首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The import motor of the mitochondrial translocase of the inner membrane (TIM23) mediates the ATP-dependent translocation of preproteins into the mitochondrial matrix by cycles of binding to and release from mtHsp70. An essential step of this process is the stimulation of the ATPase activity of mtHsp70 performed by the J cochaperone Tim14. Tim14 forms a complex with the J-like protein Tim16. The crystal structure of this complex shows that the conserved domains of the two proteins have virtually identical folds but completely different surfaces enabling them to perform different functions. The Tim14-Tim16 dimer reveals a previously undescribed arrangement of J and J-like domains. Mutations that destroy the complex between Tim14 and Tim16 are lethal demonstrating that complex formation is an essential requirement for the viability of cells. We further demonstrate tight regulation of the cochaperone activity of Tim14 by Tim16. The first crystal structure of a J domain in complex with a regulatory protein provides new insights into the function of the mitochondrial TIM23 translocase and the Hsp70 chaperone system in general.  相似文献   

2.
Mitochondria import the vast majority of their proteins from the cytosol. The mitochondrial import motor of the TIM23 translocase drives the translocation of precursor proteins across the outer and inner membrane in an ATP-dependent reaction. Tim44 at the inner face of the translocation pore recruits the chaperone mtHsp70, which binds the incoming precursor protein. This reaction is assisted by the cochaperones Tim14 and Mge1. We have identified a novel essential cochaperone, Tim16. It is related to J-domain proteins and forms a stable subcomplex with the J protein Tim14. Depletion of Tim16 has a marked effect on protein import into the mitochondrial matrix, impairs the interaction of Tim14 with the TIM23 complex and leads to severe structural changes of the import motor. In conclusion, Tim16 is a constituent of the TIM23 preprotein translocase, where it exerts crucial functions in the import motor.  相似文献   

3.
The presequence translocase of the mitochondrial inner membrane (TIM23 complex) mediates the import of preproteins with amino-terminal presequences. To drive matrix translocation the TIM23 complex recruits the presequence translocase-associated motor (PAM) with the matrix heat shock protein 70 (mtHsp70) as central subunit. Activity and localization of mtHsp70 are regulated by four membrane-associated cochaperones: the adaptor protein Tim44, the stimulatory J-complex Pam18/Pam16, and Pam17. It has been proposed that Tim44 serves as molecular platform to localize mtHsp70 and the J-complex at the TIM23 complex, but it is unknown how Pam17 interacts with the translocase. We generated conditional tim44 yeast mutants and selected a mutant allele, which differentially affects the association of PAM modules with TIM23. In tim44-804 mitochondria, the interaction of the J-complex with the TIM23 complex is impaired, whereas unexpectedly the binding of Pam17 is increased. Pam17 interacts with the channel protein Tim23, revealing a new interaction site between TIM23 and PAM. Thus, the motor PAM is composed of functional modules that bind to different sites of the translocase. We suggest that Tim44 is not simply a scaffold for binding of motor subunits but plays a differential role in the recruitment of PAM modules to the inner membrane translocase.  相似文献   

4.
The TIM23 translocase mediates the deltaPsi- and ATP-dependent import of proteins into mitochondria. We identified Tim14 as a novel component of the TIM23 translocase. Tim14 is an integral protein of the inner membrane with a typical J-domain exposed to the matrix space. TIM14 genes are present in the genomes of virtually all eukaryotes. In yeast, Tim14 is essential for viability. Mitochondria from cells depleted of Tim14 are deficient in the import of proteins mediated by the TIM23 complex. In particular, import of proteins that require the action of mtHsp70 is affected. Tim14 interacts with Tim44 and mtHsp70 in an ATP-dependent manner. A mutation in the HPD motif of the J-domain of Tim14 is lethal. Thus, Tim14 is a constituent of the mitochondrial import motor. We propose a model in which Tim14 is required for the activation of mtHsp70 and enables this chaperone to act in a rapid and regulated manner in the Tim44-mediated trapping of unfolded preproteins entering the matrix.  相似文献   

5.
Tim14 and Tim16 are essential components of the import motor of the mitochondrial TIM23 preprotein translocase. Tim14 contains a J domain in the matrix space that is anchored in the inner membrane by a transmembrane segment. Tim16 is a J-related protein with a moderately hydrophobic segment at its N terminus. The J and J-like domains function in the regulation of the ATPase activity of the Hsp70 chaperone of the import motor. We report here on the role of the hydrophobic segments of Tim16 and Tim14 in the TIM23 translocase. Yeast cells lacking the hydrophobic N-terminal segment in either Tim16 or Tim14 are viable but show growth defects and decreased import rates of matrix-targeted preproteins into mitochondria. The interaction of the Tim14.Tim16 complex with the core complex of the TIM23 translocase is destabilized in these cells. In particular, the N-terminal domain of Tim16 is crucial for the interaction of the Tim14.Tim16 complex with the TIM23 preprotein translocase. Deletion of hydrophobic segments in both, Tim16 and Tim14, is lethal. We conclude that import into the matrix space of mitochondria requires association of the co-chaperones Tim16 and Tim14 with the TIM23 preprotein translocase.  相似文献   

6.
Transport of preproteins into the mitochondrial matrix requires the presequence translocase of the inner membrane (TIM23 complex) and the presequence translocase-associated motor (PAM). The motor consists of five essential subunits, the mitochondrial heat shock protein 70 (mtHsp70) and four cochaperones, the nucleotide exchange-factor Mge1, the translocase-associated fulcrum Tim44, the J-protein Pam18, and Pam16. Pam16 forms a complex with Pam18 and displays similarity to J-proteins but lacks the canonical tripeptide motif His-Pro-Asp (HPD). We report that Pam16 does not function as a typical J-domain protein but, rather, antagonizes the function of Pam18. Pam16 specifically inhibits the Pam18-mediated stimulation of the ATPase activity of mtHsp70. The inclusion of the HPD motif in Pam16 does not confer the ability to stimulate mtHsp70 activity. Pam16-HPD fully substitutes for wild-type Pam16 in vitro and in vivo but is not able to replace Pam18. Pam16 represents a new type of cochaperone that controls the stimulatory effect of the J-protein Pam18 and regulates the interaction of mtHsp70 with precursor proteins during import into mitochondria.  相似文献   

7.
Transport of preproteins into the mitochondrial matrix is mediated by the presequence translocase-associated motor (PAM). Three essential subunits of the motor are known: mitochondrial Hsp70 (mtHsp70); the peripheral membrane protein Tim44; and the nucleotide exchange factor Mge1. We have identified the fourth essential subunit of the PAM, an essential inner membrane protein of 18 kD with a J-domain that stimulates the ATPase activity of mtHsp70. The novel J-protein (encoded by PAM18/YLR008c/TIM14) is required for the interaction of mtHsp70 with Tim44 and protein translocation into the matrix. We conclude that the reaction cycle of the PAM of mitochondria involves an essential J-protein.  相似文献   

8.
Many mitochondrial proteins are synthesized with N-terminal presequences in the cytosol. The presequence translocase of the inner mitochondrial membrane (TIM23) translocates preproteins into and across the membrane and associates with the matrix-localized import motor. The TIM23 complex consists of three core components and Tim21, which interacts with the translocase of the outer membrane (TOM) and the respiratory chain. We have identified a new subunit of the TIM23 complex, the inner membrane protein Mgr2. Mitochondria lacking Mgr2 were deficient in the Tim21-containing sorting form of the TIM23 complex. Mgr2 was required for binding of Tim21 to TIM23(CORE), revealing a binding chain of TIM23(CORE)-Mgr2/Tim21-respiratory chain. Mgr2-deficient yeast cells were defective in growth at elevated temperature, and the mitochondria were impaired in TOM-TIM23 coupling and the import of presequence-carrying preproteins. We conclude that Mgr2 is a coupling factor of the presequence translocase crucial for cell growth at elevated temperature and for efficient protein import.  相似文献   

9.
The mitochondrial heat shock protein Hsp70 is essential for import of nuclear-encoded proteins, involved in both unfolding and membrane translocation of preproteins. mtHsp70 interacts reversibly with Tim44 of the mitochondrial inner membrane, yet the role of this interaction is unknown. We analysed this role by using two yeast mutants of mtHsp70 that differentially influenced its interaction with Tim44. One mutant mtHsp70 (Ssc1-2p) efficiently bound preproteins, but did not show a detectable complex formation with Tim44; the mitochondria imported loosely folded preproteins with wild-type kinetics, yet were impaired in unfolding of preproteins. The other mutant Hsp70 (Ssc1-3p') bound both Tim44 and preproteins, but the mitochondria did not import folded polypeptides and were impaired in import of unfolded preproteins; Ssc1-3p' was defective in its ATPase domain and did not undergo a nucleotide-dependent conformational change, resulting in permanent binding to Tim44. The following conclusions are suggested. (i) The import of loosely folded polypeptides (translocase function of mtHsp70) does not depend on formation of a detectable Hsp70-Tim44 complex. Two explanations are possible: a trapping mechanism by soluble mtHsp70, or a weak/very transient interaction of Ssc1-2p with Tim44 that leads to a weak force generation sufficient for import of loosely folded, but not folded, polypeptides. (ii) Import of folded preproteins (unfoldase function of mtHsp70) involves a reversible nucleotide-dependent interaction of mtHsp70 with Tim44, including a conformational change in mtHsp70. This is consistent with a model that the dynamic interaction of mtHsp70 with Tim44 generates a pulling force on preproteins which supports unfolding during translocation.  相似文献   

10.
The essential gene TIM44 encodes a subunit of the inner mitochondrial membrane preprotein translocase that forms a complex with the matrix heat-shock protein Hsp70. The specific role of Tim44 in protein import has not yet been defined because of the lack of means to block its function. Here we report on a Saccharomyces cerevisiae mutant allele of TIM44 that allows selective and efficient inactivation of Tim44 in organello. Surprisingly, the mutant mitochondria are still able to import preproteins. The import rate is only reduced by approximately 30% compared with wild-type as long as the preproteins do not carry stably folded domains. Moreover, the number of import sites is not reduced. However, the mutant mitochondria are strongly impaired in pulling folded domains of preproteins close to the outer membrane and in promoting their unfolding. Our results demonstrate that Tim44 is not an essential structural component of the import channel, but is crucial for import of folded domains. We suggest that the concerted action of Tim44 and mtHsp70 drives unfolding of preproteins and accelerates translocation of loosely folded preproteins. While mtHsp70 is essential for import of both tightly and loosly folded preproteins, Tim44 plays a more specialized role in translocation of tightly folded domains.  相似文献   

11.
Protein translocation across the mitochondrial inner membrane is driven by cycles of binding and release of mitochondrial heat shock protein 70 (mtHsp70) in the matrix. The peripheral inner membrane protein, Tim44, recruits mtHsp70 in an ATP-dependent manner to the import sites. We show that DnaK, the closely related Hsp70 of Escherichia coli, when targeted to the matrix of yeast mitochondria, interacts in a specific manner with Tim44. The interaction is, however, not regulated by ATP, and DnaK cannot support protein translocation. We used truncated mtHsp70s and chimeric proteins consisting of segments of mtHsp70 and DnaK to analyze which portions of mtHsp70 bind and functionally interact with Tim44. We show that Tim44 interacts with the beta-stranded core of the peptide binding domain of mtHsp70 and of DnaK. The alpha-helices A and B of the peptide binding domain of mtHsp70 are required to transmit the nucleotide state of the ATPase domain to the peptide binding domain. Tim44, by interacting in this way with the peptide binding domain, is proposed to coordinate the binding of mtHsp70 to the incoming preprotein and the subsequent release of the mtHsp70-preprotein complex from the TIM23 complex, the translocase of the inner membrane.  相似文献   

12.
The import motor for preproteins that are targeted into the mitochondrial matrix consists of the matrix heat shock protein Hsp70 (mtHsp70) and the translocase subunit Tim44 of the inner membrane. mtHsp70 interacts with Tim44 in an ATP-dependent reaction cycle, binds to preproteins in transit, and drives their translocation into the matrix. While different functional mechanisms are discussed for the mtHsp70-Tim44 machinery, little is known about the actual mode of interaction of both proteins. Here, we have addressed which of the three Hsp70 regions, the ATPase domain, the peptide binding domain, or the carboxy-terminal segment, are required for the interaction with Tim44. By two independent means, a two-hybrid system and coprecipitation of mtHsp70 constructs imported into mitochondria, we show that the ATPase domain interacts with Tim44, although with a reduced efficiency compared to the full-length mtHsp70. The interaction of the ATPase domain with Tim44 is ATP sensitive. The peptide binding domain and carboxy-terminal segment are unable to bind to Tim44 in the absence of the ATPase domain, but both regions enhance the interaction with Tim44 in the presence of the ATPase domain. We conclude that the ATPase domain of mtHsp70 is essential for and directly interacts with Tim44, clearly separating the mtHsp70-Tim44 interaction from the mtHsp70-substrate interaction.  相似文献   

13.
Modular structure of the TIM23 preprotein translocase of mitochondria   总被引:1,自引:0,他引:1  
The TIM23 complex mediates import into mitochondria of nuclear encoded preproteins with a matrix-targeting signal. It is composed of the integral membrane proteins Tim17 and Tim23 and the peripheral membrane protein Tim44, which recruits mitochondrial Hsp70 to the sites of protein import. We have analyzed the functions of these constituents using a combined genetic and biochemical approach. Depletion of either Tim17 or Tim23 led to loss of import competence of mitochondria and to a reduction in the number of preprotein-conducting channels. Upon depletion of Tim44, mitochondria also lost their ability to import proteins but maintained normal numbers of import channels. In the absence of Tim44 precursor protein was specifically recognized. The presequence was translocated in a Delta psi-dependent manner across the inner membrane and cleaved by matrix-processing peptidase. However, the preprotein did not move further into the matrix but rather underwent retrograde sliding out of the TIM23 complex. Thus, the TIM23 complex is composed of functionally independent modules. Tim17 and Tim23 are necessary for initiating translocation, whereas Tim44 and mitochondrial Hsp70 are indispensable for complete transport of preproteins and for unfolding of folded domains of preproteins.  相似文献   

14.
Most mitochondrial proteins have to be imported from the cytosol through both mitochondrial membranes to their final localization. A dedicated translocation machinery is responsible for the specific recognition and the membrane transport of mitochondrial precursor proteins. Protein translocase complexes integrated into both mitochondrial membranes cooperate closely with receptor proteins at the surface and provide aqueous transport channels through the membranes. Energy for the membrane insertion is provided by the electric potential across the mitochondrial inner membrane. However, full translocation of the polypeptide chain requires ATP hydrolysis in the matrix. The responsible ATPase enzyme is a member of an ubiquitous family of molecular chaperones, the mitochondrial heat shock protein of 70 kDa (mtHsp70). A physical and functional interaction with a set of cofactors is indispensable for the translocation function of mtHsp70. By a specific and nucleotide-dependent binding to the inner membrane translocase component Tim44, the soluble chaperone mtHsp70 is anchored directly at the site of preprotein membrane insertion. The nucleotide exchange factor Mge1 enhances the ATPase activity of mtHsp70 and is required for the preprotein import reaction. Two novel proteins, Pam18 and Pam16, members of the inner membrane translocation channel, are required to couple the ATPase activity of mtHsp70 to the preprotein import reaction. We have collected experimental evidence indicating that mtHsp70 generates an inward directed translocation force on the polypeptide chain in transit by an ATP-regulated direct interaction with the precursor protein. The force generation results in the movement and active unfolding of the preprotein domains during the translocation process. Taken together, the chaperone mtHsp70 with its accessory proteine forms an import motor complex for mitochondrial preproteins that is driven by the hydrolysis of ATP.  相似文献   

15.
The TIM23 (translocase of the mitochondrial inner membrane) complex mediates translocation of preproteins across and their insertion into the mitochondrial inner membrane. How the translocase mediates sorting of preproteins into the two different subcompartments is poorly understood. In particular, it is not clear whether association of two operationally defined parts of the translocase, the membrane-integrated part and the import motor, depends on the activity state of the translocase. We established conditions to in vivo trap the TIM23 complex in different translocation modes. Membrane-integrated part of the complex and import motor were always found in one complex irrespective of whether an arrested preprotein was present or not. Instead, we detected different conformations of the complex in response to the presence and, importantly, the type of preprotein being translocated. Two non-essential subunits of the complex, Tim21 and Pam17, modulate its activity in an antagonistic manner. Our data demonstrate that the TIM23 complex acts as a single structural and functional entity that is actively remodelled to sort preproteins into different mitochondrial subcompartments.  相似文献   

16.
Import of proteins across the inner mitochondrial membrane through the Tim23:Tim17 translocase requires the function of an essential import motor having mitochondrial 70-kDa heat-shock protein (mtHsp70) at its core. The heterodimer composed of Pam18, the J-protein partner of mtHsp70, and the related protein Pam16 is a critical component of this motor. We report that three interactions contribute to association of the heterodimer with the translocon: the N terminus of Pam16 with the matrix side of the translocon, the inner membrane space domain of Pam18 (Pam18(IMS)) with Tim17, and the direct interaction of the J-domain of Pam18 with the J-like domain of Pam16. Pam16 plays a major role in translocon association, as alterations affecting the stability of the Pam18:Pam16 heterodimer dramatically affect association of Pam18, but not Pam16, with the translocon. Suppressors of the growth defects caused by alterations in the N terminus of Pam16 were isolated and found to be due to mutations in a short segment of TIM44, the gene encoding the peripheral membrane protein that tethers mtHsp70 to the translocon. These data suggest a model in which Tim44 serves as a scaffold for precise positioning of mtHsp70 and its cochaperone Pam18 at the translocon.  相似文献   

17.
The presequence translocase of the inner mitochondrial membrane (TIM23 complex) operates at a central junction of protein import. It accepts preproteins from the outer membrane TOM complex and directs them to inner membrane insertion or, in cooperation with the presequence translocase-associated motor (PAM), to the matrix. Little is known of how the TIM23 complex coordinates these tasks. We have identified Tim21 (YGR033c) that interacts with the TOM complex. Tim21 is specific for a TIM23 form that cooperates with TOM and promotes inner membrane insertion. Protein translocation into the matrix requires a switch to a Tim21-free, PAM bound presequence translocase. Tim17 is crucial for the switch by performing two separable functions: promotion of inner membrane insertion and binding of Pam18 to form the functional TIM-PAM complex. Thus, the presequence translocase is not a static complex but switches between TOM tethering and PAM binding in a reaction cycle involving Tim21 and Tim17.  相似文献   

18.
Mitochondrial preproteins destined for the matrix are translocated by two channel-forming transport machineries, the translocase of the outer membrane and the presequence translocase of the inner membrane. The presequence translocase-associated protein import motor (PAM) contains four essential subunits: the matrix heat shock protein 70 (mtHsp70) and its three cochaperones Mge1, Tim44 and Pam18. Here we report that the PAM contains a fifth essential subunit, Pam16 (encoded by Saccharomyces cerevisiae YJL104W), which is selectively required for preprotein translocation into the matrix, but not for protein insertion into the inner membrane. Pam16 interacts with Pam18 and is needed for the association of Pam18 with the presequence translocase and for formation of a mtHsp70-Tim44 complex. Thus, Pam16 is a newly identified type of motor subunit and is required to promote a functional PAM reaction cycle, thereby driving preprotein import into the matrix.  相似文献   

19.
The TIM23 complex of the mitochondrial inner membrane mediates the import of preproteins that contain positively charged targeting signals. This translocase consists of the two phylogenetically related membrane-embedded subunits Tim17 and Tim23 to which four largely hydrophilic subunits, Tim50, Tim44, Tim16, and Tim14, are attached. Whereas in vitro reconstitution experiments have suggested a pore-forming capacity of recombinant Tim23, virtually nothing is known about the properties and function of Tim17. We employed a combined genetic and biochemical approach to address the function of Tim17 in preprotein translocation. Tim17 exposes an N-terminal hydrophilic stretch into the intermembrane space. Truncation of the first 11 amino acid residues of this stretch did not affect the stability or integrity of TIM23 subunits but strongly impaired the import of preproteins. Moreover, expression of the truncated Tim17 variant led to a dominant negative effect on the mitochondrial membrane potential. By an alanine-scanning approach we identified two conserved negative charges in the N terminus of Tim17 as critical for Tim17 function. The replacement of these positions by positively charged residues results in a strong growth defect, which can be cured by reverting two conserved positive charges into aspartate residues between transmembrane domains two and three of Tim17. On the basis of these observations we propose that charged residues in Tim17 are critical for the preprotein-induced gating of the TIM23 translocase.  相似文献   

20.
Mitochondrial import of cleavable preproteins occurs at translocation contact sites, where the translocase of the outer membrane (TOM) associates with the presequence translocase of the inner membrane (TIM23) in a supercomplex. Different views exist on the mechanism of how TIM23 mediates preprotein sorting to either the matrix or inner membrane. On the one hand, two TIM23 forms were proposed, a matrix transport form containing the presequence translocase-associated motor (PAM; TIM23-PAM) and a sorting form containing Tim21 (TIM23SORT). On the other hand, it was reported that TIM23 and PAM are permanently associated in a single-entity translocase. We have accumulated distinct transport intermediates of preproteins to analyze the translocases in their active, preprotein-carrying state. We identified two different forms of active TOM-TIM23 supercomplexes, TOM-TIM23SORT and TOM-TIM23-PAM. These two supercomplexes do not represent separate pathways but are in dynamic exchange during preprotein translocation and sorting. Depending on the signals of the preproteins, switches between the different forms of supercomplex and TIM23 are required for the completion of preprotein import.The majority of mitochondrial proteins are nuclear encoded and posttranslationally transported into the organelle. A major class of mitochondrial proteins possess cleavable targeting signals at their amino termini, so-called presequences (5, 9, 12, 19, 30, 32). These α-helical segments are positively charged and direct the proteins across the outer and inner mitochondrial membranes toward the matrix space, where the presequences are proteolytically removed. However, a number of proteins of the inner mitochondrial membrane, among them subunits of the respiratory chain complexes, also utilize presequences as targeting signals. In addition to the presequence, they contain a hydrophobic sorting signal, which arrests precursor translocation across the inner membrane and mediates the lateral release of the polypeptide into the lipid phase (16, 30). In some cases, the membrane-inserted precursors undergo a second processing event by the inner membrane protease that cleaves behind the sorting signal and therefore leads to the release of the protein into the intermembrane space (25, 30, 31). Thus, a large variety of proteins destined for three different intramitochondrial compartments use presequences as the primary signal for transport.Cleavable preproteins initially enter mitochondria via the TOM complex and are translocated into or across the inner membrane by the TIM23 complex. The TIM23 complex consists of four integral membrane proteins, Tim23, Tim17, Tim50, and Tim21. Tim23 forms the protein-conducting channel of the translocase and is tightly associated with Tim17 (8, 26, 43). Tim50 acts as a regulator for the Tim23 channel and is involved in early steps of precursor transfer from the outer to the inner membranes (23, 29, 41). Tim21 transiently interacts with the TOM complex via binding to the intermembrane space domain of Tom22. This interaction promotes the release of presequences from Tom22 for their further transfer to the Tim23 channel (4). For full matrix translocation of preproteins, the TIM23 complex cooperates with PAM. The central subunit of PAM is mtHsp70, which undergoes ATP-dependent cycles of preprotein binding and release to promote polypeptide movement toward the matrix. The activity of mtHsp70 in the translocation process is regulated by four membrane-bound cochaperones, Tim44, the J complex Pam18/Pam16 (Tim14/Tim16), and Pam17. Tim44 provides a binding site for preproteins and mtHsp70 close to the Tim23 channel (1, 17, 22, 36). The J protein Pam18 stimulates the ATPase activity of mtHsp70 (10, 44), whereas the J-related protein Pam16 controls the activity of Pam18 (11, 13, 20). Pam17 plays an organizing role in the TIM23-PAM cooperation (33, 45).The following two different views on the organization of the presequence transport machinery are currently discussed. (i) The TIM23 complex and PAM were proposed to exist in different modular states, termed TIM23SORT and TIM23-PAM. The TIM23CORE complex, consisting of Tim23, Tim17 and Tim50, associates with either Tim21 or the subunits of PAM (4, 47, 51). The Tim21-containing form is termed TIM23SORT since this motor-free form was isolated and shown to mediate membrane insertion of sorted preproteins upon reconstitution (46). The TIM23-PAM form (lacking Tim21) is crucial for mtHsp70-driven preprotein translocation into the matrix (4). (ii) On the other hand, it was proposed that presequence translocase and import motor form a single structural and functional entity. Thus, membrane-integrated TIM23 and import motor would always remain in one complex. This model implies that a motor-free form of the TIM23 complex should not exist (27, 33, 42).To decide between the different views, it is necessary to analyze translocase and motor in their active form, i.e., during their engagement with preproteins. Moreover, the model of modular forms of TIM23 and PAM raises the question whether two strictly separate TIM23 pathways for inner membrane sorting and matrix translocation exist or whether an exchange between the different forms of the presequence translocase occurs. To date, the majority of experimental studies have been performed with the translocases in an inactive, i.e., preprotein-free, state. Studies using preproteins in transit provided only limited information so far and thus did not resolve the controversy, as follows. (i) Mokranjac and Neupert (27) questioned if the in vitro preprotein insertion by purified TIM23SORT in a proteoliposome assay (46) reflected the in organello situation in intact mitochondria. (ii) Popov-Celeketic et al. (33) accumulated a matrix-targeted preprotein in mitochondrial import sites in vivo and performed pulldown experiments. They copurified TIM23, PAM, and Tim21 and thus concluded that the TIM23 and motor subunits formed a single entity. They did not address the possibility that the accumulated preprotein was associated with different pools of translocase complexes. (iii) Wiedemann et al. (51) made use of the observation that TIM23SORT associates with the respiratory chain (47). They reported a copurification of inner membrane-sorted preproteins and matrix-targeted preproteins with respiratory chain complexes. This observation raised the possibility that the pathways for inner membrane sorting and matrix translocation are connected at least at the level of respiratory chain interaction; however, the composition of the TIM23 complexes was not analyzed.For this study, we used preproteins with variations in the intramitochondrial sorting signal to monitor the active, preprotein-carrying translocases at distinct stages of mitochondrial import. We observed different forms of active translocases on the presequence pathway. The sorting signals of the preproteins are critical for the selection of specific translocase forms. The motor and sorting forms of the TIM23 complex can be isolated as separate entities in support of the modular model. However, the different TIM23 forms are not permanently separated during preprotein import, but a dynamic exchange between the forms takes place for both matrix-targeted preproteins and inner membrane-sorted preproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号