首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A full-length cDNA encoding a putative aspartic acid protease (AcAP1) was isolated for the first time from the flesh of pineapple (Ananas comosus) fruit. The deduced sequence of AcAP1 showed all the common features of a typical plant aspartic protease phytepsin precursor. Analysis of AcAP1 gene expression under postharvest chilling treatment in two pineapple varieties differing in their resistance to blackheart development revealed opposite trends. The resistant variety showed an up-regulation of AcAP1 precursor gene expression whereas the susceptible showed a down-regulation in response to postharvest chilling treatment. The same trend was observed regarding specific AP enzyme activity in both varieties. Taken together our results support the involvement of AcAP1 in postharvest chilling stress resistance in pineapple fruits.  相似文献   

2.
The shoots of cultivated tomato (Lycopersicon esculentum cv. T5) wilt if their roots are exposed to chilling temperatures of around 5 °C. Under the same treatment, a chilling‐tolerant congener (Lycopersicon hirsutum LA 1778) maintains shoot turgor. To determine the physiological basis of this differential response, the effect of chilling on both excised roots and roots of intact plants in pressure chambers were investigated. In excised roots and intact plants, root hydraulic conductance declined with temperature to nearly twice the extent expected from the temperature dependence of the viscosity of water, but the response was similar in both species. The species differed markedly, however, in stomatal behaviour: in L. hirsutum, stomatal conductance declined as root temperatures were lowered, whereas the stomata of L. esculentum remained open until the roots reached 5 °C, and the plants became flaccid and suffered damage. Grafted plants with the shoots of one genotype and roots of another indicated that the differential stomatal behaviour during root chilling has distinct shoot and root components.  相似文献   

3.
IntroductionLow temperature is one of the major environmental factors that adversely affect plant growth and yield. Many cereal crops from tropical regions, such as rice, are chilling sensitive and, therefore, are affected already at <10°C. Interestingly, it has been demonstrated that chilling susceptibility varies greatly among rice varieties, which indicates differences in the underlying molecular responses. Understanding these differences is vital for continued development of rational breeding and transgenic strategies for more tolerant varieties. Thus, in this study, we conducted a comparative global gene expression profiling analysis of the chilling tolerant varieties Sijung and Jumli Marshi (spp. Japonica) during early chilling stress (<24 h, 10°C).ConclusionsBased on the results inferred from this study, we conclude that different, but overlapping, strategies are undertaken by the two varieties to cope with the chilling stress; in Sijung the initial molecular responses seem to be mainly targeted at strengthening the cell wall and plasma membrane, whereas in Jumli Marshi the protection of chloroplast translation and detoxification is prioritized.  相似文献   

4.
Lipid composition and pigment content in bell pepper ( Capsicum annuum L. cv. Bell Tower) fruit that were freshly harvested, chilled 14 days at 2° C. or chilled and then transferred to 20 °C for 3 days ("rewarmed") were determined. There was slight to moderate loss of membrane glycerolipids during chilling, with much greater losses after chilled fruit was rewarmed. Galactolipid (GL) loss exceeded that of phospholipid (PL). The ratio of monogalactosyl -to digalactosyl-diacylglycerol did not change in chilled or in rewarmed fruit, and there was no chlorophyll loss, but the amount of neutral carotenes declined during chilling and dropped further alter rewarming. Only minor changes in total membrane sterols (TMS = free sterols + steryl glycosides + acylated steryl glycosides) were noted in chilled and in rewarmed fruit (a small increase followed by a small decrease), but major changes occurred in sterol glycosylation and esterification. The ratio of stigmasterol to sitosterol increased during chilling and rose further after rewarming. Due to PL loss, the ratios of TMS and free sterols to PL increased in rewarmed fruit. The ratio of linolenate (18:3) to linoleate (18:2) rose during chilling and after rewarming in all fatty-acyl lipids (GL. PL. and acylated steryl glycosides), but the unsaturation index increased only in GL. These results indicate that most membrane damage occurs after rewarming of chilled fruit and that the chloroplasts are especially chilling sensitive.  相似文献   

5.
Plasma membrane (PM) plays central role in triggering primary responses to chilling injury and sustaining cellular homeostasis. Characterising response of membrane lipids to low temperature can provide important information for identifying early causal factors contributing to chilling injury. To this end, PM lipid composition and ATPase activity were assessed in pineapple fruit (Ananas comosus) in relation to the effect of low temperature on the development of blackheart, a form of chilling injury. Chilling temperature at 10 °C induced blackheart development in concurrence with increase in electrolyte leakage. PM ATPase activity was decreased after 1 week at low temperature, followed by a further decrease after 2 weeks. The enzyme activity was not changed during 25 °C storage. Loss of total PM phospholipids was found during postharvest senescence, but more reduction was shown from storage at 10 °C. Phosphatidylcholine and phosphatidylethanolamine were the predominant PM phospholipid species. Low temperature increased the level of phosphatidic acid but decreased the level of phosphatidylinositol. Both phospholipid species were not changed during storage at 25 °C. Postharvest storage at both temperatures decreased the levels of C18:3 and C16:1, and increased level of C18:1. Low temperature decreased the level of C18:2 and increased the level of C14:0. Exogenous application of phosphatidic acid was found to inhibit the PM ATPase activity of pineapple fruit in vitro. Modification of membrane lipid composition and its effect on the functional property of plasma membrane at low temperature were discussed in correlation with their roles in blackheart development of pineapple fruit.  相似文献   

6.
Electrical resistance changes in different organs of four olive tree (Olea europaea L.) varieties, characterized by different tolerance to chilling and freezing, were examined, during exposure to low temperature. Apparent critical temperatures (CT) and freezing temperatures (Tfr) were identified on the basis of the electrical resistance changes. Both temperatures were lower for the more chilling‐tolerant genotypes. From the apparent critical temperatures, the absolute critical temperature (CTabs) and the time delay of the chilling signal transduction process were calculated. In shoots, CTabs varied from 8·8 °C for Ascolana (chilling‐tolerant variety) to 13·6 °C for Coratina (chilling‐sensitive variety). The magnitude of the transduction time was very similar (about 2 min) for the three genotypes that are more sensitive to chilling, whereas it was significantly higher (about 3 min) for the most tolerant genotype. Different freezing temperatures were observed for different organs. It would appear from this experiment that the order of sensitivity is roots > leaves > shoots > vegetative buds. Accord was found between the absolute critical temperature of electrical resistance and the critical temperature of membrane potential. The occurrence of electrical resistance changes in the tissues of the olive trees exposed to low temperature suggests the use of this experimental procedure as a quick, easy and non‐destructive tool to screen plant tissues for chilling tolerance. The strong dependence of the electrical resistance on low temperature, and the critical temperature of around 10 °C, can yield interesting information about the lowest thermal limits for the continuation of normal physiological processes and therefore about the adaptability of plants to particular environments.  相似文献   

7.
Mature green tomato fruit ( Lycopersicon esculentum cv. Caruso) were stored at 1°C or 20°C and analyzed on day 0, 18 and 22 for electrolyte leakage, ripening-associated changes in pigmentation and phospholipid fatty acid composition. Chilled fruit were also analyzed 4 days after they were returned to 20°C. Fruit did not ripen significantly during chilling and subsequent storage at 20°C, and showed visible chilling injury symptoms only at 20°C. Electrolyte leakage increased in control and chilled fruit, indicating enhanced membrane permeability during both ripening and chilling. Returning the fruit to ambient temperature gave an apparent decrease in electrolyte leakage. Phospholipid and linolenic acid content and double bond index decreased during ripening at 20°C. The small changes in phospholipid fatty acid composition during chilling cannot account for the enhanced membrane permeability. The significant decrease in percentage of linolenic acid and in double bond index in the total lipids, but not in the phospholipids, upon returning the fruit to 20°C suggests loss of galactolipid polyunsaturated fatty acids  相似文献   

8.
9.
Changes in protein synthesis induced in tomato by chilling   总被引:11,自引:4,他引:7       下载免费PDF全文
Cooper P  Ort DR 《Plant physiology》1988,88(2):454-461
Impaired chloroplast function is responsible for nearly two-thirds of the inhibition of net photosynthesis caused by dark chilling in tomato (Lycopersicon esculentum Mill.). Yet the plant can eventually recover full photosynthetic capacity if it is rewarmed in darkness at high relative humidity. As a means of identifying potential sites of chilling injury in tomato, we monitored leaf protein synthesis in chilled plants during this rewarming recovery phase, since changes in the synthesis of certain proteins might be indicative of damaged processes in need of repair. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins pulse labeled with [35S]methionine revealed discrete changes in the pattern of protein synthesis as a result of chilling. A protein of Mr = 27 kilodaltons (kD), abundantly synthesized by unchilled plants, declined to undetectable levels in chilled plants. Reillumination restored the synthesis of this protein in plants rewarmed for 8 hours. Peptide mapping analysis showed the 27 kD protein to be the major chlorophyll a/b binding protein of the photosystem II light-harvesting complex (LHCP-II). The identity of this protein was confirmed by its immunoprecipitation from leaf extracts by a monoclonal antibody specific for the major LHCP-II species. While chilling abolished the synthesis of the major LHCP-II species, it also induced the synthesis of an entirely new protein of Mr = 35 kD. The protein was synthesized on cytoplasmic ribosomes, and two-dimensional polyacrylamide gel electrophroesis showed it to exist as a single isoelectric species. This chilling-induced 35 kD protein is structurally distinct from the 27 kD LHCP-II and appears to be synthesized specifically in response to low temperature. While the 35 kD protein was found not to be associated with the chloroplast thylakoid membrane, chilling did cause selective changes in thylakoid membrane protein synthesis. The synthesis of two unidentified proteins, Mr = 14 and 41 kD, and the β-subunit of the chloroplast coupling factor were substantially reduced after chilling. These losses may provide clues as to the causes of the overall reduction in net photosynthesis caused by chilling.  相似文献   

10.
The mechanism of chilling resistance was investigated in 4-week-old plants of the chilling-sensitive cultivated tomato, Lycopersicon esculentum Mill. cv H722, and rooted cuttings of its chilling-resistant wild relative, L. hirsutum Humb. and Bonpl., which were chilled for 3 days at 2°C with a 14-hour photoperiod and light intensity of 250 micromoles per square meter per second. This chilling stress reduced the chlorophyll fluorescence ratio, stomatal conductance, and dry matter accumulation more in the sensitive L. esculentum than in the resistant L. hirsutum. Photosynthetic CO2 uptake at the end of the chilling treatment was reduced more in the resistant L. hirsutum than in L. esculentum, but recovered at a faster rate when the plants were returned to 25°C. The reduction of the spin trap, Tiron, by isolated thylakoids at 750 micromoles per square meter per second light intensity was taken as a relative indication of the tendency for the thylakoids to produce activated oxygen. Thylakoids isolated from the resistant L. hirsutum with or without chilling treatment were essentially similar, whereas those from chilled leaves of L. esculentum reduced more Tiron than the nonchilled controls. Whole chain photosynthetic electron transport was measured on thylakoids isolated from chilled and control leaves of the two species at a range of assay temperatures from 5 to 25°C. In both species, electron transport of the thylakoids from chilled leaves was lower than the controls when measured at 25°C, and electron transport declined as the assay temperature was reduced. However, the temperature sensitivity of thylakoids from chilled L. esculentum was altered such that at all temperatures below 20°C, the rate of electron transport exceeded the control values. In contrast, the thylakoids from chilled L. hirsutum maintained their temperature sensitivity, and the electron transport rates were proportionately reduced at all temperatures. This sublethal chilling stress caused no significant changes in thylakoid galactolipid, phospholipid, or protein levels in either species. Nonchilled thylakoid membranes from L. hirsutum had fourfold higher levels of the fatty acid 16:1, than those from L. esculentum. Chilling caused retailoring of the acyl chains in L. hirsutum but not in L. esculentum. The chilling resistance of L. hirsutum may be related to an ability to reduce the potential for free radical production by close regulation of electron transport within the chloroplast.  相似文献   

11.
The effect of pretreatment of cucumber (Cucumis sativus L.) roots with choline chloride or ethanolamine on leaf phospholipid composition and light-induced leaf damage during chilling was studied. Photooxidative chlorophyll degradation was similarly inhibited by both amino alcohols. The decrease of the chlorophyll a/chlorophyll b ratio and the increase of polyunsaturated-fatty-acid degradation during chilling in the light were equally inhibited by pretreatment with choline chloride or ethanolamine. Treatment with choline chloride and ethanolamine caused, respectively, 43% and 26% increases in the total phospholipid contents of the leaves. After treatment with choline chloride, the phosphatidylcholine content was higher than the content of phosphatidylethanolamine; the reverse was true after treatment with ethanolamine. The chlorophyll concentration increased less than the phospholipid concentration, resulting in a decreased chlorophyll/phospholipid ratio of treated leaves. During chilling in the light, degradation of phosphatidylcholine, ethanolamine and phosphatidyl glycerol occurred. Phosphatidyl glycerol was less sensitive than phosphatidylcholine and ethanolamine. The degradation was equally inhibited by pretreatment with either amino alcohol. Possible connections between the phospholipid content of leaf membranes and the inhibition of chilling-induced photooxidative leaf damage are discussed.Abbreviations CC choline chloride - Chl chlorophyll - EA ethanolamine - PC phosphatidyl choline - PE phosphatidyl ethanolamine - PG phosphatidyl glycerol  相似文献   

12.
The responses of two cultivars of soybean (Merr.) to a chilling treatment (4 C for first hour of imbibition) were compared. The germination of cv. Biloxi was unaffected by the treatment, while the germination of cv. Fiskeby was reduced. The phospholipid fatty acids of dry axes of the two cultivars were very similar, and, thus, could not be correlated with their responses to chilling. The fatty acid composition of chilling-tolerant Biloxi did not change over a subsequent 23-hour warm incubation, but there was a marked reduction in the unsaturated fatty acids of chilling-sensitive Fiskeby after 12 hours, which may be a symptom of deterioration. Protein synthesis in both cultivars was reduced by the chilling treatment. Redrying of Biloxi axes up to 18 hours after the onset of imbibition had no effect on their germination upon rehydration. Germination of Fiskeby axes was reduced by redrying after 8 hours of imbibition. After 7 months of dry storage of intact seeds, the sensitivity of the axes to chilling was retested. Biloxi axes had become chilling-sensitive, while the germination of Fiskeby axes was reduced to zero by the chilling treatment. A hypothesis is presented that imbibitional chilling sensitivity is an indication of reduced vigor, axes with a high vigor can tolerate the stress, while those without cannot.  相似文献   

13.
《Process Biochemistry》2004,39(6):713-718
The effects of malting conditions on proteolytic activities in three improved sorghum varieties: ICSV400, SK5912 and KSV8 were studied. Grains were steeped for 45 h using 6 h wet and 3 h dry cycles and germinated for 8 days. Moisture contents and their effects on proteolytic activity were monitored at various intervals using standard methods. Significant positive correlations existed between moisture content and carboxypeptidase and proteinase activities during steeping. Optimum carboxypeptidase and proteinase enzyme activities were consistently recorded in both ICSV400 and SK5912 at the 40th h of steeping while those of KSV8 occurred on the 45th h. This suggests that protein hydrolysis of KSV8 is different from that of ICSV400 and SK5912. Similarly, optimum proteolytic activities occurred in all the sorghum varieties on the 5th day of germination suggesting optimum germination time for optimum protein modification. Variety and steeping time affected both carboxypeptidase and proteinase activities significantly (P<0.001) during germination. Significant positive correlations existed in the sorghum varieties ICSV400 and SK5912 between free amino nitrogen (FAN) contents and carboxypeptidase activities during both steeping and germination. In contrast, variety KSV8 showed no significant correlation between FAN contents and carboxypeptidase activities during either steeping or germination. On the other hand, while there was a highly significant positive correlation between CWS-P development and proteinase activities in all the sorghum varieties during steeping, no such relationship existed during germination.  相似文献   

14.
The succinate oxidation capacities of mitochondria isolated from mango fruits (Mangifera indica L.) stored at 4, 8, 12, and 20 C were investigated during storage. In normally ripening fruits (at 12 and 20 C) the oxidative capacities increased during the first 10 days and then decreased slowly. At lower temperatures (4 and 8 C), the fruits showed chilling injury symptoms, after about 10 days of storage and the succinate oxidation capacities of mitochondria decreased progressively. Plots of succinate oxidation capacities as against storage temperature showed a marked discontinuity between 12 and 8 C, only when chilling injury was observed on fruits stored at low temperature.

The variations of mitochondrial fatty acid composition during the storage of fruits at different temperatures were also investigated. A marked decrease of the molar ratio palmitoleic acid/palmitic acid, the predominant fatty acids in mitochondrial lipids, was observed to accompany both the succinate oxidation decrease and the induction of chilling injury.

  相似文献   

15.
The impairment of the turgor operated modulation of stomatal movement and changes in photosynthetic capacity were studied using two maize ( Zea mays L.) varieties of different chilling sensitivity. In the tolerant variety stomatal opening exhibited characteristic transients, while in the more susceptible strain chilling induced a monotonous increase of stomatal apertures. Photosynthetic capacity of the leaves (expressed in terms of 14CO2 incorporation at 25°C) declined as a result of chilling regardless of stomatal opening. Nevertheless, tolerance was reflected in the preservation of a higher level of CO2 fixation capacity and in a more successful recovery.  相似文献   

16.
与对低温不敏感的粳稻台北309和武育粳相比,对低温敏感的籼稻IR64、CA212和Pusa经光照条件下8℃处理后最大光合速率(Pmax)和原初光化学效率(Fv/Fm)下降较多,出现了O2-·、过氧化氢、氧化型谷胱甘肽(GSSG)和氧化型抗坏血酸(DHA)的大量累积,其GSSG和DHA的含量分别与叶绿素含量的下降呈极显著负相关,表明光照条件下低温胁迫下,还原态的谷胱甘肽(GSH)和抗坏血酸的再生受阻,不能有效地清除活性氧,导致其叶绿素含量降低和光合能力受抑,而汕优63的变化位于上述两种类型之间。其中AsA/DHA和GSH/GSSG的变化与叶绿素含量的变化呈极显著正相关。  相似文献   

17.
《Journal of plant physiology》2014,171(3-4):243-249
Environmental temperature change may induce modifications in membrane lipid properties and composition, which account for different physiological responses among plant species. Coffee plants, as many tropical species, are particularly sensitive to cold, but genotypes can present differences that can be exploited to improve crop management and breeding. This work intended to highlight the changes promoted by low non-freezing temperatures (chilling) in phospholipid (PL) composition of chloroplast membranes of genotypes from two Coffea species, Coffea arabica cv. Catuaí (moderately tolerant) and Coffea canephora cv. Conilon (Clone 153, more susceptible), and relate them with cold sensitivity differences. Such evaluation was performed considering a gradual temperature decrease, chilling (4 °C) exposure and a recovery period under rewarming conditions. Catuaí presented an earlier acclimation response than Clone 153 (CL 153). It displayed a higher metabolic activity during acclimation (total fatty acids and total PL increases) and chilling (phosphatidylglycerol increases), and an overall better recovery. Catuaí also showed the highest phosphatidylglycerol unsaturation (higher double bond index) after chilling, in contrast with CL 153 (gradual unsaturation decrease). Higher unsaturation degree in Catuaí than in CL 153 was also observed for phosphatidylcholine and phosphatidylinositol, resulting, mainly, from raises in unsaturated C18:2 and C18:3. It is suggested that an enhanced PL synthesis and turnover induced by a gradual cold exposure, as well as unsaturation increases in major PL classes, is related to decreased Catuaí susceptibility to low temperatures and strongly contributes to sustain photosynthetic activity in this genotype under chilling conditions, as reported in previous work by this team.  相似文献   

18.
Insect cold tolerance varies at both the population and species levels. Carbohydrate cryoprotectants and membrane remodeling are two main mechanisms hypothesised to increase chilling tolerance in Drosophila melanogaster, as part of both long-term (i.e., evolutionary) change and rapid cold-hardening (RCH). We used cold-selected lines of D. melanogaster with and without a pre-exposure that induces RCH to test three hypotheses: (1) that increased cold tolerance would be associated with increased free glucose; (2) that increased cold tolerance would be associated with desaturation of membrane phospholipid fatty acids; and (3) that increased cold tolerance would be associated with a change in phospholipid head group composition. We used colourimetric assays to measure free glucose and a combination of thin layer chromatography-flame ionization detection and gas chromatography to measure membrane composition. We observed a consistent decrease in free glucose with RCH, and no relationship between free glucose and basal cold tolerance. Also, phospholipid head group ratios and fatty acid composition showed no change following an RCH treatment. Thus, we conclude that changes in free glucose and membrane composition are unlikely to be significant determinants of variation in cold tolerance of D. melanogaster.  相似文献   

19.
Lipids were labeled with 33P during frost hardening of two varieties of winter wheat (Triticum aestivum), hardy Kharkov and much less hardy Champlein. The main labeled compounds were phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylglycerol. With time of incorporation the proportion of the radioactivity incorporated into the lipids increased in phosphatidylcholine, especially in Kharkov and at 1 C. During hardening, phospholipid synthesis was greatly stimulated in Kharkov, but much less in Champlein. The proportion of the phospholipids synthesized changed only little with hardening, with a trend towards an increase in phosphatidylcholine. Increased phospholipid synthesis does not seem to be a prerequisite to hardening in winter wheat. However, a high rate of phospholipid synthesis may be required to maintain frost resistance.  相似文献   

20.
《Insect Biochemistry》1987,17(2):367-372
The inactive esterase A4 (Ease A4) purified from the diapausing eggs of the silkworm, Bombyx mori, was chilled in vitro. The enzyme activity was very low during the early chilling period and it was suddenly elevated at a certain time of the chilling (2 weeks or less after chilling), depending upon when the chilling period began, and was followed by a rapid fall. The sudden elevation of the Ease A4 activity in vitro is equivalent to that observed in vivo and is coincident with the chilling period, the latter being indispensable for diapause termination.Data are also presented that suggest that the cold-induced activation of the Ease A4 may result from an autonomous structural change of the enzyme molecule which proceeds gradually in the cold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号