首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reovirus attachment protein, sigma1, determines numerous aspects of reovirus-induced disease, including viral virulence, pathways of spread, and tropism for certain types of cells in the central nervous system. The sigma1 protein projects from the virion surface and consists of two distinct morphologic domains, a virion-distal globular domain known as the head and an elongated fibrous domain, termed the tail, which is anchored into the virion capsid. To better understand structure-function relationships of sigma1 protein, we conducted experiments to identify sequences in sigma1 important for viral binding to sialic acid, a component of the receptor for type 3 reovirus. Three serotype 3 reovirus strains incapable of binding sialylated receptors were adapted to growth in murine erythroleukemia (MEL) cells, in which sialic acid is essential for reovirus infectivity. MEL-adapted (MA) mutant viruses isolated by serial passage in MEL cells acquired the capacity to bind sialic acid-containing receptors and demonstrated a dependence on sialic acid for infection of MEL cells. Analysis of reassortant viruses isolated from crosses of an MA mutant virus and a reovirus strain that does not bind sialic acid indicated that the sigma1 protein is solely responsible for efficient growth of MA mutant viruses in MEL cells. The deduced sigma1 amino acid sequences of the MA mutant viruses revealed that each strain contains a substitution within a short region of sequence in the sigma1 tail predicted to form beta-sheet. These studies identify specific sequences that determine the capacity of reovirus to bind sialylated receptors and suggest a location for a sialic acid-binding domain. Furthermore, the results support a model in which type 3 sigma1 protein contains discrete receptor binding domains, one in the head and another in the tail that binds sialic acid.  相似文献   

2.
During maintenance of L-cell cultures persistently infected with reovirus, mutations are selected in viruses and cells. Cells cured of persistent infection support growth of viruses isolated from persistently infected cultures (PI viruses) significantly better than that of wild-type (wt) viruses. In a previous study, the capacity of PI virus strain L/C to grow better than wt strain type 1 Lang (T1L) in cured cells was mapped genetically to the S1 gene (R. S. Kauffman, R. Ahmed, and B. N. Fields, Virology 131:79-87, 1983), which encodes viral attachment protein sigma1. To investigate mechanisms by which mutations in S1 confer growth of PI viruses in cured cells, we determined the S1 gene nucleotide sequences of L/C virus and six additional PI viruses isolated from independent persistently infected L-cell cultures. The S1 sequences of these viruses contained from one to three mutations, and with the exception of PI 2A1 mutations in each S1 gene resulted in changes in the deduced amino acid sequence of sigma1 protein. Using electrophoresis conditions that favor migration of sigma1 oligomers, we found that sigma1 proteins of L/C, PI 1A1, PI 3-1, and PI 5-1 migrated as monomers, whereas sigma1 proteins of wt reovirus and PI 2A1 migrated as oligomers. These findings suggest that mutations in sigma1 protein affecting stability of sigma1 oligomers are important for the capacity of PI viruses to infect mutant cells selected during persistent infection. Since no mutation was found in the deduced amino acid sequence of PI 2A1 sigma1 protein, we used T1L X PI 2A1 reassortant viruses to identify viral genes associated with the capacity of this PI virus to grow better than wt in cured cells. The capacity of PI 2A1 to grow better than T1L in cured cells was mapped to the S4 gene, which encodes outer-capsid protein sigma3. This finding suggests that in some cases, mutations in sigma3 protein in the absence of sigma1 mutations confer growth of PI viruses in mutant cells. To confirm the importance of the S1 gene in PI virus growth in cured cells, we used T1L X PI 3-1 reassortant viruses to genetically map the capacity of this PI virus to grow better than wt in cured cells. In contrast to our results using PI 2A1, we found that growth of PI 3-1 in cured cells was determined by the sigma1-encoding S1 gene. Given that the sigma1 and sigma3 proteins play important roles in reovirus disassembly, findings made in this study suggest that stability of the viral outer capsid is an important determinant of the capacity of reoviruses to adapt to host cells during persistent infection.  相似文献   

3.
Reovirus attaches to cellular receptors with the sigma1 protein, a fiber-like molecule protruding from the 12 vertices of the icosahedral virion. The crystal structure of a receptor-binding fragment of sigma1 reveals an elongated trimer with two domains: a compact head with a new beta-barrel fold and a fibrous tail containing a triple beta-spiral. Numerous structural and functional similarities between reovirus sigma1 and the adenovirus fiber suggest an evolutionary link in the receptor-binding strategies of these two viruses. A prominent loop in the sigma1 head contains a cluster of residues that are conserved among reovirus serotypes and are likely to form a binding site for junction adhesion molecule, an integral tight junction protein that serves as a reovirus receptor. The fibrous tail is mainly responsible for sigma1 trimer formation, and it contains a highly flexible region that allows for significant movement between the base of the tail and the head. The architecture of the trimer interface and the observed flexibility indicate that sigma1 is a metastable structure poised to undergo conformational changes upon viral attachment and cell entry.  相似文献   

4.
Molecular dynamics simulations were performed using the recently determined crystal structure of the reovirus attachment protein, sigma1. These studies were conducted to improve an understanding of two unique features of sigma1 structure: the protonation state of Asp(345), which is buried in the sigma1 trimer interface, and the flexibility of the protein at a defined region below the receptor-binding head domain. Three copies of aspartic acids Asp(345) and Asp(346) cluster in a solvent-inaccessible and hydrophobic region at the sigma1 trimer interface. These residues are hypothesized to mediate conformational changes in sigma1 during viral attachment or cell entry. Our results indicate that protonation of Asp(345) is essential to the integrity of the trimeric structure seen by x-ray crystallography, whereas deprotonation induces structural changes that destabilize the trimer interface. This finding was confirmed by electrostatic calculations using the finite difference Poisson-Boltzmann method. Earlier studies show that sigma1 can exist in retracted and extended conformations on the viral surface. Since protonated Asp(345) is necessary to form a stable, extended trimer, our results suggest that protonation of Asp(345) may allow for a structural transition from a partially detrimerized molecule to the fully formed trimer seen in the crystal structure. Additional studies were conducted to quantify the previously observed flexibility of sigma1 at a defined region below the receptor-binding head domain. Increased mobility was observed for three polar residues (Ser(291), Thr(292), and Ser(293)) located within an insertion between the second and third beta-spiral repeats of the crystallized portion of the sigma1 tail. These amino acids interact with water molecules of the solvent bulk and are responsible for oscillating movement of the head of approximately 50 degrees during 5 ns of simulations. This flexibility may facilitate viral attachment and also function in cell entry and disassembly. These findings provide new insights about the conformational dynamics of sigma1 that likely underlie the initiation of the reovirus infectious cycle.  相似文献   

5.
6.
Hemagglutination (HA) by the mammalian reoviruses is mediated by interactions between the viral sigma 1 protein and sialoglycoproteins on the erythrocyte surface. Three serotype 3 (T3) reovirus strains were identified that do not agglutinate either bovine or type O human erythrocytes (HA negative): T3 clone 43 (T3C43), T3 clone 44 (T3C44), and T3 clone 84 (T3C84). These three strains also showed a diminished capacity to bind the major erythrocyte sialoglycoprotein, glycophorin, in an enzyme-linked immunosorbent assay. To determine the molecular basis for these findings, we examined the deduced sigma 1 amino acid sequences of the three HA-negative T3 strains and four HA-positive T3 strains. The limited number of sequence differences in the sigma 1 proteins of these seven strains allowed us to identify single unique amino acid residues in each of the HA-negative strains (aspartate 198 in T3C43, leucine 204 in T3C44, and tryptophan 202 in T3C84) that cluster within a discrete region of the sigma 1 tail. The identification of sigma 1 residues important for HA and glycophorin binding suggests that tail-forming sequences are exposed on the virion surface, where they interact with carbohydrate residues on the surface of cells.  相似文献   

7.
Tagging of viral capsid proteins is a powerful tool to study viral assembly; it also raises the possibility of using viral particles to present exogenous epitopes in vaccination or gene therapy strategies. The ability of reoviruses to induce strong mucosal immune response and their large host range and low pathogenicity in humans are some of the advantages of using reoviruses in such applications. In the present study, the feasibility of introducing foreign epitopes, "tags", to the sigma3 protein, a major component of the reovirus outer capsid, was investigated. Among eight different positions, the amino-terminal end of the protein appeared as the best location to insert exogenous sequences. Additional amino acids at this position do not preclude interaction with the micro1 protein, the other major constituent of the viral outer capsid, but strongly interfere with micro1 to micro1C cleavage. Nevertheless, the tagged sigma3 protein was still incorporated to virions upon recoating of infectious subviral particles to which authentic sigma3 protein was removed by proteolysis, indicating that micro1 cleavage is not a prerequisite for outer capsid assembly. The recently published structure of the sigma3- micro1 complex suggests that the amino-terminally inserted epitope could be exposed at the outer surface of viral particles.  相似文献   

8.
The interaction of mammalian reoviruses with sialylated glycoproteins was studied and found to be highly serotype specific in that attachment of type 3 Dearing reovirus to murine L cell receptors could be strongly inhibited by bovine submaxillary mucin (BSM), fetuin, and alpha 1 acid glycoprotein, albeit at different efficiencies, whereas attachment of type 1 Lang reovirus was inhibited only by fetuin. We subsequently demonstrated, by using reassortants between type 3 and 1 reoviruses, that inhibition of reovirus attachment to cell receptors was specified by the viral attachment protein gene S1. Using a solid-phase binding assay, we further demonstrated that the ability of reovirus type 3 or reassortant 1HA3 and the inability of reovirus type 1 or reassortant 3HA1 to bind avidly to BSM was a property of the viral S1 genome segment and required the presence of sialic acid residues on BSM oligosaccharides. Taken together, these results demonstrated that there is a serotype-specific difference in the ability of the reovirus attachment protein, sigma 1, to interact with sialylated oligosaccharides of glycoproteins. Interaction of reovirus type 3 with sialylated oligosaccharides of BSM is dramatically affected by the degree of O-acetylation of their sialic acid residues, as indicated by the findings that chemical removal of O-acetyl groups stimulated reovirus type 3 attachment to BSM, whereas preferential removal of residues lacking or possessing reduced amounts of O-acetyl groups per sialic acid molecule with Vibrio cholerae sialidase abolished binding. We also demonstrated that BSM was 10 times more potent in inhibiting attachment of infectious reovirus to L cells than was V. cholerae-treated BSM. The results are consistent with the hypothesis that sialylated oligosaccharides on host cells or erythrocytes may act as binding sites or components of binding sites for type 3 reovirus through a specific interaction with the virus attachment protein.  相似文献   

9.
The mammalian reovirus sigma1 protein is responsible for viral attachment to host cells and hemagglutination properties of the virus. In the present study, sequence similarity between sigma1 and chicken-type lysozymes prompted us to investigate additional functions of the sigma1 protein. Expression in Pichia pastoris yeast cells showed that sigma1 can actually cleave lysozyme substrates, including complex sugars found in bacterial cell walls. Replacement by site-directed mutagenesis of acidic amino acid residues in sigma1 by their respective isosteric, uncharged, amino acid residues has allowed us to identify Glu36 and Asp54 as the catalytic pair involved in sigma1-mediated glycosidase activity. The enzyme appears inactive in virions but its activity is unmasked upon generation of infectious subviral particles (ISVPs) by partial proteolytic removal of the outer capsid proteins. Purified sigma1 protein and ISVPs can also hydrolyze mucins, heavily glycosylated glycoproteins that are a major component of the mucus layer overlaying the intestinal epithelium. Furthermore, reovirus infection of epithelial Madin Darby canine kidney cells was inhibited tenfold in cells expressing mucin at their apical surface, while this inhibition was overcome by ISVPs. Unmasking of sigma1 mucinolytic activity in the intestine, consecutive to proteolytic cleavage of virions to ISVPs, thus likely contributes to the known increase in infectivity of reovirus ISVPs compared to complete virions. This work presents the first evidence that some mammalian viruses have evolved mechanisms to facilitate their penetration through the protective barrier of the mucus layer in the intestinal tract.  相似文献   

10.
Type 1 reoviruses invade the intestinal mucosa of mice by adhering selectively to M cells in the follicle-associated epithelium and then exploiting M cell transport activity. The purpose of this study was to identify the apical cell membrane component and viral protein that mediate the M cell adherence of these viruses. Virions and infectious subviral particles of reovirus type 1 Lang (T1L) adhered to rabbit M cells in Peyer's patch mucosal explants and to tissue sections in an overlay assay. Viral adherence was abolished by pretreatment of sections with periodate and in the presence of excess sialic acid or lectins MAL-I and MAL-II (which recognize complex oligosaccharides containing sialic acid linked alpha2-3 to galactose). The binding of T1L particles to polarized human intestinal (Caco-2(BBe)) cell monolayers was correlated with the presence of MAL-I and MAL-II binding sites, blocked by excess MAL-I and -II, and abolished by neuraminidase treatment. Other type 1 reovirus isolates exhibited MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells, but type 2 or type 3 isolates including type 3 Dearing (T3D) did not. In assays using T1L-T3D reassortants and recoated viral cores containing T1L, T3D, or no sigma1 protein, MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells was consistently associated with the T1L sigma1. MAL-II-recognized oligosaccharide epitopes are not restricted to M cells in vivo, but MAL-II immobilized on virus-sized microparticles bound only to the follicle-associated epithelium and M cells. The results suggest that selective binding of type 1 reoviruses to M cells in vivo involves interaction of the type 1 sigma1 protein with glycoconjugates containing alpha2-3-linked sialic acid that are accessible to viral particles only on M cell apical surfaces.  相似文献   

11.
R Gilmore  M C Coffey  G Leone  K McLure    P W Lee 《The EMBO journal》1996,15(11):2651-2658
The reovirus cell attachment protein, sigma1, is a trimer with a 'lollipop' structure. Recent findings indicate that the N-terminal fibrous tail and the C-terminal globular head each possess a distinct trimerization domain. The region responsible for N-terminal trimerization (formation of a triple alpha-helical coiled-coil) is located at the N-terminal one-third of sigma1. In this study, we investigated the temporality and ATP requirement of this trimerization event in the context of sigma1 biogenesis. In vitro co-synthesis of the full-length (FL) and a C-terminally truncated (d44) sigma1 protein revealed a preference for homotrimer over heterotrimer formation, suggesting that assembly at the N-terminus occurs co-translationally. This was corroborated by the observation that polysome-associated sigma1 chains were trimeric as well as monomeric. Truncated proteins (d234 and d294) with C-terminal deletions exceeding half the length of sigma1 were found to trimerize post-translationally. This trimerization did not require ATP since it proceeded normally in the presence of apyrase. In contrast, formation of stable FL sigma1 trimers was inhibited by apyrase treatment. Collectively, our data suggest that assembly of nascent sigma1 chains at the N-terminus is intrinsically ATP independent, and occurs co-translationally when the ribosomes have traversed past the midpoint of the mRNA.  相似文献   

12.
In this report, we study the reovirus serotype 3 (strain Dearing) sigma 1 protein obtained from various sources: from Escherichia coli expressing sigma 1 protein, from reovirus-infected mouse L cells, and from purified reovirions. We demonstrate that the sigma 1 protein is a multimer in its undisrupted form and present biochemical evidence suggesting that the multimer is made up of four sigma 1 subunits.  相似文献   

13.
The cytotoxic T-lymphocyte (CTL) response in reovirus-infected C3H mice was investigated by using reovirus-vaccinia virus recombinants. Results of cytotoxicity assays indicated that the nonstructural protein sigma1NS elicited a significant CTL response. Experiments with sigma1NS-specific CTL lines showed that both strain-specific and cross-reactive epitopes exist in the sigma1NS protein.  相似文献   

14.
Mucosal tolerance induction generally requires multiple or large Ag doses. Because microfold (M) cells have been implicated as being important for mucosal tolerance induction and because reovirus attachment protein sigma1 (psigma1) is capable of binding M cells, we postulated that targeting a model Ag to M cells via psigma1 could induce a state of unresponsiveness. Accordingly, a genetic fusion between OVA and the M cell ligand, reovirus psigma1, termed OVA-psigma1, was developed to enhance tolerogen uptake. When applied nasally, not parenterally, as little as a single dose of OVA-psigma1 failed to induce OVA-specific Abs even in the presence of adjuvant. Moreover, the mice remained unresponsive to peripheral OVA challenge, unlike mice given multiple nasal OVA doses that rendered them responsive to OVA. The observed unresponsiveness to OVA-psigma1 could be adoptively transferred using cervical lymph node CD4(+) T cells, which failed to undergo proliferative or delayed-type hypersensitivity responses in recipients. To discern the cytokines responsible as a mechanism for this unresponsiveness, restimulation assays revealed increased production of regulatory cytokines, IL-4, IL-10, and TGF-beta1, with greatly reduced IL-17 and IFN-gamma. The induced IL-10 was derived predominantly from FoxP3(+)CD25(+)CD4(+) T cells. No FoxP3(+)CD25(+)CD4(+) T cells were induced in OVA-psigma1-dosed IL-10-deficient (IL-10(-/-)) mice, and despite showing increased TGF-beta1 synthesis, these mice were responsive to OVA. These data demonstrate the feasibility of using psigma1 as a mucosal delivery platform specifically for low-dose tolerance induction.  相似文献   

15.
The S2 gene nucleotide sequences of prototype strains of the three reovirus serotypes were determined to gain insight into the structure and function of the S2 translation product, virion core protein sigma 2. The S2 sequences of the type 1 Lang, type 2 Jones, and type 3 Dearing strains are 1,331 nucleotides in length and contain a single large open reading frame that could encode a protein of 418 amino acids, corresponding to sigma 2. The deduced sigma 2 amino acid sequences of these strains are very conserved, being identical at 94% of the sequence positions. Predictions of sigma 2 secondary structure and hydrophobicity suggest that the protein has a two-domain structure. A larger domain is suggested to be formed from the amino-terminal three-fourths of sigma 2 sequence, which is separated from a smaller carboxy-terminal domain by a turn-rich hinge region. The carboxy-terminal domain includes sequences that are more hydrophilic than those in the rest of the protein and contains sequences which are predicted to form an alpha-helix. A region of striking similarity was found between amino acids 354 and 374 of sigma 2 and amino acids 1008 and 1031 of the beta subunit of the Escherichia coli DNA-dependent RNA polymerase. We suggest that the regions with similar sequence in sigma 2 and the beta subunit form amphipathic alpha-helices which may play a related role in the function of each protein. We have also performed experiments to further characterize the double-stranded RNA-binding activity of sigma 2 and found that the capacity to bind double-stranded RNA is a property of the sigma 2 protein of prototype strains and of the S2 mutant tsC447.  相似文献   

16.
JAM-A belongs to a family of immunoglobulin-like proteins called junctional adhesion molecules (JAMs) that localize at epithelial and endothelial intercellular tight junctions. JAM-A is also expressed on dendritic cells, neutrophils, and platelets. Homophilic JAM-A interactions play an important role in regulating paracellular permeability and leukocyte transmigration across epithelial monolayers and endothelial cell junctions, respectively. In addition, JAM-A is a receptor for the reovirus attachment protein, sigma1. In this study, we used single molecular force spectroscopy to compare the kinetics of JAM-A interactions with itself and sigma1. A chimeric murine JAM-A/Fc fusion protein and the purified sigma1 head domain were used to probe murine L929 cells, which express JAM-A and are susceptible to reovirus infection. The bond half-life (t(1/2)) of homophilic JAM-A interactions was found to be shorter (k(off)(o) = 0.688 +/- 0.349 s(-1)) than that of sigma1/JAM-A interactions (k(off)(o) = 0.067 +/- 0.041 s(-1)). These results are in accordance with the physiological functions of JAM-A and sigma1. A short bond lifetime imparts a highly dynamic nature to homophilic JAM-A interactions for regulating tight junction permeability while stable interactions between sigma1 and JAM-A likely anchor the virus to the cell surface and facilitate viral entry.  相似文献   

17.
The coding region of reovirus type 3 genomic segment S3, encoding the nonstructural protein sigma NS, was placed under the control of the bacteriophage lambda pL promoter in the Escherichia coli expression plasmid pRC23 (J.C. Lacal, E. Santos, V. Notario, M. Barbacid, S. Yamazaki, H.-F. Kung, C. Seamans, S. McAndrew, and R. Crowl, Proc. Natl. Acad. Sci. USA 81:5305-5309). Derepression of the pL promoter led to the synthesis of a protein of the same molecular weight as sigma NS produced in reovirus-infected L cells. The expressed protein was indistinguishable from authentic sigma NS by peptide mapping with Staphylococcus aureus V8 protease and by immunoblot analysis. Most importantly, the purified protein had nucleic acid-binding properties similar to that previously shown for sigma NS obtained from infected cells. Binding of single-stranded RNAs by recombinant sigma NS protein was inhibited by GTP.  相似文献   

18.
This report describes a model for the structure of the reovirus cell-attachment protein sigma 1. S1 gene nucleotide sequences were determined for prototype strains of the three serotypes of mammalian reoviruses. Deduced amino acid sequences of the S1-encoded sigma 1 proteins were then compared in order to identify conserved features of these sequences. Discrete regions in the amino-terminal two-thirds of sigma 1 sequence share characteristics with the fibrous domains of other cellular and viral proteins. Most of the amino-terminal one-third of sigma 1 sequence is predicted to form an alpha-helical coiled coil like that of myosin. The middle one-third of sigma 1 sequence appears more heterogeneous; it is predicted to form a large region of beta-sheet that is followed by a region which contains two short alpha-helical coiled coils separated by a smaller region of beta-sheet. The two beta-sheet regions are each proposed to form a cross-beta sandwich like that suggested for the rod domain of the adenovirus fiber protein (N. M. Green, N. G. Wrigley, W. C. Russell, S. R. Martin, and A. D. McLachlan, EMBO J. 2:1357-1365, 1983). The remaining carboxy-terminal one-third of sigma 1 sequence is predicted to form a structurally complex globular domain. A model is suggested in which the discrete regions of sigma 1 sequence are ascribed to morphologic regions seen in computer-processed electron micrographic images of the protein (R. D. B. Fraser, D. B. Furlong, B. L. Trus, M. L. Nibert, B. N. Fields, and A. C. Steven, J. Virol. 64:2990-3000, 1990.  相似文献   

19.
Mammalian reoviruses are nonenveloped viruses with a long, filamentous attachment protein that dictates disease phenotypes following infection of newborn mice and is a structural homologue of the adenovirus attachment protein. Reoviruses use junctional adhesion molecule 1 (JAM1) as a serotype-independent cellular receptor. JAM1 is a broadly expressed immunoglobulin superfamily protein that forms stable homodimers and regulates tight-junction permeability and lymphocyte trafficking. We employed a series of structure-guided binding and infection experiments to define residues in human JAM1 (hJAM1) important for reovirus-receptor interactions and to gain insight into mechanisms of reovirus attachment. Binding and infection experiments using chimeric and domain deletion mutant receptor molecules indicate that the amino-terminal D1 domain of hJAM1 is required for reovirus attachment, infection, and replication. Reovirus binding to hJAM1 occurs more rapidly than homotypic hJAM1 association and is competed by excess hJAM1 in vitro and on cells. Cross-linking hJAM1 diminishes the capacity of reovirus to bind hJAM1 in vitro and on cells and negates the competitive effects of soluble hJAM1 on reovirus attachment. Finally, mutagenesis studies demonstrate that residues intimately associated with the hJAM1 dimer interface are critical for reovirus interactions with hJAM1. These results suggest that reovirus attachment disrupts hJAM1 dimers and highlight similarities between the attachment strategies of reovirus and adenovirus.  相似文献   

20.
Mammalian reoviruses undergo acid-dependent proteolytic disassembly within endosomes, resulting in formation of infectious subvirion particles (ISVPs). ISVPs are obligate intermediates in reovirus disassembly that mediate viral penetration into the cytoplasm. The initial biochemical event in the reovirus disassembly pathway is the proteolysis of viral outer-capsid protein sigma 3. Mutant reoviruses selected during persistent infection of murine L929 cells (PI viruses) demonstrate enhanced kinetics of viral disassembly and resistance to inhibitors of endocytic acidification and proteolysis. To identify sequences in sigma 3 that modulate acid-dependent and protease-dependent steps in reovirus disassembly, the sigma 3 proteins of wild-type strain type 3 Dearing; PI viruses L/C, PI 2A1, and PI 3-1; and four novel mutant sigma 3 proteins were expressed in insect cells and used to recoat ISVPs. Treatment of recoated ISVPs (rISVPs) with either of the endocytic proteases cathepsin L or cathepsin D demonstrated that an isolated tyrosine-to-histidine mutation at amino acid 354 (Y354H) enhanced sigma 3 proteolysis during viral disassembly. Yields of rISVPs containing Y354H in sigma3 were substantially greater than those of rISVPs lacking this mutation after growth in cells treated with either acidification inhibitor ammonium chloride or cysteine protease inhibitor E64. Image reconstructions of electron micrographs of virus particles containing wild-type or mutant sigma 3 proteins revealed structural alterations in sigma 3 that correlate with the Y354H mutation. These results indicate that a single mutation in sigma 3 protein alters its susceptibility to proteolysis and provide a structural framework to understand mechanisms of sigma 3 cleavage during reovirus disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号