首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rhizobacterium Pseudomonas putida BTP1 stimulates induced systemic resistance (ISR) in tomato. A previous work showed that the resistance is associated in leaves with the induction of the first enzyme of the oxylipin pathway, the lipoxygenase (LOX), leading to a faster accumulation of its product, the free 13-hydroperoxy octadecatrienoic acid (13-HPOT), 2 days after Botrytis cinerea inoculation. In the present study, we further investigated the stimulation of the oxylipin pathway: metabolites and enzymes of the pathway were analyzed to understand the fate of the 13-HPOT in ISR. Actually the stimulation began upstream the LOX: free linolenic acid accumulated faster in P. putida BTP1-treated plants than in control. Downstream, the LOX products 13-fatty acid hydroperoxides esterified to galactolipids and phospholipids were more abundant in bacterized plants than in control before infection. These metabolites could constitute a pool that will be used after pathogen attack to produce free fungitoxic metabolites through the action of phospholipase A2, which is enhanced in bacterized plants upon infection. Enzymatic branches which can use as substrate the fatty acid hydroperoxides were differentially regulated in bacterized plants in comparison to control plants, so as to lead to the accumulation of the most fungitoxic compounds against B. cinerea. Our study, which is the first to demonstrate the accumulation of an esterified defense metabolite during rhizobacteria-mediated induced systemic resistance, showed that the oxylipin pathway is differentially regulated. It suggests that this allows the plant to prepare to a future infection, and to respond faster and in a more effective way to B. cinerea invasion.  相似文献   

2.
The time course of accumulation and the composition of proteinase-inhibiting proteins in diffusates from potato tubers treated with elicitors such as salicylic, jasmonic, and arachidonic acids were studied. The 40-kDa reserve protein patatin and the chymotrypsin inhibitors, among which proteins of 24.6, 22.0, and 16.0 kDa were prevalent, accumulated in diffusates from potato tubers. Jasmonic and arachidonic acids activated the accumulation of the chymotrypsin inhibitors in tubers in response to the injury stress, whereas salicylic acid inhibited this process. The effects of jasmonic and arachidonic acids increased when their concentrations decreased to 10(-6) M. The data suggest an important role of the lipoxygenase metabolism in signal transduction of the anti-injury defense system in the dormant potato tubers.  相似文献   

3.
4.
5.
The time course of accumulation and the composition of proteinase-inhibiting proteins in diffusates from potato tubers treated with elicitors such as salicylic, jasmonic, and arachidonic acids were studied. The 40-kDa reserve protein patatin and the chymotrypsin inhibitors, among which proteins of 24.6, 22.0, and 16.0 kDa were prevalent, accumulated in diffusates from potato tubers. Jasmonic and arachidonic acids activated the accumulation of the chymotrypsin inhibitors in tubers in response to the injury stress, whereas salicylic acid inhibited this process. The effects of jasmonic and arachidonic acids increased when their concentrations decreased to 10–6M. Salicylic acid inhibited this process. The data suggest an important role of the lipoxygenase metabolism in signal transduction of the anti-injury defense system in dormant potato tubers.  相似文献   

6.
The profile of primary dioxygenation products of arachidonic acid catalyzed by lipoxygenase isolated from hairy root cultures of Solanum tuberosum treated with a fungal elicitor was compared to that obtained for the enzyme from potato tubers. 11-Hydroperoxyeicosatetraenoic acid (11-HPETE) was the most abundant dioxygenation product formed followed by 8- and 5-HPETEs in the decreasing order of abundance. In contrast, 5-HPETE is the predominant oxidation product of lipoxygenase from potato tubers. Differences in the defense requirements of storage tuber as compared to roots may be the basis of the differences in regio-specificity demonstrated in this work.  相似文献   

7.
Oxylipin profiling in pathogen-infected potato leaves   总被引:14,自引:0,他引:14  
Plants respond to pathogen attack with a multicomponent defense response. Synthesis of oxylipins via the lipoxygenase (LOX) pathway appears to be an important factor for establishment of resistance in a number of pathosystems. In potato cells, pathogen-derived elicitors preferentially stimulate the 9-LOX-dependent metabolism of polyunsaturated fatty acids (PUFAs). Here we show by oxylipin profiling that potato plants react to pathogen infection with increases in the amounts of the 9-LOX-derived 9,10,11- and 9,12,13-trihydroxy derivatives of linolenic acid (LnA), the divinyl ethers colnelenic acid (CnA) and colneleic acid (CA) as well as 9-hydroxy linolenic acid. Accumulation of these compounds is faster and more pronounced during the interaction of potato with the phytopathogenic bacterium Pseudomonas syringae pv. maculicola, which does not lead to disease, compared to the infection of potato with Phytophthora infestans, the causal agent of late blight disease. Jasmonic acid (JA), a 13-LOX-derived oxylipin, accumulates in potato leaves after infiltration with P. syringae pv. maculicola, but not after infection with P. infestans.  相似文献   

8.
The current study assessed the differential incorporation of 12-hydroperoxyeicosatetraenoic acid (12-HPETE), arachidonic acid (AA), 12-hydroxyeicosatetraenoic acid (12-HETE) and the linoleic acid (LA) oxidation products, 13-hydroxyoctadecadienoic acid (13-HODE) and 13-hydroperoxyoctadecadienoic acid (13-HPODE), into human umbilical vein endothelial cells (HUVEC). Approximately 80-90% of AA (10(-8)-10(-5)M) and 80% of LA (10(-8)-10(-5)M) were incorporated into HUVEC within 12h, while less than 50% of the hydroxy metabolites (12-HETE, 12-HPETE, 13-HODE, 13-HPODE) were incorporated into HUVEC over 48h. Further, treatment of HUVEC with either 12-HPETE or 13-HPODE (concentrations of 10(-5)M) had no effect on cell number at a 48h time point when compared with control. These results demonstrate that exogeneous hydroxy metabolites are incorporated into HUVEC to a lesser degree than were endogenous fatty acids. Further, we speculate that 12-HPETE and 13-HPODE are rapidly metabolized to substances without significant cytotoxic effects.  相似文献   

9.
10.
A lipoxygenase (EC 1.13.1.13) was partially purified from potato tubers and was shown to differ from previously characterized soya-bean lipoxygenases in the positional specificity and pH characteristics of the oxygenation reaction. The potato enzyme converted linoleic acid almost exclusively (95%) into 9-d-hydroperoxyoctadeca-trans-10,cis-12-dienoic acid. The 13-hydroperoxy isomer was only a minor product (5%). Linolenic acid was an equally effective substrate, which was also oxygenated specifically at the 9-position. The enzyme had a pH optimum at 5.5-6.0 and was inactive at pH9.0. A half-maximal velocity was obtained at a linoleic acid concentration of 0.1mm. No inhibition was observed with EDTA (1mm) and cyanide (1mm) or with p-chloromercuribenzoate (0.2mm). Haemoproteins were not involved in the lipoxygenase activity. The molecular weight of the enzyme was estimated from gel filtration to be approx. 10(5). Preliminary evidence suggested that the enzyme oxygenated the n-10 position of fatty acids containing a penta(n-3, n-6)diene structure.  相似文献   

11.
Linolenic acid (18:3) is the most abundant fatty acid in plant membrane lipids and is a source for various oxidized metabolites, called oxylipins. 18:3 and oxylipins play important roles in the induction of defense responses to pathogen infection and wound stress in Arabidopsis. However, in rice, endogenous roles for 18:3 and oxylipins in disease resistance have not been confirmed. We generated 18:3-deficient transgenic rice plants (F78Ri) with co-suppression of two omega-3 fatty acid desaturases, OsFAD7 and OsFAD8. that synthesize 18:3. The F78Ri plants showed enhanced resistance to the phytopathogenic fungus Magnaporthe grisea. A typical 18:3-derived oxylipin, jasmonic acid (JA), acts as a signaling molecule in defense responses to fungal infection in Arabidopsis. However, in F78Ri plants, the expression of JA-responsive pathogenesis-related genes, PBZ1 and PR1b, was induced after inoculation with M. grisea, although the JA-mediated wound response was suppressed. Furthermore, the application of JA methyl ester had no significant effect on the enhanced resistance in F78Ri plants. Taken together, our results indicate that, although suppression of fatty acid desaturases involves the concerted action of varied oxylipins via diverse metabolic pathways, 18:3 or 18:3-derived oxylipins, except for JA, may contribute to signaling on defense responses of rice to M. grisea infection.  相似文献   

12.
When linoleic and linolenic acid were incubated with a crude enzyme of marine green alga Ulva conglobata, the corresponding (R)-9-hydroperoxy-(10E, 12Z)-10, 12-octadecadienoic acid [(R)-9-HPODE] and (R)-9-hydroperoxy-(10E, 12Z, 15Z)-10, 12, 15-octadecatrienoic acid [(R)-9-HPOTrE] were formed with a high enantiomeric excess (>99%), respectively.  相似文献   

13.
Selenium is an essential component of glutathione peroxidase, which reduces free and esterified hydroperoxides of polyunsaturated fatty acids. Adequate glutathione peroxidase activity could be important for the maintenance of prostacyclin synthesis by blood vessels, since hydroperoxides can inhibit the formation of this substance. We have investigated the effects of dietary selenium deficiency on glutathione peroxidase activity and the synthesis of 6-oxoprostaglandin F1 alpha and monohydroxy and trihydroxy metabolites of polyunsaturated fatty acids by aorta. The latter products can be formed either by the actions of cyclooxygenase or lipoxygenase or by lipid peroxidation. Aortic glutathione peroxidase activity was reduced by over 80% by feeding rats a selenium-deficient diet for 4 weeks, and to undetectable levels after 6 weeks. There were no appreciable differences in the levels of free and esterified oxygenated metabolites of linoleic acid or arachidonic acid between the control and treated groups after 4 weeks. However, after 6 weeks, there were modest, but statistically significant reductions in the formation of 6-oxoprostaglandin F1 alpha and monohydroxy products formed by cyclooxygenase. On the other hand, the amounts of esterified 18:2 metabolites appeared to be higher in aortae from animals on the selenium-deficient diet, although only the increase in esterified 9-hydroxy-10,12-octadecadienoic acid was statistically significant. These results suggest that selenium deficiency can affect the formation of prostacyclin and other oxygenated metabolites of polyunsaturated fatty acids by aorta, possibly by increasing lipid peroxidation. However, the differences between control and selenium-deficient rats after 6 weeks were not very dramatic, in spite of the fact that glutathione peroxidase activity was undetectable. It would therefore appear that additional mechanisms are also involved in controlling the levels of lipid hydroperoxides in aorta.  相似文献   

14.
Mosses have substantial amounts of long chain C20 polyunsaturated fatty acids, such as arachidonic and eicosapentaenoic acid, in addition to the shorter chain C18 α-linolenic and linoleic acids, which are typical substrates of lipoxygenases in flowering plants. To identify the fatty acid substrates used by moss lipoxygenases, eight lipoxygenase genes from Physcomitrella patens were heterologously expressed in Escherichia coli, and then analyzed for lipoxygenase activity using linoleic, α-linolenic and arachidonic acids as substrates. Among the eight moss lipoxygenases, only seven were found to be enzymatically active in vitro, two of which selectively used arachidonic acid as the substrate, while the other five preferred α-linolenic acid. Based on enzyme assays using a Clark-type oxygen electrode, all of the active lipoxygenases had an optimum pH at 7.0, except for one with highest activity at pH 5.0. HPLC analyses indicated that the two arachidonic acid lipoxygenases form (12S)-hydroperoxy eicosatetraenoic acid as the main product, while the other five lipoxygenases produce mainly (13S)-hydroperoxy octadecatrienoic acid from α-linolenic acid. These results suggest that mosses may have both C20 and C18 based oxylipin pathways.  相似文献   

15.
Yao K  De Luca V  Brisson N 《The Plant cell》1995,7(11):1787-1799
The creation of artificial metabolic sinks in plants by genetic engineering of key branch points may have serious consequences for the metabolic pathways being modified. The introduction into potato of a gene encoding tryptophan decarboxylase (TDC) isolated from Catharanthus roseus drastically altered the balance of key substrate and product pools involved in the shikimate and phenylpropanoid pathways. Transgenic potato tubers expressing the TDC gene accumulated tryptamine, the immediate decarboxylation product of the TDC reaction. The redirection of tryptophan into tryptamine also resulted in a dramatic decrease in the levels of tryptophan, phenylalanine, and phenylalanine-derived phenolic compounds in transgenic tubers compared with nontransformed controls. In particular, wound-induced accumulation of chlorogenic acid, the major soluble phenolic ester in potato tubers, was found to be two- to threefold lower in transgenic tubers. Thus, the synthesis of polyphenolic compounds, such as lignin, was reduced due to the limited availability of phenolic monomers. Treatment of tuber discs with arachidonic acid, an elicitor of the defense response, led to a dramatic accumulation of soluble and cell wall-bound phenolics in tubers of untransformed potato plants but not in transgenic tubers. The transgenic tubers were also more susceptible to infection after inoculation with zoospores of Phytophthora infestans, which could be attributed to the modified cell wall of these plants. This study provides strong evidence that the synthesis and accumulation of phenolic compounds, including lignin, could be regulated by altering substrate availability through the introduction of a single gene outside the pathway involved in substrate supply. This study also indicates that phenolics, such as chlorogenic acid, play a critical role in defense responses of plants to fungal attack.  相似文献   

16.
Li C  Liu G  Xu C  Lee GI  Bauer P  Ling HQ  Ganal MW  Howe GA 《The Plant cell》2003,15(7):1646-1661
Genetic analysis of the wound response pathway in tomato indicates that systemin and its precursor protein, prosystemin, are upstream components of a defensive signaling cascade that involves the synthesis and subsequent action of the octadecatrienoic acid (18:3)-derived plant hormone jasmonic acid (JA). The suppressor of prosystemin-mediated responses2 (spr2) mutation, which was isolated previously as a suppressor of (pro)systemin-mediated signaling, impairs wound-induced JA biosynthesis and the production of a long-distance signal for the expression of defensive Proteinase inhibitor genes. Using a map-based cloning approach, we demonstrate here that Spr2 encodes a chloroplast fatty acid desaturase involved in JA biosynthesis. Loss of Spr2 function reduced the 18:3 content of leaves to <10% of wild-type levels, abolished the accumulation of hexadecatrienoic acid, and caused a corresponding increase in the level of dienoic fatty acids. The effect of spr2 on the fatty acyl content of various classes of glycerolipids indicated that the Spr2 gene product catalyzes most, if not all, omega3 fatty acid desaturation within the "prokaryotic pathway" for lipid synthesis in tomato leaves. Despite the reduced levels of trienoic fatty acids, spr2 plants exhibited normal growth, development, and reproduction. However, the mutant was compromised in defense against attack by tobacco hornworm larvae. These results indicate that jasmonate synthesis from chloroplast pools of 18:3 is required for wound- and systemin-induced defense responses and support a role for systemin in the production of a transmissible signal that is derived from the octadecanoid pathway.  相似文献   

17.
18.
Methyl ester of jasmonic acid (Me-JA) influences the induced resistance of potato tubers to late blight caused by Phytophthora infestans. Treatment of potato tuber disk surface with Me-JA solution or exposure to an atmosphere containing Me-JA vapors (10(-6)-10(-5) M) increased the rate of rishitin biosynthesis induced by arachidonic acid or P. infestans. Methyl jasmonate increased the sensitivity of potato tissue to arachidonic acid. As a result, in the presence of Me-JA, the protective properties of arachidonic acid were observed at lower concentrations than in the absence of Me-JA. In addition, Me-JA reduced the adverse effects of lipoxygenase inhibitors (salicylhydroxamic acid and esculetin) on the induced resistance of potato tubers to late blight. Therefore, the synergistic interaction of Me-JA and biogenic elicitors can be regarded as part of a mechanism of potato defense against diseases.  相似文献   

19.
Some marine algae can form volatile aldehydes such as n-hexanal, hexenals, and nonenals. In higher plants it is well established that these short-chain aldehydes are formed from C18 fatty acids via actions of lipoxygenase and fatty acid hydroperoxide lyase, however, the biosynthetic pathway in marine algae has not been fully established yet. A brown alga, Laminaria angustata, forms relatively higher amounts of C6- and C9-aldehydes. When linoleic acid was added to a homogenate prepared from the fronds of this algae, formation of n-hexanal was observed. When glutathione peroxidase was added to the reaction mixture concomitant with glutathione, the formation of n-hexanal from linoleic acid was inhibited, and oxygenated fatty acids accumulated. By chemical analyses one of the major oxygenated fatty acids was shown to be (S)-13-hydroxy-(Z, E)-9, 11-octadecadienoic acid. Therefore, it is assumed that n-hexanal is formed from linoleic acid via a sequential action of lipoxygenase and fatty acid hydroperoxide lyase (HPL), by an almost similar pathway as the counterpart found in higher plants HPL partially purified from the fronds has a rather strict substrate specificity, and only 13-hydroperoxide of linoleic acid, and 15-hydroperoxide of arachidonic acid are the essentially suitable substrates for the enzyme. By surveying various species of marine algae including Phaeophyta, Rhodophyta and Chlorophyta it was shown that almost all the marine algae have HPL activity. Thus, a wide distribution of the enzyme is expected.  相似文献   

20.
Potato tubers (Solanum tuberosum L. cv Bintje) were stored at 20 degrees C for 210 days without desprouting to study the lipoxygenase pathway during aging. After 15 days of storage, potato tubers sprouted, while after 45-60 days, apical dominance was lost and multiple sprouts developed. Analysis of the fatty acid hydroperoxides (HPOs) revealed that 9-S-hydroperoxide of linoleic acid (9-HPOD) was the main oxylipin formed. Between 45 and 60 days of storage, increases in the levels of 9-HPOD and colneleic acid were observed. Analysis of phospholipids and galactolipids by electrospray ionisation tandem mass spectrometry (ESI-MS/MS) showed that a decrease in the levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), digalactosyldiacylglycerol (DGDG), and monogalactosyldiacylglycerol (MGDG) occurred between 0 and 45 days of aging. The decrease in the amount of linoleic acid in complex lipids correlates well with the amount of 9-HPOD and colneleic acid produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号