首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two monoclonal antibodies, KA 1 and KA 4, raised against human epidermis, were biochemically and immunologically characterized and were shown to react with specific cytokeratin polypeptides. On frozen sections of human mammary gland, these antibodies distinguish between myoepithelial and luminal epithelial cells. We present evidence that in these cells KA 1 antibody recognized cytokeratin 5 and KA 4 antibody cytokeratin 19. In normal mammary tissue, KA 4 antibody invariably reacted with the epithelial cells lining the lumina of acini, ductules, ducts, and sinus. In contrast, KA 1 antibody decorated only the myoepithelial and basal epithelial cells of acini, ducts, and sinus. In ductules, however, KA 1 also stained the luminal cells. All 73 invasive lobular and ductal carcinomas studied reacted with KA 4 antibody; five of these were also positive, apparently in the same tumor cells, with KA 1. The tumor cells of in situ carcinomas were also stained in a homogeneous pattern with KA 4 antibody; KA 1 antibody reacted only with the surrounding myoepithelium. In epithelial hyperplasias, the proliferating cells were decorated by KA 1 and KA 4 antibodies in a heterogeneous pattern. Other antibodies were used for comparison. The results are discussed with respect to epithelial differentiation and pathogenesis and to the application of such antibodies for immunohistodiagnosis of mammary lesions.  相似文献   

2.
The immunohistochemical reactivity of human, monkey, shrew, rat and mouse normal mammary glands was examined using methacarn-fixed paraffin-embedded specimens and acetone-fixed frozen sections using the avidinbiotin-peroxidase method for cell phenotype comparison. Actin was visualized using anti-smooth muscle actin antibody and keratin expression was determined by employing 12 different monoclonal antibodies. All these antibodies cross-reacted specifically with the species examined. Basal (myoepithelial) cells from all species showed muscle-specific actin according to reactivity with HHF35 monoclonal antibody. Keratin expression showed significant phenotypic differences among species. In human and monkey, AEL-KS2, KL1, CK8.13, AE3 and 34BE12 stained luminal cells as well as basal cells. AE1, RPN1165, CK4.62, 35BE11, M20 and RPN1162 labeled only luminal cells whereas 312C8-1 preferentially bound to basal cells. In shrews, AEL-KS2, CK8.13 and AE3 reacted to both cell types, AE1 reacted only with luminal cells, and 35BE12 and 312C8-1 selectively stained basal cells. In rodents, AEL-KS2 reacted to both cell types, CK8.13, AE3, 34BE12 and 312C8-1 stained rat basal cells, and 34BE12 and 312C8-1 reacted to mouse basal cells. The data represents cytoskeletal differences among species.  相似文献   

3.
Immunohistochemical staining for S-100 protein and the intermediate filaments keratin and vimentin, was made in 41 salivary adenomas. In pleomorphic adenomas, great heterogeneity in the staining, as well as multiple and co-expressions of these proteins were found in the outer tumor cells of tubulo-ductal structures and modified myoepithelial cells, but not in the luminal tumor cells. All the outer tumor cells stained for S-100 protein, 97% for K8.12 keratin and 85% for vimentin. Of these cells, 29% showed multiple expression of K8.12 keratin, vimentin, and S-100 protein, and 17% showed co-expression of K8.12 and S-100 protein. Modified and neoplastic myoepithelial cells showed similar expressions of these proteins to those of outer tumor cells; myoepithelioma cells displayed the most complicated pattern, being positive for KL1, PKK1, and K8.12 keratins, vimentin and S-100 protein. In luminal tumor cells there was a heterogeneous expression of KL1 and PKK1 in 82%, and of KL1, PKK1, and K8.12 in only 14.7%. Based on the immunohistochemical findings obtained with different monoclonal antibodies in pleomorphic salivary adenomas, outer tumor cells may be derived from ductal basal cells and luminal tumor cells from intercalated duct cells.  相似文献   

4.
Immunohistochemical staining for S-100 protein and the intermediate filaments keratin and vimentin, was made in 41 salivary adenomas. In pleomorphic adenomas, great heterogeneity in the staining, as well as multiple and co-expressions of these proteins were found in the outer tumor cells of tubulo-ductal structures and modified myoepithelial cells, but not in the luminal tumor cells. All the outer tumor cells stained for S-100 protein, 97% for K8.12 keratin and 85% for vimentin. Of these cells, 29% showed multiple expression of K8.12 keratin, vimentin, and S-100 protein, and 17% showed co-expression of K8.12 and S-100 protein. Modified and neoplastic myoepithelial cells showed similar expressions of these proteins to those of outer tumor cells; myoepithelioma cells displayed the most complicated pattern, being positive for KL1, PKK1, and K8.12 keratins, vimentin and S-100 protein. In luminal tumor cells there was a heterogeneous expression of KL1 and PKK1 in 82%, and of KL1, PKK1, and K8.12 in only 14.7%. Based on the immunohistochemical findings obtained with different monoclonal antibodies in pleomorphic salivary adenomas, outer tumor cells may be derived from ductal basal cells and luminal tumor cells from intercalated duct cells.  相似文献   

5.
The antigenic profile of 13 normal formalin-fixed, paraffin-embedded human main and accessory lacrimal glands, biopsied from patients aged 11 to 78 years, was studied using a panel of 27 polyclonal and monoclonal antibodies. Secretory cells of lacrimal acini reacted with antibodies to S-100 protein and simple epithelium-type cytokeratins CK 7, CK 8, CK 18, and CK 19. Their luminal membranes were labeled with antibodies to carcinoembryonic antigen, epithelial membrane antigen, and epithelial glycoproteins recognized by Ber-EP4. Myoepithelial cells were often immunopositive for S-100 protein, vimentin, glial fibrillary acidic protein (GFAP), and alpha-smooth muscle actin. More rarely, they reacted with antibodies recognizing CK 5, CK 13, and CK 14, which consistently labeled the basal cells of lacrimal ducts. Unlike myoepithelial cells, basal ductal cells were immunopositive for CK 7, CK 8, CK 18, and CK 19. In main excretory ducts, dendritic melanocyte-like cells co-expressing vimentin and S-100 protein intermingled with ductal epithelial cells. The luminal cells of lacrimal ducts basically paralleled secretory cells in their antigenic profile, although they lacked Ber-EP4 and were immunopositive for CK 4. Antibodies to neuron-specific enolase and synaptophysin reacted with nerve fibers among negatively reacting secretory acini. This antigenic profile closely parallels that of salivary glands and provides a basis for studies of lacrimal gland pathology.  相似文献   

6.
7.
We have analyzed the expression of cytokeratin polypeptides in subcolumnar reserve cells of the human uterine endocervical mucosa and the other epithelial cells using immunoperoxidase and immunofluorescence microscopy as well as by applying two-dimensional gel electrophoresis to microdissected cytoskeletal preparations. Endocervical columnar cells were uniformly positive for antibodies directed against the simple epithelium-type cytokeratins nos. 7, 8, 18, and 19, while a variable proportion of these cells was stained by an antibody against cytokeratin no. 4. Reserve cells were not only positive for cytokeratins nos. 8 (weakly and variably) and 19 but were also decorated by antibody KA 1, which reacts with cytokeratins present in stratified squamous epithelia. This last antibody selectively decorated reserve cells even when they were flat and inconspicuous. Antibody KA 1 uniformly stained the ectocervical squamous epithelium, the basal cells of which were also decorated by antibodies directed against cytokeratins nos. 8 (weakly and variably) and 19. Ectocervical suprabasal cells were positive, to a variable extent, for antibodies against cytokeratins nos. 4, 10/11, and 13. Gel electrophoresis revealed the presence of squamous-type cytokeratins nos. 5 and 17 in reserve cell-rich, but not in reserve cell-free, endocervical mucosa. We also analyzed the distribution pattern of these cells, as revealed by antibody KA 1, in the endocervical mucosa of 26 uteri. In all the specimens examined reserve cells were present, but their numbers exhibited considerable variation. In some cases these cells were confined to small islets localized deep within the cervical canal and lacked any continuity with the squamous epithelium. The expression of cytokeratins nos. 5 and 17 in reserve cells indicates that these cells have undergone a low level of squamous differentiation. The additional expression of cytokeratins nos. 8 and 19 in these cells points to a relationship with simple epithelial cells. The present data would seem to favor the view that reserve cells originate in situ from the columnar epithelium; however, this would imply an acquisition of new differentiation properties.  相似文献   

8.
Abstract. The initial phase of growth of the parenchymal component of the mouse mammary gland is ductal clongation, which is mainly accomplished by proliferating cells in a specialized structure termed end bud. End buds are composed of multiple layers of epithelial cells (so called body cells) which are capped by a single layer of morphologically unique cells termed cap cells.
We sought to examine the interrelationship between cap cells and other epithelial cell subclasses using a variety of antibodies to different keratin proteins and also antibodies to vimentin, actin and collagen IV. An extensive immunohistochemical characterization of the epithelial components of the developing and differentiating mammary gland demonstrated that cap cells were devoid of any immunohistochemically - detectable keratins but were positive for collagen IV. In contrast, the majority of cells in the end bud along with the luminal epithelial and myoepithelial cells were keratin positive. The body cells of the end bud were the only cells which were positive for antibody to keratin 6, a keratin which previously has been reported to be expressed in proliferating mammary epithelial cells. In addition, estrogen receptor was localized only to epithelial cells of ducts, alvcoli and body cells of end buds, but not to cap cells or myoepithelial cells. We interpret these results to suggest that cap cells are not totpotent stem cells but rather cells specialized in paving the way for ductal elongation as well as serving as precursors to myoepithelial cells.  相似文献   

9.
Antiserum to epithelial membrane antigen and three monoclonal antibodies (MAb) to milk-fat globule membranes immunocytochemically stain only epithelial cells, whereas a fourth reacts also with myoepithelial cells in inter- and intralobular ducts of human breast. Staining with peanut lectin shows a gradual increase for epithelial cells, from little or no staining in ducts through variable staining in ductules to intense staining in secretory alveoli. Antisera and MAb to vimentin, smooth-muscle actin, MAb to the common acute lymphoblastic leukemia antigen and to a glycoprotein of 135 KD stain myoepithelial cells in main ducts, but this staining is reduced in inter- and intralobular ducts and ductules. MAb to epithelial-specific keratin 18 stain a minor population of ductal epithelial cells, the major population of epithelial cells in interlobular (ILD) and extralobular terminal ducts (ETD), and epithelial cells in a minority of ductules. In lactating glands most epithelial cells in ductules are stained, but the alveolar and myoepithelial cells are unstained. Keratin MAb PKK2 and LP34 strongly stain myoepithelial cells, but only a minor population of epithelial cells in main ducts. However, these MAb stain principally the epithelial cells in ILD, ETD, and a minority of ductules. In lactating glands most epithelial cells are stained in ductules, but the myoepithelial and not the alveolar cells are stained intensely in secretory lobules. It is suggested that the unusual staining pattern of cells found principally in the ILD, ETD, and some ductules may represent regions of growth and/or subpopulation(s) of cells intermediate between epithelial and myoepithelial cells.  相似文献   

10.
We have used a double-labelling flow cytometry analysis of keratin (CK) and DNA in breast cancer. Five monoclonal anti-keratin antibodies were tested: KL1 recognizing Mr 55,000-57,000 keratins, and "anti-glandular epithelia," LE41, RGE-53, and LP2K specific for CK n. 7, 8, 18, and 19 of Moll's classification, respectively. Flow cytometric (DNA-CK) analysis was performed on 10 benign and 19 malignant human breast tumors. All the benign tumors were diploid and 63% of the malignant tumors were aneuploid. This technique permits the analysis of DNA in the epithelial fraction alone. In aneuploid tumors, gating the DNA-keratin-positive population allowed accurate DNA analysis without interference due to debris background and non-epithelial cells. Moreover, double-labelling using the CK19 antibody gave a better identification of near-diploid tumors. An enhancement of keratin expression in malignant tumors was observed with CK 19 (P less than 0.001), KL1 (P less than 0.01), CK 8 (P less than 0.05), and CK18 (n.s.) compared to benign tumors. The comparison of keratin expression in aneuploid and diploid malignant tumors revealed reduced CK8, CK18, and CK19 in the former.  相似文献   

11.
Antibodies to different intermediate filament proteins can be used to distinguish cells of epithelial, mesenchymal, muscle, glial and neuronal origin. Antibodies to prekeratin which characterize cells of epithelial origin, and antibodies to vimentin which recognize cells of mesenchymal origin have been used to study twenty cases of breast carcinoma (sixteen infiltrating ductal carcinomas and four infiltrating intraductal carcinomas), two cases of cystic breast disease, two fibroadenomas and one case of benign cystosarcoma phylloides. The prekeratin and vimentin were detected using specific antibodies to these proteins by immunofluorescence microscopy using alcohol fixed paraffin-embedded tissues. In eighteen out of the twenty carcinomas the tumor cells were strongly and specifically stained by antibodies to prekeratin. DIfferent tumors gave different patterns of prekeratin staining. In contrast, when the same specimens were tested with the vimentin antibody, the tumor cells were unstained, and instead only the usual strong staining to fibroblasts and blood vessels in the stroma was observed. In cystic breast disease, fibroadenomas, and benign cystosarcoma phylloides, cells of epithelial origin were strongly stained by the prekeratin but not by the vimentin antibody.  相似文献   

12.
The goat was chosen as the model system for investigating mammary gland development in the ruminant. Histological and immunocytochemical staining of goat mammary tissue at key stages of development was performed to characterize the histogenesis of the ruminant mammary gland. The mammary gland of the virgin adult goat consisted of a ductal system terminating in lobules of ductules. Lobuloalveolar development of ductules occurred during pregnancy and lactation which was followed by the regression of secretory alveoli at involution. The ductal system was separated from the surrounding stroma by a basement membrane which was defined by antisera raised against laminin and Type IV collagen. Vimentin, smooth-muscle actin and myosin monoclonal antisera as well as antisera to cytokeratin 18 and multiple cytokeratins stained a layer of myoepithelial cells which surround the ductal epithelium. Staining of luminal epithelial cells by monoclonal antibodies to cytokeratins was dependent on their location along the ductal system, from intense staining in ducts to variable staining in ductules. The staining of epithelial cells by monoclonals to cytokeratins also varied according to the developmental status of the goat, being maximal in virgin and involuting glands, lowest at lactation and intermediate during gestation. In addition, cuboidal cells, situated perpendicular to myoepithelial cells and adjacent to alveolar cells in secretory alveoli, were also stained by cytokeratin monoclonal antibodies and antisera to the receptor protein, erbB-2, in similar fashion to luminal epithelial cells. These results demonstrate that caprine mammary epithelial cell differentiation along the alveolar pathway is associated with the loss of certain types of cytokeratins and that undifferentiated and secretory alveolar epithelial cells are present within lactating goat mammary alveoli.  相似文献   

13.
Abstract. Primary cultures of normal human breast were stained with monoclonal antibodies to see if antigens characteristic of luminal epithelial cells are retained in culture. Three monoclonal antibodies were used, LICR-LON-M8, LICR-LON-M18, and LICR-LON-M24, all specific for the cell surface of luminal epithelial as opposed to myoepithelial or stromal cells in the breast, and each staining a different subset of the epithelial cells in the intact tissue. Cultures were prepared from reduction mammoplasty samples by digestion with collagenase. The surface layer of cells was stained by immunofluorescence without fixation. (Cells underneath the surface layer were not accessible to this mode of staining). The antibodies stained patches of cells resembling flattened epithelium. These patches of cells cannot be distinguished by phase contrast microscopy without reference to the staining, in fact the boundaries of the cells are not usually resolved by phase contrast microscopy. Electron microscopy of sections through these cells show they are very flattened. They lie on top of the polygonal and elongated cells that dominate the phase contrast image. Two of the antibodies, M8 and M24, stain subsets of these epithelial-like cells at all stages of culture. The third antibody, Ml8, stains such cells initially, but after the first few days staining is predominantly found on the polygonal and elongated cells, then this also gradually disappears. It is possible that the cells stained by antibody Ml8 are converting from the epithelial-like morphology to the cuboidal and elongated morphology. Many cells are not stained by any of the antibodies, so appear either to by myoepithelial in origin or to have lost their luminal epithelial surface antigens at an early stage. This analysis draws attention to the variety of cell types in these cultures and the limitations of phase contrast microscopy as a means of analysing them.  相似文献   

14.
Primary cultures of normal human breast were stained with monoclonal antibodies to see if antigens characteristic of luminal epithelial cells are retained in culture. Three monoclonal antibodies were used, LICR-LON-M8, LICR-LON-M18, and LICR-LON-M24, all specific for the cell surface of luminal epithelial as opposed to myoepithelial or stromal cells in the breast, and each staining a different subset of the epithelial cells in the intact tissue. Cultures were prepared from reduction mammoplasty samples by digestion with collagenase. The surface layer of cells was stained by immunofluorescence without fixation. (Cells underneath the surface layer were not accessible to this mode of staining). The antibodies stained patches of cells resembling flattened epithelium. These patches of cells cannot be distinguished by phase contrast microscopy without reference to the staining, in fact the boundaries of the cells are not usually resolved by phase contrast microscopy. Electron microscopy of sections through these cells show they are very flattened. They lie on top of the polygonal and elongated cells that dominate the phase contrast image. Two of the antibodies, M8 and M24, stain subsets of these epithelial-like cells at all stages of culture. The third antibody, M18, stains such cells initially, but after the first few days staining is predominantly found on the polygonal and elongated cells, then this also gradually disappears. It is possible that the cells stained by antibody M18 are converting from the epithelial-like morphology to the cuboidal and elongated morphology. Many cells are not stained by any of the antibodies, so appear either to by myoepithelial in origin or to have lost their luminal epithelial surface antigens at an early stage. This analysis draws attention to the variety of cell types in these cultures and the limitations of phase contrast microscopy as a means of analysing them.  相似文献   

15.
Bronchial mucoepidermoid tumors are uncommon neoplasms, morphologically similar to their salivary gland counterpart. The histogenesis is controversial. The aim of this study is to identify myoepithelial cells and speculate on their role in the origin of these tumors. METHODS AND RESULTS: Sixteen bronchial mucoepidermoid tumor surgical specimens were formalin-fixed, paraffin-embedded and studied using a panel of nine antibodies in order to identify a myoepithelial differentiation. Additional antigens against several cytokeratins were performed in four cases and five of the biopies were studied using the electron microscopy. The different types of cells of the primary bronchial mucoepidermoid tumor (mucous luminal, intermediate and squamous) reacted strongly against AE1, CK7, 34bE12 and weakly with AE3, CK18 and CK8/18/19. S-100, alpha-smooth muscle actin, muscle actin HHF35 and alpha-actinin were consistently negative in all cell types. CD10 was positive in very few cells in just one case. Conclusion: The immunohistochemical and the ultrastructural study of bronchial mucoepidermiod tumors support a ductal unit origin, without a myoepithelial participation.  相似文献   

16.
Using five different monoclonal antibodies to vimentin, we have examined the expression of vimentin in cryostat sections and serum-free cultures of normal human breast tissue. In cryostat sections, myoepithelial cells as well as stromal cells showed immunoreactivity to vimentin, irrespective of the antibody used. In contrast, luminal epithelial cells were negative for vimentin, but positive for keratin K18. In culture, myoepithelial cells showed immunoreactivity to vimentin from their first appearance in monolayer. Moreover, a fraction of luminal epithelial cells expressed vimentin in addition to keratin K18. We found a clear, reversible correlation between proliferation, determined by incorporation of [3H]-TdR, and induction of vimentin in the luminal epithelial cells. Thus, in growth-stimulated cultures on a medium containing cholera toxin (CT), epidermal growth factor (EGF), transferrin (Tf), hydrocortisone (H) and insulin (I), the fraction of vimentin-positive luminal epithelial cells increased, while it decreased within 14 days from approximately 36% to 3% on a medium containing CT and EGF, only. We therefore conclude: (1) vimentin is constantly expressed in myoepithelial cells in situ and in vitro, and (2) expression of vimentin in luminal epithelial cells in vitro is not a result of monolayer cultivation as such, but rather associated with the increased growth rate seen in culture.  相似文献   

17.
OBJECTIVE: To study the immunocytochemical expression of the tight junction protein Claudin-7 in smears from breast carcinomas and correlate with grading, nodal status, locoregional and distant metastases and the cellular cohesion. METHODS: The material consisted of 52 air-dried smears from fine needle aspirates of breast carcinomas, both primary and metastatic and smears from seven benign lesions. A primary antibody to Claudin-7 was used for immunocytochemical staining. The degree of staining was recorded as negative, reduced or full, with full expression meaning equivalent to the staining pattern found in the fibroadenomas used as benign control. Staining intensity and the percentage of stained cells were evaluated. The control smears revealed a strong membrane and cytoplasmic positivity in all luminal epithelial cells. Cellular cohesion was graded as: (1) mainly cohesive groups, (2) groups and single cells and (3) mainly single cells. RESULTS: All primary and recurrent/metastatic breast lesions expressed Claudin-7. Full expression was demonstrated in 46% of the cases. Reduced expression was found in 54%. In cases with reduced expression, the percentage of stained cells were usually high, and no smear showed <50% stained tumour cells. The staining pattern was heterogeneous and always mixed membrane/cytoplasmic. Claudin-7 expression showed a significant correlation (P < 0.05) with grading, locoregional and distant metastases, nodal involvement and cellular cohesion in invasive carcinomas, but not with tumour size or subtype. CONCLUSION: Reduced expression of Claudin-7 correlated with higher tumour grade, metastatic disease, including loco-regional recurrences and with cellular discohesion.  相似文献   

18.
Tissue distribution of keratin 7 as monitored by a monoclonal antibody   总被引:23,自引:0,他引:23  
Monoclonal antibody (RCK 105) directed against keratin 7 was obtained after immunization of BALB/c mice with cytoskeletal preparations from T24 cells and characterized by one- (1D) and two-dimensional (2D) immunoblotting. In cultured epithelial cells, known from gel electrophoretic studies to contain keratin 7, this antibody gives a typical keratin intermediate filament staining pattern, comparable to that obtained with polyclonal rabbit antisera to skin keratins or with other monoclonal antibodies, recognizing for example keratins 5 and 8 or keratin 18. Using RCK 105, the distribution of keratin 7 throughout human epithelial tissues was examined and correlated with expression patterns of other keratins. Keratin 7 was found to occur in the columnar and glandular epithelium of the lung, cervix, breast, in bile ducts, collecting ducts in the kidney and in mesothelium, but to be absent from gastrointestinal epithelium, hepatocytes, proximal and distal tubules of the kidney and myoepithelium. Nor could it be detected in the stratified epithelia of the skin, tongue, esophagus, or cervix but strongly stained all cell layers of the urinary bladder transitional epithelium. When applied to carcinomas derived from these different tissue types it became obvious that an antibody to keratin 7 may allow an immunohistochemical distinction between certain types of adenocarcinomas.  相似文献   

19.
In developing human breast, terminal end buds (TEBs), lateral buds (LBs), and lobules of three to five alveolar buds (ABs) predominate in prepubertal females, whereas lobules of ABs and lobules of up to 60 ductules predominate in pubertal females. The appearance of clefts in TEBs and LBs suggests that they are precursors of ABs. In histological sections the ductal buds are composed of a heterogeneous collection of cells that include cortical and peripheral cells. The cortical cells can line small lumina in TEBs/LBs, whereas the peripheral cells which cap their distal tips are more irregular and loosely packed. Monoclonal antibodies (MAb) to epithelial milk-fat globule membranes and antiserum to epithelial membrane antigen immunocytochemically stain the cortical cells, particularly where such cells line lumina, and weakly stain the peripheral cap cells. Similar histochemical staining patterns are observed in desialylated sections with peanut lectin. Antiserum and MAb to smooth muscle actin moderately stain the peripheral cap cells, and this staining increases the closer the peripheral cells become to the myoepithelial cells of the subtending duct. Similar but weaker staining patterns are observed with antibodies to vimentin. Keratin MAb PKK2 and LP34, which stain myoepithelial cells in preference to epithelial cells in main ducts, as well as MAb to epithelium-specific keratin 18, all stain many of the cortical/luminal cells in buds and lobules of developing breast; the peripheral cap cells are relatively unstained. It is suggested that the undifferentiated peripheral cap cells show transitional forms both to the cortical epithelial cells that eventually line the lumina and to the myoepithelial cells of the subtending duct.  相似文献   

20.
Abstract. Mouse mammary epithelial cell cultures previously described bring about extensive proliferation and a cell population with the appropriate markers for luminal ductal epithelial cells, and also the ability to form normal tissue after implantation into mice. This success may result from a culture environment that resembles certain aspects of the environment in the mammary gland. Mouse mammary epithelial cells, whose proliferation is limited when plated alone, can be stimulated to multiply by contact with lethally irradiated cells of the LA7 rat mammary tumour line. Most of the proliferative stimulus is imparted by direct cell contact between LA7 and mouse mammary cells. Junctions, including adherens junctions, form among all cells in the culture, much as junctions form in the mammary gland. LA7 cells secrete TGFα and bFGF, factors found in the mammary gland, and factors to which mouse mammary cells respond in culture. Mouse mammary cells express keratins 8 and 18, markers for luminal cells of the mammary duct. LA7 cells express keratin 14 and vimentin, markers for myoepithelial cells. These facts, taken together, fit a model of cell replacement in an epithelial tissue and also imitate the relationship between luminal ductal cells and myoepithelial cells in the mammary gland. This method of culturing cells is useful, not only for in vitro – in vivo carcinogenesis studies, but also for the study of mechanisms by which growth signals are imparted from one cell to another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号