首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotype-specific differences in the capacity of reovirus strains to inhibit proliferation of murine L929 cells correlate with the capacity to induce apoptosis. The prototype serotype 3 reovirus strains Abney (T3A) and Dearing (T3D) inhibit cellular proliferation and induce apoptosis to a greater extent than the prototype serotype 1 reovirus strain Lang (T1L). We now show that reovirus-induced inhibition of cellular proliferation results from a G(2)/M cell cycle arrest. Using T1L x T3D reassortant viruses, we found that strain-specific differences in the capacity to induce G(2)/M arrest, like the differences in the capacity to induce apoptosis, are determined by the viral S1 gene. The S1 gene is bicistronic, encoding the viral attachment protein sigma1 and the nonstructural protein sigma1s. A sigma1s-deficient reovirus strain, T3C84-MA, fails to induce G(2)/M arrest, yet retains the capacity to induce apoptosis, indicating that sigma1s is required for reovirus-induced G(2)/M arrest. Expression of sigma1s in C127 cells increases the percentage of cells in the G(2)/M phase of the cell cycle, supporting a role for this protein in reovirus-induced G(2)/M arrest. Inhibition of reovirus-induced apoptosis failed to prevent virus-induced G(2)/M arrest, indicating that G(2)/M arrest is not the result of apoptosis related DNA damage and suggests that these two processes occur through distinct pathways.  相似文献   

2.
Reovirus virions are internalized into cells by receptor-mediated endocytosis. Within the endocytic compartment, the viral outer capsid undergoes acid-dependent proteolysis leading to degradation of sigma3 protein and proteolytic cleavage of micro1/micro1C protein. E64 is a specific inhibitor of cysteine-containing proteases that blocks disassembly of reovirus virions. To identify domains in reovirus proteins that influence susceptibility to E64-mediated inhibition of disassembly, we selected variant viruses by serial passage of strain type 3 Dearing (T3D) in murine L929 cells treated with E64. E64-adapted variant viruses (D-EA viruses) produced 7- to 17-fold-greater yields than T3D did after infection of cells treated with 100 microM E64. Viral genes that segregate with growth of D-EA viruses in the presence of E64 were identified by using reassortant viruses isolated from independent crosses of E64-sensitive strain type 1 Lang and two prototype D-EA viruses. Growth of reassortant viruses in the presence of E64 segregated with the S4 gene, which encodes outer-capsid protein sigma3. Sequence analysis of S4 genes of three D-EA viruses isolated from independent passage series revealed a common tyrosine-to-histidine mutation at amino acid 354 in the deduced amino acid sequence of sigma3. Proteolysis of D-EA virions by endocytic protease cathepsin L occurred with faster kinetics than proteolysis of wild-type T3D virions. Treatment of D-EA virions, but not T3D virions, with cathepsin D resulted in proteolysis of sigma3, a property that also was found to segregate with the D-EA S4 gene. These results indicate that a region in sigma3 protein containing amino acid 354 influences susceptibility of sigma3 to proteolysis during reovirus disassembly.  相似文献   

3.
4.
In this study, we investigated the relationship between reovirus-induced apoptosis and viral growth. Madin-Darby canine kidney (MDCK) epithelial cells infected with prototype reovirus strains type 1 Lang (T1L) or type 3 Dearing (T3D) were found to undergo apoptosis, and T3D induced apoptosis of MDCK cells to a substantially greater extent than T1L. By using T1L x T3D reassortant viruses, we found that differences in the capacities of these strains to induce apoptosis are determined by the viral S1 and M2 gene segments. These genes encode viral outer-capsid proteins that play important roles in viral entry into cells. T1L grew significantly better in MDCK cells than T3D, and these differences in growth segregated with the viral L1 and M1 gene segments. The L1 and M1 genes encode viral core proteins involved in viral RNA synthesis. Bcl-2 overexpression in MDCK cells inhibited reovirus-induced apoptosis but did not substantially affect reovirus growth. These findings indicate that differences in the capacities of reovirus strains to induce apoptosis and grow in MDCK cells are determined by different viral genes and that premature cell death by apoptosis does not limit reovirus growth in MDCK cells.  相似文献   

5.
Mammalian reoviruses exhibit differences in the capacity to grow in intestinal tissue: reovirus type 1 Lang (T1L), but not type 3 Dearing (T3D), can be recovered in high titer from intestinal tissue of newborn mice after oral inoculation. We investigated whether in vitro protease treatment of virions of T1L and T3D, using conditions to generate infectious subvirion particles (ISVPs) as occurs in the intestinal lumen of mice (D. K. Bodkin, M. L. Nibert, and B. N. Fields, J. Virol. 63:4676-4681, 1989), affects viral infectivity. Chymotrypsin treatment of T1L was associated with a 2-fold increase in viral infectivity, whereas identical treatment of T3D resulted in a 10-fold decrease in infectivity. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, we found that loss of T3D infectivity was correlated with cleavage of its sigma 1 protein. We used reassortant viruses to identify viral determinants of infectivity loss and sigma 1 cleavage and found that both phenotypes segregate with the sigma 1-encoding S1 gene. Comparable results were obtained when trypsin treatment of virions of T1L and T3D was used. In experiments to determine the fate of sigma 1 fragments following cleavage, the capacity of anti-sigma 1 monoclonal antibody G5 to neutralize infectivity of T3D ISVPs was significantly decreased in comparison with its capacity to neutralize infectivity of virions, suggesting that a sigma 1 domain bound by G5 is lost from viral particles after proteolytic digestion. In contrast to the decrease in infectivity, chymotrypsin treatment of T3D virions leading to generation of ISVPs resulted in a 10-fold increase in their capacity to produce hemagglutination, indicating that a domain of sigma 1 important for binding to sialic acid remains associated with viral particles after sigma 1 cleavage. Neuraminidase treatment of L cells substantially decreased the yield of T3D ISVPs in comparison with the yield of virions, indicating that a sigma 1 domain important for binding sialic acid also can mediate attachment of T3D ISVPs to L cells and lead to productive infection. These results suggest that cleavage of T3D sigma 1 protein following oral inoculation of newborn mice is at least partly responsible for the decreased growth of T3D in the intestine and provide additional evidence that T3D sigma 1 contains more than a single receptor-binding domain.  相似文献   

6.
Reoviruses isolated from persistently infected cultures (PI viruses) can grow in the presence of ammonium chloride, a weak base that blocks acid-dependent proteolysis of viral outer-capsid proteins during viral entry into cells. We used reassortant viruses isolated from crosses of wild-type (wt) reovirus strain, type 1 Lang, and three independent PI viruses, L/C, PI 2A1, and PI 3-1, to identify viral genes that segregate with the capacity of PI viruses to grow in cells treated with ammonium chloride. Growth of reassortant viruses in ammonium chloride-treated cells segregated with the S1 gene of L/C and the S4 gene of PI 2A1 and PI 3-1. The S1 gene encodes viral attachment protein sigma1, and the S4 gene encodes outer-capsid protein sigma3. To identify mutations in sigma3 selected during persistent reovirus infection, we determined the S4 gene nucleotide sequences of L/C, PI 2A1, PI 3-1, and four additional PI viruses. The deduced amino acid sequences of sigma3 protein of six of these PI viruses contained a tyrosine-to-histidine substitution at residue 354. To determine whether mutations selected during persistent infection alter cleavage of the viral outer capsid, the fate of viral structural proteins was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after treatment of virions of wt and PI viruses with chymotrypsin in vitro. Proteolysis of PI virus outer-capsid proteins sigma3 and mu1C occurred with faster kinetics than proteolysis of wt virus outer-capsid proteins. These results demonstrate that mutations in either the S1 or S4 gene alter acid-dependent disassembly of the reovirus outer capsid and suggest that increased efficiency of proteolysis of viral outer-capsid proteins is important for maintenance of persistent reovirus infections of cultured cells.  相似文献   

7.
Mammalian reoviruses, prototype members of the Reoviridae family of nonenveloped double-stranded RNA viruses, use at least three proteins--sigma1, mu1, and sigma3--to enter host cells. sigma1, a major determinant of cell tropism, mediates viral attachment to cellular receptors. Studies of sigma1 functions in reovirus entry have been restricted by the lack of methodologies to produce infectious virions containing engineered mutations in viral proteins. To mitigate this problem, we produced virion-like particles by "recoating" genome-containing core particles that lacked sigma1, mu1, and sigma3 with recombinant forms of these proteins in vitro. Image reconstructions from cryoelectron micrographs of the recoated particles revealed that they closely resembled native virions in three-dimensional structure, including features attributable to sigma1. The recoated particles bound to and infected cultured cells in a sigma1-dependent manner and were approximately 1 million times as infectious as cores and 0.5 times as infectious as native virions. Experiments with recoated particles containing recombinant sigma1 from either of two different reovirus strains confirmed that differences in cell attachment and infectivity previously observed between those strains are determined by the sigma1 protein. Additional experiments showed that recoated particles containing sigma1 proteins with engineered mutations can be used to analyze the effects of such mutations on the roles of particle-bound sigma1 in infection. The results demonstrate a powerful new system for molecular genetic dissections of sigma1 with respect to its structure, assembly into particles, and roles in entry.  相似文献   

8.
The mechanisms by which viruses kill susceptible cells in target organs and ultimately produce disease in the infected host remain poorly understood. Dependent upon the site of inoculation and strain of virus, experimental infection of neonatal mice with reoviruses can induce fatal encephalitis or myocarditis. Reovirus-induced apoptosis is a major mechanism of tissue injury, leading to disease development in both the brain and heart. In cultured cells, differences in the capacity of reovirus strains to induce apoptosis are determined by the S1 gene segment, which also plays a major role as a determinant of viral pathogenesis in both the heart and the central nervous system (CNS) in vivo. The S1 gene is bicistronic, encoding both the viral attachment protein sigma-1 and the nonstructural protein sigma-1-small (sigma1s). Although sigma1s is dispensable for viral replication in vitro, we wished to investigate the expression of sigma1s in the infected heart and brain and its potential role in reovirus pathogenesis in vivo. Two-day-old mice were inoculated intramuscularly or intracerebrally with either sigma1s(-) or sigma1s(+) reovirus strains. While viral replication in target organs did not differ between sigma1s(-) and sigma1s(+) viral strains, virus-induced caspase-3 activation and resultant histological tissue injury in both the heart and brain were significantly reduced in sigma1s(-) reovirus-infected animals. These results demonstrate that sigma1s is a determinant of the magnitude and extent of reovirus-induced apoptosis in both the heart and CNS and thereby contributes to reovirus pathogenesis and virulence.  相似文献   

9.
The reovirus attachment protein, sigma1, is responsible for strain-specific patterns of viral tropism in the murine central nervous system and receptor binding on cultured cells. The sigma1 protein consists of a fibrous tail domain proximal to the virion surface and a virion-distal globular head domain. To better understand mechanisms of reovirus attachment to cells, we conducted studies to identify the region of sigma1 that binds cell surface carbohydrate. Chimeric and truncated sigma1 proteins derived from prototype reovirus strains type 1 Lang (T1L) and type 3 Dearing (T3D) were expressed in insect cells by using a baculovirus vector. Assessment of expressed protein susceptibility to proteolytic cleavage, binding to anti-sigma1 antibodies, and oligomerization indicates that the chimeric and truncated sigma1 proteins are properly folded. To assess carbohydrate binding, recombinant sigma1 proteins were tested for the capacity to agglutinate mammalian erythrocytes and to bind sialic acid presented on glycophorin, the cell surface molecule bound by type 3 reovirus on human erythrocytes. Using a panel of two wild-type and ten chimeric and truncated sigma1 proteins, the sialic acid-binding domain of type 3 sigma1 was mapped to a region of sequence proposed to form the more amino terminal of two predicted beta-sheet structures in the tail. This unit corresponds to morphologic region T(iii) observed in computer-processed electron micrographs of sigma1 protein purified from virions. In contrast, the homologous region of T1L sigma1 sequence was not implicated in carbohydrate binding; rather, sequences in the distal portion of the tail known as the neck were required. Results of these studies demonstrate that a functional receptor-binding domain, which uses sialic acid as its ligand, is contained within morphologic region T(iii) of the type 3 sigma1 tail. Furthermore, our findings indicate that T1L and T3D sigma1 proteins contain different arrangements of receptor-binding domains.  相似文献   

10.
Mammalian reoviruses are internalized into cells by receptor-mediated endocytosis. Within the endocytic compartment, the viral outer capsid undergoes acid-dependent proteolysis resulting in removal of the sigma3 protein and proteolytic cleavage of the mu1/mu1C protein. Ammonium chloride (AC) is a weak base that blocks disassembly of reovirus virions by inhibiting acidification of intracellular vacuoles. To identify domains in reovirus proteins that influence pH-sensitive steps in viral disassembly, we adapted strain type 3 Dearing (T3D) to growth in murine L929 cells treated with AC. In comparison to wild-type (wt) T3D, AC-adapted (ACA-D) variant viruses exhibited increased yields in AC-treated cells. AC resistance of reassortant viruses generated from a cross of wt type 1 Lang and ACA-D variant ACA-D1 segregated with the sigma3-encoding S4 gene. The deduced sigma3 amino acid sequences of six independently derived ACA-D variants contain one or two mutations each, affecting a total of six residues. Four of these mutations, I180T, A246G, I347S, and Y354H, cluster in the virion-distal lobe of sigma3. Linkage of these mutations to AC resistance was confirmed in experiments using reovirus disassembly intermediates recoated with wt or mutant sigma3 proteins. In comparison to wt virions, ACA-D viruses displayed enhanced susceptibility to proteolysis by endocytic protease cathepsin L. Image reconstructions of cryoelectron micrographs of three ACA-D viruses that each contain a single mutation in the virion-distal lobe of sigma3 demonstrated native capsid protein organization and minimal alterations in sigma3 structure. These results suggest that mutations in sigma3 that confer resistance to inhibitors of vacuolar acidification identify a specific domain that regulates proteolytic disassembly.  相似文献   

11.
Reovirus induces apoptosis in cultured cells and in vivo. Genetic studies indicate that the efficiency with which reovirus strains induce apoptosis is determined by the viral S1 gene, which encodes attachment protein sigma1. However, the biochemical properties of sigma1 that influence apoptosis induction are unknown. To determine whether the capacity of sigma1 to bind cell surface sialic acid determines the magnitude of the apoptotic response, we used isogenic reovirus mutants that differ in the capacity to engage sialic acid. We found that T3SA+, a virus capable of binding sialic acid, induces high levels of apoptosis in both HeLa cells and L cells. In contrast, non-sialic-acid-binding strain T3SA- induces little or no apoptosis in these cell types. Differences in the capacity of T3SA- and T3SA+ to induce apoptosis are not due to differences in viral protein synthesis or production of viral progeny. Removal of cell surface sialic acid with neuraminidase abolishes the capacity of T3SA+ to induce apoptosis. Similarly, incubation of T3SA+ with sialyllactose, a trisaccharide comprised of lactose and sialic acid, blocks apoptosis. These findings demonstrate that reovirus binding to cell surface sialic acid is a critical requirement for the efficient induction of apoptosis and suggest that virus receptor utilization plays an important role in regulating cell death.  相似文献   

12.
During maintenance of L-cell cultures persistently infected with reovirus, mutations are selected in viruses and cells. Cells cured of persistent infection support growth of viruses isolated from persistently infected cultures (PI viruses) significantly better than that of wild-type (wt) viruses. In a previous study, the capacity of PI virus strain L/C to grow better than wt strain type 1 Lang (T1L) in cured cells was mapped genetically to the S1 gene (R. S. Kauffman, R. Ahmed, and B. N. Fields, Virology 131:79-87, 1983), which encodes viral attachment protein sigma1. To investigate mechanisms by which mutations in S1 confer growth of PI viruses in cured cells, we determined the S1 gene nucleotide sequences of L/C virus and six additional PI viruses isolated from independent persistently infected L-cell cultures. The S1 sequences of these viruses contained from one to three mutations, and with the exception of PI 2A1 mutations in each S1 gene resulted in changes in the deduced amino acid sequence of sigma1 protein. Using electrophoresis conditions that favor migration of sigma1 oligomers, we found that sigma1 proteins of L/C, PI 1A1, PI 3-1, and PI 5-1 migrated as monomers, whereas sigma1 proteins of wt reovirus and PI 2A1 migrated as oligomers. These findings suggest that mutations in sigma1 protein affecting stability of sigma1 oligomers are important for the capacity of PI viruses to infect mutant cells selected during persistent infection. Since no mutation was found in the deduced amino acid sequence of PI 2A1 sigma1 protein, we used T1L X PI 2A1 reassortant viruses to identify viral genes associated with the capacity of this PI virus to grow better than wt in cured cells. The capacity of PI 2A1 to grow better than T1L in cured cells was mapped to the S4 gene, which encodes outer-capsid protein sigma3. This finding suggests that in some cases, mutations in sigma3 protein in the absence of sigma1 mutations confer growth of PI viruses in mutant cells. To confirm the importance of the S1 gene in PI virus growth in cured cells, we used T1L X PI 3-1 reassortant viruses to genetically map the capacity of this PI virus to grow better than wt in cured cells. In contrast to our results using PI 2A1, we found that growth of PI 3-1 in cured cells was determined by the sigma1-encoding S1 gene. Given that the sigma1 and sigma3 proteins play important roles in reovirus disassembly, findings made in this study suggest that stability of the viral outer capsid is an important determinant of the capacity of reoviruses to adapt to host cells during persistent infection.  相似文献   

13.
Mutations selected in reoviruses isolated from persistently infected cultures (PI viruses) affect viral entry into cells. Unlike wild-type (wt) viruses, PI viruses can grow in the presence of ammonium chloride, a weak base that blocks acid-dependent proteolysis of viral outer-capsid proteins in cellular endosomes during viral entry. In this study, we show that E64, an inhibitor of cysteine proteases such as those present in the endocytic compartment, blocks growth of wt reovirus by inhibiting viral disassembly. To determine whether PI viruses can grow in the presence of an inhibitor of endocytic proteases, we compared yields of wt and PI viruses in cells treated with E64. Prototype PI viruses L/C, PI 2A1, and PI 3-1 produced substantially greater yields than wt viruses type 1 Lang (T1L) and type 3 Dearing (T3D) in E64-treated cells. To identify viral genes that segregate with growth of PI viruses in the presence of E64, we tested reassortant viruses isolated from independent crosses of T1L and each of the prototype PI viruses for growth in cells treated with E64. Growth of reassortant viruses in the presence of E64 segregated exclusively with the S4 gene, which encodes viral outer-capsid protein sigma3. These results suggest that mutations in sigma3 protein selected during persistent infection alter its susceptibility to cleavage during viral disassembly. To determine the temporal relationship of acid-dependent and protease-dependent steps in reovirus disassembly, cells were infected with wt strain T1L or T3D, and medium containing either ammonium chloride or E64d, a membrane-permeable form of E64, was added at various times after adsorption. Susceptibility to inhibition by both ammonium chloride and E64 was abolished when either inhibitor was added at times greater than 60 min after adsorption. These findings indicate that acid-dependent and protease-dependent disassembly events occur with similar kinetics early in reovirus replication, which suggests that these events take place within the same compartment of the endocytic pathway.  相似文献   

14.
In murine fibroblasts, efficient proteolysis of reovirus outer capsid protein sigma3 during cell entry by virions requires the acid-dependent lysosomal cysteine protease cathepsin L. The importance of cathepsin L for infection of other cell types is unknown. Here we report that the acid-independent lysosomal cysteine protease cathepsin S mediates outer capsid processing in macrophage-like P388D cells. P388D cells supported infection by virions of strain Lang, but not strain c43. Genetic studies revealed that this difference is determined by S4, the viral gene segment that encodes sigma3. c43-derived subvirion particles that lack sigma3 replicated normally in P388D cells, suggesting that the difference in infectivity of Lang and c43 virions is at the level of sigma3 processing. Infection of P388D cells with Lang virions was inhibited by the broad spectrum cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane but not by NH(4)Cl, which raises the endocytic pH and thereby inhibits acid-dependent proteases such as cathepsins L and B. Outer capsid processing and infection of P388D cells with Lang virions were also inhibited by a cathepsin S-specific inhibitor. Furthermore, in the presence of NH(4)Cl, cell lines engineered to express cathepsin S supported infection by Lang, but not c43, virions. Our results thus indicate that differences in susceptibility to cathepsin S-mediated sigma3 processing are responsible for strain differences in reovirus infection of macrophage-like P388D cells and other cathepsin S-expressing cells. Additionally, our data suggest that the acid dependence of reovirus infections of most other cell types may reflect the low pH requirement for the activities of most other lysosomal proteases rather, than some other acid-dependent aspect of cell entry.  相似文献   

15.
The mammalian reoviruses are capable of inhibiting cellular DNA synthesis and inducing apoptosis. Reovirus strains type 3 Abney (T3A) and type 3 Dearing (T3D) inhibit cellular DNA synthesis and induce apoptosis to a substantially greater extent than strain type 1 Lang (T1L). We used T1L x T3A and T1L x T3D reassortant viruses to identify viral genes associated with differences in the capacities of reovirus strains to elicit these cellular responses to viral infection. We found that the S1 and M2 genome segments determine differences in the capacities of both T1L x T3A and T1L x T3D reassortant viruses to inhibit cellular DNA synthesis and to induce apoptosis. These genes encode viral outer-capsid proteins that play important roles in viral attachment and disassembly. To extend these findings, we used field isolate strains of reovirus to determine whether the strain-specific differences in inhibition of cellular DNA synthesis and induction of apoptosis are also associated with viral serotype, a property determined by the S1 gene. In these experiments, type 3 field isolate strains were found to inhibit cellular DNA synthesis and to induce apoptosis to a greater extent than type 1 field isolate strains. Statistical analysis of these data indicate a significant correlation between the capacity of T1L x T3A and T1L x T3D reassortant viruses and field isolate strains to inhibit cellular DNA synthesis and to induce apoptosis. These findings suggest that reovirus-induced inhibition of cellular DNA synthesis and induction of apoptosis are linked and that both phenomena are induced by early steps in the viral replication cycle.  相似文献   

16.
Reovirus virions are nonenveloped icosahedral particles consisting of two concentric protein shells, termed outer capsid and core. Outer-capsid protein sigma1 is the viral attachment protein and binds carbohydrate molecules on the surface of host cells. Monoclonal antibody (MAb) 4F2, which is specific for outer-capsid protein sigma3, blocks the binding of sigma1 protein to sialic acid and inhibits reovirus-induced hemagglutination (HA). To determine whether MAb 4F2 inhibits HA by altering sigma1-sigma3 interactions or by steric hindrance, we analyzed the effect of 4F2 immunoglobulin G (IgG) and Fab fragments (Fabs) on HA induced by reovirus strain type 3 Dearing (T3D). The concentration of 4F2 IgG sufficient to inhibit T3D-induced HA was 12.5 microg per ml, whereas that of Fabs was >200 microg per ml. Dynamic light scattering analysis showed that at the concentration of IgG sufficient to inhibit HA, virion-antibody complexes were monodispersed and not aggregated. The affinity of 4F2 Fabs for T3D virions was only threefold less than that of intact IgG, which suggests that differences in HA inhibition titer exhibited by 4F2 IgG and Fabs are not attributable to differences in the affinity of these molecules for T3D virions. We used cryoelectron microscopy and three-dimensional image analysis to visualize T3D virions alone and in complex with either IgG or Fabs of MAb 4F2. IgG and Fabs bind the same site at the distal portion of sigma3, and binding of IgG and Fabs induces identical conformational changes in outer-capsid proteins sigma3 and mu1. These results suggest that MAb 4F2 inhibits reovirus binding to sialic acid by steric hindrance and provide insight into the conformational flexibility of reovirus outer-capsid proteins.  相似文献   

17.
Type 1 reoviruses invade the intestinal mucosa of mice by adhering selectively to M cells in the follicle-associated epithelium and then exploiting M cell transport activity. The purpose of this study was to identify the apical cell membrane component and viral protein that mediate the M cell adherence of these viruses. Virions and infectious subviral particles of reovirus type 1 Lang (T1L) adhered to rabbit M cells in Peyer's patch mucosal explants and to tissue sections in an overlay assay. Viral adherence was abolished by pretreatment of sections with periodate and in the presence of excess sialic acid or lectins MAL-I and MAL-II (which recognize complex oligosaccharides containing sialic acid linked alpha2-3 to galactose). The binding of T1L particles to polarized human intestinal (Caco-2(BBe)) cell monolayers was correlated with the presence of MAL-I and MAL-II binding sites, blocked by excess MAL-I and -II, and abolished by neuraminidase treatment. Other type 1 reovirus isolates exhibited MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells, but type 2 or type 3 isolates including type 3 Dearing (T3D) did not. In assays using T1L-T3D reassortants and recoated viral cores containing T1L, T3D, or no sigma1 protein, MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells was consistently associated with the T1L sigma1. MAL-II-recognized oligosaccharide epitopes are not restricted to M cells in vivo, but MAL-II immobilized on virus-sized microparticles bound only to the follicle-associated epithelium and M cells. The results suggest that selective binding of type 1 reoviruses to M cells in vivo involves interaction of the type 1 sigma1 protein with glycoconjugates containing alpha2-3-linked sialic acid that are accessible to viral particles only on M cell apical surfaces.  相似文献   

18.
Cells infected with mammalian reoviruses often contain large perinuclear inclusion bodies, or "factories," where viral replication and assembly are thought to occur. Here, we report a viral strain difference in the morphology of these inclusions: filamentous inclusions formed in cells infected with reovirus type 1 Lang (T1L), whereas globular inclusions formed in cells infected with our laboratory's isolate of reovirus type 3 Dearing (T3D). Examination by immunofluorescence microscopy revealed the filamentous inclusions to be colinear with microtubules (MTs). The filamentous distribution was dependent on an intact MT network, as depolymerization of MTs early after infection caused globular inclusions to form. The inclusion phenotypes of T1L x T3D reassortant viruses identified the viral M1 genome segment as the primary genetic determinant of the strain difference in inclusion morphology. Filamentous inclusions were seen with 21 of 22 other reovirus strains, including an isolate of T3D obtained from another laboratory. When the mu2 proteins derived from T1L and the other laboratory's T3D isolate were expressed after transfection of their cloned M1 genes, they associated with filamentous structures that colocalized with MTs, whereas the mu2 protein derived from our laboratory's T3D isolate did not. MTs were stabilized in cells infected with the viruses that induced filamentous inclusions and after transfection with the M1 genes derived from those viruses. Evidence for MT stabilization included bundling and hyperacetylation of alpha-tubulin, changes characteristically seen when MT-associated proteins (MAPs) are overexpressed. Sequencing of the M1 segments from the different T1L and T3D isolates revealed that a single-amino-acid difference at position 208 correlated with the inclusion morphology. Two mutant forms of mu2 with the changes Pro-208 to Ser in a background of T1L mu2 and Ser-208 to Pro in a background of T3D mu2 had MT association phenotypes opposite to those of the respective wild-type proteins. We conclude that the mu2 protein of most reovirus strains is a viral MAP and that it plays a key role in the formation and structural organization of reovirus inclusion bodies.  相似文献   

19.
Reovirus infection is initiated by interactions between the attachment protein sigma1 and cell surface carbohydrate and junctional adhesion molecule A (JAM-A). Expression of a JAM-A mutant lacking a cytoplasmic tail in nonpermissive cells conferred full susceptibility to reovirus infection, suggesting that cell surface molecules other than JAM-A mediate viral internalization following attachment. The presence of integrin-binding sequences in reovirus outer capsid protein lambda2, which serves as the structural base for sigma1, suggests that integrins mediate reovirus endocytosis. A beta1 integrin-specific antibody, but not antibodies specific for other integrin subunits, inhibited reovirus infection of HeLa cells. Expression of a beta1 integrin cDNA, along with a cDNA encoding JAM-A, in nonpermissive chicken embryo fibroblasts conferred susceptibility to reovirus infection. Infectivity of reovirus was significantly reduced in beta1-deficient mouse embryonic stem cells in comparison to isogenic cells expressing beta1. However, reovirus bound equivalently to cells that differed in levels of beta1 expression, suggesting that beta1 integrins are involved in a postattachment entry step. Concordantly, uptake of reovirus virions into beta1-deficient cells was substantially diminished in comparison to viral uptake into beta1-expressing cells. These data provide evidence that beta1 integrin facilitates reovirus internalization and suggest that viral entry occurs by interactions of reovirus virions with independent attachment and entry receptors on the cell surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号