into the I/R-injured kidney via the renal artery.ResultsMSCs genetically modified with TGF-β1 achieved overexpression of TGF-β1. Compared with green fluorescent protein (GFP)/MSCs, TGF-β1/MSCs markedly improved renal function after I/R injury and reduced epithelial apoptosis and subsequent inflammation. The enhanced immunosuppressive and therapeutic abilities of TGF-β1/MSCs were associated with increased generation of induced Tregs and improved intrarenal migration of the injected cells. Futhermore, the mechanism of TGF-β1/MSCs in attenuating renal I/R injury was not through a direct canonical TGF-β1/Smad pathway.ConclusionTGF-β1/MSCs can induce a local immunosuppressive effect in the I/R-injured kidney. The immunomodulatory activity of TGF-β1–modified MSCs appears to be a gateway to new therapeutic approaches to prevent renal I/R injury.  相似文献   

    17.
    《Cytokine》2015,74(2):219-224
    TGF-β1 (transforming growth factor beta 1) is a negative regulator of lymphocytes, inhibiting proliferation and switching on the apoptotic program in normal lymphoid cells. Lymphoma cells often lose their sensitivity to proapoptotic/anti-proliferative regulators such as TGF-β1. Rapamycin can influence both mTOR (mammalian target of rapamycin) and TGF-β signaling, and through these pathways it is able to enhance TGF-β induced anti-proliferative and apoptotic responses. In the present work we investigated the effect of rapamycin and TGF-β1 combination on cell growth and on TGF-β and mTOR signalling events in lymphoma cells.Rapamycin, an inhibitor of mTORC1 (mTOR complex 1) did not elicit apoptosis in lymphoma cells; however, the combination of rapamycin with exogenous TGF-β1 induced apoptosis and restored TGF-β1 dependent apoptotic machinery in several lymphoma cell lines with reduced TGF-β sensitivity in vitro. In parallel, the phosphorylation of p70 ribosomal S6 kinase (p70S6K) and ribosomal S6 protein, targets of mTORC1, was completely eliminated. Knockdown of Smad signalling by Smad4 siRNA had no influence on apoptosis induced by the rapamycin + TGF-β1, suggesting that this effect is independent of Smad signalling. However, apoptosis induction was dependent on early protein phosphatase 2A (PP2A) activity, and in part on caspases. Rapamycin + TGF-β1 induced apoptosis was not completely eliminated by a caspase inhibitor.These results suggest that high mTOR activity contributes to TGF-β resistance and lowering mTORC1 kinase activity may provide a tool in high grade B-cell lymphoma therapy by restoring the sensitivity to normally available regulators such as TGF-β1.  相似文献   

    18.
    19.
    20.
    Several skeletal muscle diseases are characterized by fibrosis, the excessive accumulation of extracellular matrix. Transforming growth factor-β (TGF-β) and connective tissue growth factor (CCN2/CTGF) are two profibrotic factors augmented in fibrotic skeletal muscle, together with signs of reduced vasculature that implies a decrease in oxygen supply. We observed that fibrotic muscles are characterized by the presence of positive nuclei for hypoxia-inducible factor-1α (HIF-1α), a key mediator of the hypoxia response. However, it is not clear how a hypoxic environment could contribute to the fibrotic phenotype in skeletal muscle.We evaluated the role of hypoxia and TGF-β on CCN2 expression in vitro. Fibroblasts, myoblasts and differentiated myotubes were incubated with TGF-β1 under hypoxic conditions. Hypoxia and TGF-β1 induced CCN2 expression synergistically in myotubes but not in fibroblasts or undifferentiated muscle progenitors. This induction requires HIF-1α and the Smad-independent TGF-β signaling pathway. We performed in vivo experiments using pharmacological stabilization of HIF-1α or hypoxia-induced via hindlimb ischemia together with intramuscular injections of TGF-β1, and we found increased CCN2 expression. These observations suggest that hypoxic signaling together with TGF-β signaling, which are both characteristics of a fibrotic skeletal muscle environment, induce the expression of CCN2 in skeletal muscle fibers and myotubes.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号