首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liposome stability during and after covalent coupling of Fab' antibody fragments was investigated. Large unilamellar vesicles containing entrapped 5(6)-carboxyfluorescein (CF) as a marker for liposomal integrity were prepared by extrusion through polycarbonate membranes. N-[4-(p-Maleimidophenyl)-butyryl]phosphatidylethanolamine (MPB-PE) was employed as a liposomal anchor for the covalent coupling of Fab' fragments. We observed that coupling of Fab' fragments to liposomes containing 5 mol % MPB-PE caused a concentration-dependent increase in size and polydispersity of the liposomes. Dependent on the concentration of the MPB-PE anchor in the membrane and the concentration of Fab' added, coupling was associated with the release of up to 95% of the entrapped CF. Rupture of the liposomes was identified as the primary mechanism of CF release during Fab' coupling. Reduction of the MPB-PE concentration to 1 mol % resulted in liposomes that were stable during and after Fab' coupling. The increased stability of these liposomes was due to the lower MPB-PE concentration and not to the lower number of attached Fab' fragments. By proper adjustment of the experimental conditions for coupling, the number of Fab' fragments attached to the 1 mol % MPB-PE liposomes could be increased without affecting the stability of the resulting liposomes. These stable liposomes, made by an extrusion method that avoids the use of organic solvents, detergents, or sonication, are therefore suitable for entrapment of labile compounds and can be used for immunotargeting or immunoassays.  相似文献   

2.
R Luedtke  F Karush 《Biochemistry》1982,21(23):5738-5744
The interaction of membrane-bound ligand with bivalent and monovalent fragments of monoclonal antibody was studied by fluorescence and precipitation analysis using synthetic lipid vesicles. The ligand N epsilon-[5-(dimethylamino)-naphthyl-1-sulfonyl]lysine was linked to the hydrophobic anchor dipalmitoylphosphatidylethanolamine and ranged between 0.01 and 1 mol% of the membrane components. The effects of cholesterol on the specific interaction were observed over the range of 0-50 mol%. A precipitation assay was developed to evaluate various factors related to the cross-linking of small unilamellar vesicles by bivalent antibody. The cholesterol content was critical for this process as demonstrated by the increased efficiency of precipitation over the range of 0-40 mol% of this component. Fluorescence analysis yielded the parallel finding of increased accessibility of the ligand to the antibody with greater cholesterol content. Increased surface density of the ligand also was found to enhance the intervesicle interaction. Finally, a comparison of the kinetics by fluorescence analysis of the binding of monovalent and bivalent fragments indicated that the bivalent interaction involved primarily the cross-linking of vesicles in accord with published findings of the interaction of monoclonal antibody with cell membrane antigens.  相似文献   

3.
The quenching efficiency of iodide as a penetrating fluorescence quencher for a membrane-associated fluorophore was utilized to measure the molecular packing of lipid bilayers. The KI quenching efficiency of tryptophan-fluorescence from melittin incorporated in DMPC bilayer vesicles peaks at the phase transition temperature (24 degrees C) of DMPC, whereas acrylamide quenching efficiency does not depend on temperature. The ability of iodide to penetrate the hydrocarbon region of the bilayer was examined by measuring the fluorescence quenching of the pyrene-phosphatidylcholine incorporated into DMPC vesicles (pyrene was attached to the 10th carbon of the sn-2 chain). The quenching efficiency of pyrene by iodide again shows a maximum at the lipid phase transition. We conclude that iodide penetrates the membrane hydrocarbon region at phase transition through an increased number of bilayer defects. The magnitude of change in quenching efficiency of iodide during lipid phase transition provides a sensitive technique to probe the lipid organization in membranes.  相似文献   

4.
The first step in the fusion of two phospholipid membranes culminates in the aggregation of the two lipid bilayers. We have used a custom-built fluorimeter to detect multilamellar vesicles (liposomes) containing the fluorescent dye, 6-carboxyfluorescein (6-CF), bound to a planar lipid bilayer (BLM). Liposomes were added to one side of the BLM, and unbound vesicles were perfused out. This left a residual fluorescence from the BLM, but only when the membranes contained anionic lipids, and then only when millimolar levels of calcium were present. This residual fluorescence was consistently detected only when calcium was included in the buffer during the perfusion. This residual fluorescence originated from liposomes bound to the BLM. Breaking the BLM or lysing the adsorbed vesicles with distilled water abolished it. free 6-CF and/or calcium in the absence of liposomes resulted in no residual fluorescence. No residual fluorescence was detected when both the liposomes and the BLM were composed entirely of zwitterionic lipids. This was found to result from the insensitivity of the fluorimeter to a small number of liposomes adsorbed to the BLM. For this system, we conclude that calcium is necessary for both the initiation and maintenance of the state in which the vesicle membrane is bound to the planar bilayer when the membranes contain negatively charged lipids. This attachment is stronger than the interaction between zwitterionic membranes.  相似文献   

5.
In this work we have applied a kinetic scheme derived from fluorescence kinetics of pyrene-labeled phosphatidylcholine in phosphatidylcholine membrane to explain the fluorescence quenching of 1-palmitoyl-2-(10-[pyrenl-yl]-sn-glycerol-3-phosphatidylchol ine (PPDPC) liposomes by tetracyanoquinodimethane (TCNQ). The scheme was also found to be applicable to neat PPDPC and the effect of the quencher could be attributed to certain steps of the proposed mechanism. The TCNQ molecules influence the fluorescence of pyrene moieties in PPDPC liposome in two ways. Firstly, an interaction between the quencher molecule and the pyrene monomer in the excited state quenches monomer fluorescence and effectively prevents the diffusional formation of the excimer. Secondly, an interaction between the quencher molecule and the excited dimer quenches the excimer fluorescence. The TCNQ molecule does not prevent the formation of the excimer in pyrene moieties aggregated in such a way that they require only a small rotational motion to attain excimer configuration. The diffusional quenching rate constant is calculated to be 1.0 x 10(8) M-1 s-1 for the pyrene monomer quenching and 1.3 x 10(7) M-1 s-1 for the pyrene excimer quenching. The diffusion constant of TCNQ is 1.5 x 10(-7) cm2 s-1 for the interaction radii of 0.8-0.9 nm. The TCNQ molecules are practically totally partitioned in the membrane phase.  相似文献   

6.
The purpose of this study was to characterize in detail the binding of pediocin PA-1 and its fragments to target membranes by using tryptophan fluorescence as a probe. Based on a three-dimensional model (Y. Chen, R. Shapira, M. Eisenstein, and T. J. Montville, Appl. Environ. Microbiol. 63:524-531, 1997), four synthetic N-terminal pediocin fragments were selected to study the mechanism of the initial step by which the bacteriocin associates with membranes. Binding of pediocin PA-1 to vesicles of phosphatidylglycerol, the major component of Listeria membranes, caused an increase in the intrinsic tryptophan fluorescence intensity with a blue shift of the emission maximum. The Stern-Volmer constants for acrylamide quenching of the fluorescence of pediocin PA-1 in buffer and in the lipid vesicles were 8.83 +/- 0.42 and 3.53 +/- 0.67 M-1, respectively, suggesting that the tryptophan residues inserted into the hydrophobic core of the lipid bilayer. The synthetic pediocin fragments bound strongly to the lipid vesicles when a patch of positively charged amino acid residues (K-11 and H-12) was present but bound weakly when this patch was mutated out. Quantitative comparison of changes in tryptophan fluorescence parameters, as well as the dissociation constants for pediocin PA-1 and its fragments, revealed that the relative affinity to the lipid vesicles paralleled the net positive charge in the peptide. The relative affinity for the fragment containing the YGNGV consensus motif was 10-fold lower than that for the fragment containing the positive patch. Furthermore, changing the pH from 6.0 to 8.0 decreased binding of the fragments containing the positive patch, probably due to deprotonation of His residues. These results demonstrate that electrostatic interactions, but not the YGNGV motif, govern pediocin binding to the target membrane.  相似文献   

7.
By means of a multistage quantitative assay, we have identified a new kind of cell adhesion molecule (CAM) on neuronal cells of the chick embryo that is involved in their adhesion to glial cells. The assay used to identify the binding component (which we name neuron-glia CAM or Ng-CAM) was designed to distinguish between homotypic binding (e.g., neuron to neuron) and heterotypic binding (e.g., neuron to glia). This distinction was essential because a single neuron might simultaneously carry different CAMs separately mediating each of these interactions. The adhesion of neuronal cells to glial cells in vitro was previously found to be inhibited by Fab' fragments prepared from antisera against neuronal membranes but not by Fab' fragments against N-CAM, the neural cell adhesion molecule. This suggested that neuron-glia adhesion is mediated by specific cell surface molecules different from previously isolated CAMs . To verify that this was the case, neuronal membrane vesicles were labeled internally with 6-carboxyfluorescein and externally with 125I-labeled antibodies to N-CAM to block their homotypic binding. Labeled vesicles bound to glial cells but not to fibroblasts during a 30-min incubation period. The specific binding of the neuronal vesicles to glial cells was measured by fluorescence microscopy and gamma spectroscopy of the 125I label. Binding increased with increasing concentrations of both glial cells and neuronal vesicles. Fab' fragments prepared from anti-neuronal membrane sera that inhibited binding between neurons and glial cells were also found to inhibit neuronal vesicle binding to glial cells. The inhibitory activity of the Fab' fragments was depleted by preincubation with neuronal cells but not with glial cells. Trypsin treatment of neuronal membrane vesicles released material that neutralized Fab' fragment inhibition; after chromatography, neutralizing activity was enriched 50- fold. This fraction was injected into mice to produce monoclonal antibodies; an antibody was obtained that interacted with neurons, inhibited binding of neuronal membrane vesicles to glial cells, and recognized an Mr = 135,000 band in immunoblots of embryonic chick brain membranes. These results suggest that this molecule is present on the surfaces of neurons and that it directly or indirectly mediates adhesion between neurons and glial cells. Because the monoclonal antibody as well as the original polyspecific antibodies that were active in the assay did not bind to glial cells, we infer that neuron- glial interaction is heterophilic, i.e., it occurs between Ng-CAM on neurons and an as yet unidentified CAM present on glial cells.  相似文献   

8.
The interaction of botulinum neurotoxins serotypes A, B and E (from Clostridium botulinum) and of tetanus neurotoxin (from Clostridium tetani) with the surface of liposomes made of different lipid compositions was studied by photolabelling with a radioiodinated photoactive phosphatidylethanolamine analogue [125I-dipalmitoyl (3,4-azidosalicylamido)phosphatidylethanolamine]. When the vesicles were made of negatively charged lipids (asolectin), each of these neurotoxic proteins was radioiodinated, thus providing evidence for their attachment to the membrane surface. The presence of gangliosides on liposome membranes enhanced fixation of the neurotoxic proteins to the lipid vesicle surface. Both the heavy and light chains of the clostridial neurotoxins were involved in the attachment to the lipid bilayer surface. Each of the toxins tested here attached poorly to liposomes made of zwitterionic lipids (egg phosphatidylcholine), even when polysialogangliosides were present. The data suggest that the binding of botulinum and tetanus neurotoxins to their target neuronal cells involves negatively charged lipids and polysialogangliosides on the cell membrane.  相似文献   

9.
10.
The interaction of the tetramisole derivative (+-)-5,6-dihydro-6-phenyl-imidazo[2,1-b]thiazole and a number of its 2-n-alkyl homologues (-ethyl through -n-pentyl and -n-heptyl) with large unilamellar phosphatidylcholine/phosphatidylethanolamine/dipalmitoylphosphatidic acid (2:1:0.06, w/w) vesicles was studied by means of steady-state fluorescence quenching using 8-(2-anthryl)octanoic acid as membrane probe. Linear Stern-Volmer plots were obtained for each derivative, indicating dynamic quenching. The slopes of the plots decreased with increasing liposomal concentration. For four short-chain homologues (-H, -ethyl, -n-propyl and -n-butyl), the respective membrane partition coefficients Kp and bimolecular quenching rate constants kq were determined from the plots of the reciprocal of the apparent quenching rate constant (kappq)-1 against the lipid volume fraction alpha L of the liposomes. The partition coefficients increased with increasing chain-length of the tetramisoles. A linear relationship was found between the free energy of partitioning and the number of methylene units of the homologues (-delta G degrees per methylene group = 1.6 +/- 0.1 kJ mol-1). For the n-pentyl and n-heptyl derivatives, the fluorescence quenching technique did not allow one to determine their membrane partition coefficients. Analysis of the fluorescence intensity measurements with Scatchard plots gave further evidence for the partitioning nature of the tetramisole derivatives' association with the liposomal membranes.  相似文献   

11.
Co2+ quenched the fluorescence of the lipid probes NBD-phosphatidylethanolamine (NBD-PE) and lissamine-rhodamine phosphatidylethanolamine (N-Rh-PE) incorporated into lipid vesicles, according to a collisional quenching mechanism in agreement with the Stern-Vollmer law. The quenching coefficient (Q) for NBD-PE, incorporated into uncharged phosphatidylcholine (PC) vesicles was 13.8 M-1. This value was equal to the quenching coefficient of water-soluble NBD-taurine in aqueous solution, indicating that Co2+ was readily accessible to the outer surface of PC vesicles. In phosphatidylserine-phosphatidylethanolamine (PS-PE) (1:1) vesicles, quenching was also proportional to Co2+ concentration but Q was 114 mM-1, some 8000-fold smaller. Using the Gouy-Chapman-Stern model we demonstrated that the surface density of Co2+ bound to lipid was linear with Co2+ concentration in the medium up to 7%. Co2+-associated phospholipid would in turn quench NBD-PE or N-Rh-PE by collisional quenching with lateral diffusion. We investigated the ability of Co2+ to permeate PS-PE (1:1) vesicles. Co2+ quenched fluorophores on the outer surface of large unilamellar vesicles, formed by reverse-phase evaporation. In small unilamellar vesicles Co2+ quenched probes on both outer and inner surfaces, indicating rapid permeation of the ions into the vesicles. Using stopped-flow rapid mixing, we measured the rate of influx of Co2+, and correcting for surface potential using the Gouy-Chapman-Stern model, we calculated a permeability coefficient of 10(-12) cm/s for Co2+ concentrations below 300 microM. Above this concentration, there was a very steep rise in the permeability coefficient, indicating that binding of Co2+ induces defects in the bilayer of these vesicles. This may be related to the ability of the vesicles to undergo membrane fusion. A method for calculating the membrane surface potential from Co2+ quenching data is presented.  相似文献   

12.
Reconstituted influenza virus envelopes (virosomes) containing the viral hemagglutinin (HA) have attracted attention as delivery vesicles for cytosolic drug delivery as they possess membrane fusion activity. Here, we show that influenza virosomes can be targeted towards ovarian carcinoma cells (OVCAR-3) with preservation of fusion activity. This was achieved by incorporating poly(ethylene glycol) (PEG)-derivatized lipids into the virosome membrane. This PEG layer serves as shield to prevent interaction of HA with ubiquitous sialic acid residues and as spatial anchor for antibody attachment. Coupling of Fab' fragments of mAb 323/A3 (anti-epithelial glycoprotein-2) to the distal ends of PEG lipids resulted in specific binding of virosomes to OVCAR-3 cells. These antibody-redirected virosomes fused with membranes of OVCAR-3 cells in a pH-dependent fashion.  相似文献   

13.
Covalent attachment of methoxypoly(ethylene glycol) (MPEG) 5000 to the surface of unilamellar liposomes composed of egg phosphatidylcholine and dioleoylphosphatidylethanolamine (DOPE) (8:2) containing paramagnetic chelates, either entrapped within the interior volume of the liposomes, or associated with the membrane surface, had no effect upon the measured spin-lattice relaxation rates (1/T1) for water in these systems. 31P-NMR studies indicate no destabilization of dioleoylphosphatidylcholine (DOPC)/(DOPE) (1:1) vesicles following attachment of MPEG. However, in DOPC/DOPE (1:3) mixtures, covalent modification with MPEG results in a destabilization of multilamellar vesicles into smaller vesicular structures. These results indicate that covalent attachment of poly(ethylene glycol) to liposomal magnetic resonance agents may prove a useful method for increasing their utility as vascular MR agents by extending their lifetime in the circulation, without decreasing the relaxivity of paramagnetic species associated with the liposome, but that the presence of PEG covalently attached to the membrane surface may modify the polymorphic phase behavior of the lipid system to which it is covalently linked.  相似文献   

14.
E Kalb  J Engel  L K Tamm 《Biochemistry》1990,29(6):1607-1613
A new quantitative technique for measuring the binding of proteins to membranes is described. The method is based on a combination of total internal reflection fluorescence microscopy and the preparation of supported planar bilayers. Specific and reversible binding of a fluorescence-labeled monoclonal antibody to lipid haptens that were embedded in supported bilayers has been measured by this technique and compared to binding experiments that were conducted on membrane vesicles in solution. Equilibrium binding constants and kinetic parameters have been determined and used to expand the picture of the antibody-lipid hapten reaction. Estimates demonstrate that this technique is capable of measuring a broad range of binding constants (down to about 10(4) M-1) using only small amounts of ligand and receptor.  相似文献   

15.
Reduced Fab' fragments of viral antibody hybridized with reduced Fab' fragments of antiferritin immunoglobulin G bind to viral antigenic sites in the plasma membrane of L cells infected with vesicular stomatitis virus. The hybrid antibody reacts specifically with ferritin, which can be identified by electron microscopy, and with fluorescein-conjugated apoferritin, which can be identified by fluorescence microscopy.  相似文献   

16.
The interaction of adriamycin with lipids was studied in model (monolayers, small unilamellar vesicles, large multilamellar vesicles) and natural (chinese hamster ovary cell) membranes by measurement of fluorescence energy transfer and fluorescence quenching. 2-APam, 7-ASte, 12-ASte and anthracene-phosphatidylcholine were used as fluorescent probes in which the anthracene group is well located at graded depths in the membrane. Egg-yolk phosphatidylcholine and a 1/1 mixture of it with bovine brain phosphatidylserine were used in model membrane systems. Large fluorescence energy transfer was observed between these molecules as donors and the drug as acceptor. With liposomes, at pH 7.4 and over an adriamycin concentration range of 0-100 microM, the efficiency of energy transfer was 12-ASte greater than 7-ASte greater than 2-APam, with 100% energy transfer for 12-ASte above a drug concentration of 30 microM. At pH 5, where the fatty acids are buried deeper (0.45 nm) in the lipid bilayer due to protonation of the carboxyl group, the order of energy transfer 7-ASTe greater than 12-ASte = 2-APam was observed. Measurements of fluorescence quenching using the non-permeant Cu2+ ion as quencher and spectrophotometric assays indicated that around 40% of the adriamycin molecules were deeply embedded in the lipid bilayer. Adriamycin molecules thus appear to penetrate the lipid bilayer, with the aminoglycosyl group interacting with the lipid phosphate groups and the dihydroanthraquinone residue in contact with the lipid fatty acid chains. In contrast, fluorescence energy transfer and quenching studies on CHO cells showed that adriamycin penetrated the plasma membrane of these cells to a much more limited extent than in the model membrane systems. This can be related to the squeezing out of the drug from a film of phosphatidylcholine which was observed in monolayers by means of surface pressure, potential and fluorescence experiments. These observations indicated that the penetration of adriamycin into lipid bilayers strongly depends on the molecular packing of the lipid.  相似文献   

17.
The effects of fluorescent probes 9-aminoacridine (9AA) and atebrine (AT) on physical properties of liposomes and planar bilayer lipid membranes (BLM) were studied. The method of fluorescence spectroscopy and the electrostriction method based on measurement of higher current harmonics were used. At low concentrations (10(-5)-5 x 10(-5) mol/l), 9AA increased fluorescence intensity, while in liposomes from soybean phosphatidylcholine fluorescence quenching occurred at higher probe concentration. Fluorescence quenching occurred over the entire concentration range tested (10(-5)-10(-4) mol/l) in liposomes made from a mixture of egg phosphatidylcholine and cardiolipin. In contrast to 9AA, AT, thanks to its hydrophobic chain, penetrates deeper into the hydrophobic membrane moiety; thus, immobilization of the molecule and an increase in fluorescence intensity was always observed. Probes adsorbed to membranes, leaving their electric capacitance effectively unchanged. Adsorption of charged dye particles induced small changes in transmembrane potential. In the presence of 10(-5) mol/l AT, the modulus of elasticity E perpendicular increased somewhat for soft membranes (E perpendicular approximately 2.5 x 10(7) Pa), whereas it decreased for hard membranes (E perpendicular approximately 5 x 10(7) Pa). pH gradient present on the membrane affected the ability of the dyes to incorporate into the membranes. Our results provide evidence against the proposed model of the quenching mechanism introduced by Rottenberg and Lee (1975).  相似文献   

18.
The interaction between the macrophage and the parasite plays a central role in the continued success of Leishmania infection. The promastigote surface ligand, and its complementary macrophage membrane receptor, involved in attachment and phagocytosis are likely to exert considerable influence over the outcome of a new infection. In this study, we report experiments pertaining to one such parasite membrane protein. Initial examination of promastigote surface proteins by radiolabeling and two-dimensional-polyacrylamide gel electrophoresis revealed an abundant polypeptide with an apparent m.w. of 63,000. Lectin-binding studies indicated that it was a glycoprotein containing mannose, N-acetyl glucosamine, and N-acetyl galactosamine residues. Monospecific antiserum raised against this glycoprotein, gp63, decorated the entire promastigote plasmalemma. Univalent antibody fragments from this antiserum blocked the interaction between promastigotes and macrophages by inhibiting attachment. Anti-gp63-inhibition reduced parasite/macrophage binding to 30 to 35% of the control binding level. Additional evidence of the involvement of gp63 in attachment to macrophages was provided by studies that made use of gp63-containing proteoliposomes. These vesicles were avidly phagocytosed by macrophages. Uptake of the gp63-containing liposomes was suppressed by greater than 90% by both anti-gp63 F(ab) fragments and the oligosaccharide mannan, indicating that their phagocytosis was receptor dependent. These results demonstrate that the abundant glycoprotein gp63 plays an important role in attachment of promastigotes to macrophages, and attachment via this parasite ligand is sufficient to trigger phagocytosis.  相似文献   

19.
Plasma membrane vesicles were prepared from guinea pig ileum longitudinal muscle. The vesicles were characterized by electron microscopy and analysis of lipid and protein content. They were shown to be free of gross contamination from actomyosin, sarcoplasmic reticulum, and mitochondria. 8-Anilino-1-naphthalene sulphonic acid (ANS) binding characteristics were similar to those found in other membranes. Both carbachol and atropine increased the fluorescence of ANS bound to this membrane, the maximum increase for atropine being greater than that for carbachol. Since neither drug effected the apparent affinity constant for the ANS-membrane interaction. It may be assumed that the increased fluorescence was due to an increase in the number of ANS binding sites. The carbachol-dependent increase in ANS fluorescence was blocked noncompetitively by atropine but not by tubocurarine or diphenhydramine. These latter two antagonists also increased ANS fluorescence but at much higher concentrations than either carbachol or atropine. Neither atropine nor carbachol increased ANS fluorescence on either erythrocyte ghosts or liposomes (prepared from a lipid extract of the muscle membrane).  相似文献   

20.
We describe here a new method, based on fluorescent techniques, for the determination of the orientation of membrane protein molecules present in vesicles. The method consists of: (a) attachment of a fluorescein derivative to sugar residues of glycoproteins and glycolipids in the cell membrane, and (b) the use of anti-fluorescein antibody, a highly efficient quencher of fluorescein fluorescence, for the quantitative evaluation of sidedness of transmembrane orientation of protein molecules in vesicles. Since antibody molecules do not permeate membranes, quenching is limited exclusively to sites exposed at the external surface of the vesicles. Addition of antibody to a fluorescently-labeled cell suspension results in a full and immediate quenching of the fluorescent signal. The method is highly sensitive (pM protein concentration), rapid and readily applicable to various vesicle preparations. With this method we assessed the orientation of vesicles derived from red blood cell membranes (ghosts) in isotonic medium and followed their inversion from right-side-out to inside-out orientation upon incubation in alkaline, low ionic strength medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号