首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incorporation of ethanol (1.0 or 1.25 M) into exponential-phase cultures of Saccharomyces cerevisiae NCYC 366 growing anaerobically in a medium supplemented with ergosterol and an unsaturated fatty acid caused a retardation in growth rate, which was greater when the medium contained oleic rather than linoleic acid. Ethanol incorporation led to an immediate drop in growth rate, and ethanol-containing cultures grew at the slower rate for at least 10 h. Incorporation of ethanol (0.5 M) into buffered (pH 4.5) cell suspensions containing d-[6-3H] glucose, d-[1-14C] glucosamine, l-[U-14C] lysine or arginine, or KH2 32PO4 lowered the rate of solute accumulation by cells. Rates of accumulation of glucose, lysine and arginine were retarded to a greater extent when cells had been grown in the presence of oleic rather than linoleic acid. This difference was not observed with accumulation of phosphate. Ethanol was extracted from exponential-phase cells by four different methods. Cells grown in the presence of linoleic acid contained a slightly, but consistently, lower concentration of ethanol than cells grown in oleic acid-containing medium. The ethanol concentration in cells was 5–7 times greater than that in the cell-free medium.  相似文献   

2.
The relationship between sporulation temperature and spore killing temperature is described.Bacillus subtilis YB886, grown and sporulated at 25°, 30°, 37°, and 45°C, produced spores having D90 values of 63.5, 76.3, 89.0, and 106 min respectively. In addition, the vegetative cells of this strain also demonstrated resistance to heat killing when grown at elevated temperatures (D50 of 26.6, 32.5, 39.0, and >50 min for cells grown at 25°, 30°, 37°, and 45°C). A transposon-generated mutant of strain YB886, designated as BUL786, which is missing a heat shock-induced protein (97 kDa) (Qoronfleh MW and Streips UN, BBRC, 138:526–532, 1986 and FEMS 1987), was tested for thermotolerance under similar conditions. The cells failed to respond to growth at high temperature by producing heat-resistant spores or vegetative cells. For strain BUL786 the D90 of spores generated at 20°, 25°, 30°, 37°, and 45°C was 9.4, 11.3, 12.8, 14.1, and 20 min, respectively. Similarly, the D50 of vegetative cells was 15, 16.8, 17.8, 19.0, and 22.3 min when the cells were grown at 20°, 25°, 30°, 37°, and 45°C. Also, sporulation of YB886 cells in the presence of cadmium chloride increased the D90 values for the resulting spores (5µM CdCl2 resulted in a D90 of 160 min). Strain BUL786 failed to produce spores with any elevated D90 when grown in the presence of CdCl2.  相似文献   

3.
A psychrotolerant microbial consortium from a low-temperature anaerobic EGSB bioreactor was grown separately on acetate, propionate, butyrate, and H2/CO2 at 30 and 10°C in glass flasks. In the course of the experiments, the cultivation temperature was changed at different time intervals. The initial rates of substrate utilization were higher at 30 than at 10°C. However, the microbial consortium was found to be well adapted to low temperatures; when grown at 10°C for 1.5–5 months, the rates of butyrate, propionate, and H2/CO2 utilization increased steadily. When grown at 30°C for 1.5–2.5 months, this consortium retained its ability to degrade VFA and H2/CO2 at 10°C. However, after long-term (150 days) cultivation at 10°C, its ability to utilize the substrates at 30°C decreased. In the consortium grown in the acetate-containing medium, a Methanosaeta-like methanogen was predominant; in media with propionate and butyrate, besides VFA-degrading bacteria, acetoclastic Methanosaeta-like and hydrogenotrophic Methanospirillum-like methanogenic archaea prevailed. A Methanospirillum-like strain predominated in the H2/CO2-containing medium. The Methanospirillum strain of this microbial community was presumably psychrotolerant. A method based on changes in the cultivation temperature is of practical interest and can be used to start up new bioreactors.  相似文献   

4.
Summary Carbon fixation by CAM at high night temperatures was examined in the stem succulent, Opuntia basilaris. Nighttime accumulation of titratable acids was uniformly high among plants growing naturally along an altitudinal temperature gradient in Death Valley, California during the hot summer period. Plants grown at high temperature regimes (40°/30°C) had rates of CAM and C3 fixation similar to rates observed in plants maintained at a cool temperature (20°/10°C). C3 fixation comprised 30% of the total carbon fixed by the potted, well watered plants. However, when pads were excised, C3 fixation was suppressed while CAM continued unabated.  相似文献   

5.
Summary An L1210 cell line (JT-1), which can grow in medium supplemented with 1nm folate, has been isolated. These cells exhibit a slower growth rate than folate-replete parental cells and have a lower ability to transport folate or methotrexate via the reduced folate transport system. Measurements at nanomolar concentrations of folate revealed that the adapted cells have acquired a high-affinity folate-binding protein. Binding to this component at 37°C was rapid and reached a maximum value after 30 min which corresponded in amount to 0.23±0.3 pmol/mg protein, and excess unlabeled folate added 30 min subsequent to the [3H]folate led to a rapid release of the bound substrate. Radioactivity bound to or released from the cells after 30 min at 37°C remained as unmetabolized folic acid. Binding was also rapid at 0°C but uptake at the plateau was only one-half the value obtained at 37°C. Half-maximal saturation of the binding component (K D) occurred at a folate concentration of 0.065nm at pH 7.4, while the affinity for folate decreased 30-fold when the pH was reduced to 6.2 (K D=2.0nm). 5-Methyltetrahydrofolate was also bound by this component (K i=13nm at pH 7.4) but with a much lower affinity than for folate, while progressively weaker interactions were observed with 5-formyltetrahydrofolate (K i=45nm) and methotrexate (K i=325nm). When the same adaptation procedure was performed with limiting amounts of 5-formyltetrahydrofolate, two additional cell lines, JT-2 and JT-3, were isolated which expressed elevated levels of the folate-binding protein. The binding activity of the latter cells was 0.46 and 1.4 pmol/mg protein, respectively. When the level of binding protein was compared in cells grown at different concentrations of folate, an increase in medium folate from 1 to 500nm caused a sevenfold reduction in binding activity in the JT-3 cell line, while these same growth conditions had no effect on binding by the other cells. These results indicate that L1210 cells adapted to low concentrations of folate or 5-formyltetrahydrofolate contain elevated levels of a high-affinity binding protein and that this protein is able to mediate the intracellular accumulation of folate compounds. L1210 cells thus appear to have two potential uptake routes for folate compounds, the previously characterized anion-exchange system and a second route mediated by a high-affinity binding protein. An additional low-affinity, high-capacity transport system for folate that had been proposed previously was not observed under a variety of experimental conditions in either the adapted or parental cells.  相似文献   

6.
Glycolate can be measured in the supernatant fraction after incubation of butyrate-grown cells of Rhodospirillum rubrum either colorimetrically by the Calkins method or enzymatically using glycolate oxidase. Under optimal conditions, half-maximal excretion occurs at 11% O2 and the maximal rate is 6.9 nmol of glycolate min-1 mg protein-1 at 30°C. The pH and temperature optima are 7.6 and 30°C and light intensity is saturating in the range of 2–10×104 lux. Carbon dioxide inhibits glycolate excretion and exogenous butyrate stimulates. Glycolate excretion is maximal by butyrate-light grown cells harvested in the early stationary phase and under all conditions is proportional to the cellular content of ribulose 1,5-bisphosphate carboxylase/oxygenase.Non-Standard Abbreviations Bicine (N,N-bis[2-hydroxyethyl]glycine) - RuBP d-ribulose-1,5-bisphosphate - HPMS 2-pyridylhydroxymethanesulfonate  相似文献   

7.
Summary The rate equation, including dependence on Na+-ion concentration for the influx of -aminoisobutyric acid into mouse brain slices incubated in isotonic glucose medium at 37°C, isv=0.402S/{1.02(1+788/[Na+]2)+S}+0.0477S, wherev=influx in mol/min, g final wet wt of slices; [Na+]=concentration of Na+ ions in medium, inmm; andS=concentration of -aminoisobutyric acid in medium, inmm. This equation shows two kinetically independent, parallel pathways of concentrative uptake: one, saturable and dependent on Na+; the other, unsaturable and independent of Na+. Influx is independent of ionic strength, Cl ionper se, and a moderate increase in tonicity. The binding of substrate to the saturable carrier depends on the Na+ concentration; the maximum capacity of this carrier does not. For transport, 2 Na+ ions must interact with each saturable transport site. This does not imply coupling between the flux of Na+ and the flux of -aminoisobutyric acid.  相似文献   

8.
Bacillus stearothermophilus L1 was isolated by enrichment culture using an alkaline extract of pulp as the carbon source at 65°C and pH 9.0. The bacterium produced extracellular xylanase and -l-arabinofuranosidase (EC 3.2.1.55). The xylanase activity was high when the cells were grown in the presence of d-xylose, whereas the arabinofuranosidase activity was high when grown in media containing l-arabinose. The arabinofuranosidase was purified 59-fold with an 80% yield by DEAE Sephacel and Sephadex G-100 chromatography. The purified enzyme had an apparent molecular mass of 110 000 kDa and consisted of two subunits of 52 500 kDa and 57 500 kDa. Using p-nitrophenyl--l-arabinofuranosidase as the substrate, the enzyme had a Michaelis constant (K m) of 2.2 × 10–4 m, maximum reaction velocity (Vmax) of 11o mol min–1 mg–1, temperature optimum of 70°C and pH optimum of 7.0 (50% activity at pH 8.0). The enzyme was specific for the furanoside configuration. The purified enzyme partially delignified softwood Kraft pulp. Treatment of the pulp with 38 units ml–1 of -l-arabinofuranosidase at 65°C for 2 h at pH 8.0 and 9.0 led to lignin releases of 2.3% and 2.1%, respectively. The enzyme acted synergistically with a thermophilic xylanase in the delignification process, yielding a 19.2% release of lignin. Correspondence to: Eugene Rosenberg  相似文献   

9.
-Galactosidase from B. coagulans strain L4 is produced constitutively, has a mol. wt. of 4.3×105 and an optimal temperature of 55°C. The optimal pH at 30°C is 6.0 whereas at 55°C it is 6.5. The energy of activation of enzyme activity is 41.9 kJ/mol (10 kcal/mol). No cations are required. The Km with ONPG as substrate is 4.2–5.6mm and with lactose is 50mm. The Ki for inhibition by galactose is 11.7–13.4mm and for dextrose is 50mm. Galactose inhibited competitively while dextrose inhibited noncompetitively. The purified and unprotected enzyme is 70% destroyed in 30 min at 55°C whereas in the presence of 2 mg/ml of BSA 42% of the activity is destroyed in 30 min at 55°C. An overall purification of 75.3-fold was achieved.  相似文献   

10.
Divalent cation (Mn2+, Ca2+) entry into rat parotid acinar cells is stimulated by the release of Ca2+ from the internal agonist-sensitive Ca2+ pool via a mechanism which is not yet defined. This study examines the effect of temperature on Mn2+ influx into internal Ca2+ pool-depleted acini (depl-acini, as a result of carbachol stimulation of acini in a Ca2+-free medium for 10 min) and passive 45Ca2+ influx in basolateral membrane vesicles (BLMV). Mn2+ entry into deplacini was decreased when the incubation temperature was lowered from 37 to 4°C. At 4°C, Mn2+ entry appeared to be inactivated since it was not increased by raising extracellular [Mn2+] from 50 m up to 1 mm. The Arrhenius plot of depletion-activated Mn2+ entry between 37 and 8°C was nonlinear, with a change in the slope at about 21°C. The activation energy (Ea) increased from 10 kcal/mol (Q10=1.7) at 21–37°C to 25 kcal/mol (Q10=3.0) at 21-8°C. Under the same conditions, Mn2+ entry into basal (unstimulated) cells and ionomycin (5 m) permeabilized depl-acini exhibit a linear decrease, with E a of 7.8 kcal/mol (Q10=1.5) and 6.2 kcal/mol (Q10 < 1.5), respectively. These data suggest that depletion-activated Mn2+ entry into parotid acini is regulated by a mechanism which is strongly temperature dependent and distinct from Mn2+ entry into unstimulated acini.As in intact acini, Ca2+ influx into BLMV was decreased (by 40%) when the temperature of the reaction medium was lowered from 37 to 4°C. Kinetic analysis of the initial rates of Ca2+ influx in BLMV at 37°C demonstrated the presence of two Ca2+ influx components: a saturable component, with K Ca =279 ± 43 m, Vmax = 3.38 ± 0.4 nmol Ca2+/mg protein/min, and an apparently unsaturable component. At 4°C, there was no significant change in the affinity of the saturable component, but Vmax decreased by 61% to 1.3 ± 0.4 nmol Ca2+/mg protein/min. There was no detectable change in the unsaturable component. When BLMV were treated with DCCD (5 mm) or trypsin (1100, enzyme to membrane) for 30 min at 37°C there was a 40% decrease in Ca2+ influx. When BLMV were treated with DCCD or trypsin at 4°C and subsequently assayed for Ca2+ uptake at 37°C there was no significant loss of Ca2+ influx. These data suggest that the temperature sensitive high affinity Ca2+ flux component in BLMV is mediated by a protein which undergoes a modification at low temperatures, resulting in decreased Ca2+ transport.We thank Dr. Bruce Baum, Dr. Yukiharu Hiramatsu, Dr. Ofer Eidelman, and our other colleagues for their support during this work.  相似文献   

11.
Two types of mesophilic methanogenic granules (R- and F-granules) were developed on different synthetic feeds containing acetate, propionate and butyrate as major carbon sources and their metabolic properties were characterized. The metabolic activities of granules on acetate, formate and H2-CO2 were related to the feed composition used for their development. These granules performed a reversible reaction between H2 production from formate and formate synthesis from H2 plus bicarbonate. Both types of granules exhibited high activity on normal and branched volatile fatty acids with three to five carbons and low activity on ethanol and glucose. The granules performed a reversible isomerization between isobutyrate and butyrate during butyrate or isobutyrate degradation. Valerate and 2-methylbutyrate were produced and consumed during propionate-butyrate degradation. The respective apparent K m (mm) for various substrates in disrupted R- and F-granules was: acetate, 0.43 and 0.41; propionate, 0.056 and 0.038; butyrate, 0.15 and 0.19; isobutyrate, 0.12 and 0.19; valerate, 0.15 and 0.098. Both granules had an optimum temperature range from 40 to 50° C for H2-CO2 and formate utilization and 40° C for acetate, propionate and butyrate utilization and a similar optimum pH. Correspondence to: J. G. Zeikus  相似文献   

12.
C. B. Johnson 《Planta》1979,145(1):63-68
Cells of Anacystis nidulans grown at 25 or 30°C were examined both by thin-section and freeze-fracture electron microscopy. Cells grown at either temperature appeared similar when fixed at the growth temperature prior to observation. When cells were chilled to near 0°C for 30 min prior to fixation, those previously grown at 25° appeared unchanged as judged by thin sectioning while those grown at 39° showed considerable morphological alteration. Freeze fracture showed particle aggregation (more pronounced in 39°-grown cells) indicating lipid-phase separation in cells chilled prior to fixation. The phase separation was totally reversed by rewarming the chilled, 25°-grown cells to their growth temperature but was only partially reversed by rewarming chilled, 39°-grown cells. These results correlate with other effects of chilling seen in Anacystis cells grown at different temperatures.  相似文献   

13.
Somatic embryos of Eleutherococcus senticosus were exposed at 12, 16, 24 and 30 °C for duration of 45 days in bioreactor. The effects of such treatments on the growth, eleutheroside B, E, E1, total phenolics, flavonoids, chlorogenic acid concentrations and antioxidant enzymes activities were investigated. The results revealed that low (12 and 18 °C) and high (30 °C) temperature caused significant decrease in fresh weight (FW), dry weight (DW), total phenolics, flavonoids and total eleutheroside accumulation, while low temperature increased eleutheroside E accumulation in somatic embryos. Low temperature significantly increased superoxide dismutase (SOD), catalase (CAT), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) activities whereas a strong increase in ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activity was obtained at 12 °C grown somatic embryos. In contrast, high temperature significantly decreased antioxidant enzymes activities and even guaiacol peroxidase (G-POD) activity also decreased at low temperature in comparison to 24 °C grown embryos. These data suggest that low and high temperature treatment provoked an oxidative stress in E. senticosus embryos, as shown by the increase in lipid peroxidation. The increase in lipid peroxidation was paralleled by a rise in lipoxygenase (LOX) activity and hydrogen peroxide (H2O2) content. However, this stress was more prominent at high temperature than low temperature grown embryos. This result suggests that the reduced growth of embryo at 30 °C was concomitant with reduced efficiency of these protective enzymes. On the other hand, increases in antioxidant activities at 12 and 18 °C could also be a response to the cellular damage; however, this increase could not stop the deleterious effects of low temperature, but reduced stress severity thus allowing embryo growth to occur.  相似文献   

14.
Summary The subdominant CAM species, Echinocereus viridiflorus and Mammillaria vivipara, collected from the shortgrass prairie in northeastern Colorado were pretreated and analyzed for gas exchange under cool temperatures (20/15°C) and warm temperatures (35/15°C). Well watered plants of both species under a 35/15°C thermoperiod fixed atmospheric CO2 during the night and early moring. Echinocereus viridiflorus grown and analyzed at 20/15°C fixed CO2 during the night, early morning and late afternoon but total carbon gain over a 24 h period is less than when grown and analyzed under the 35/15°C thermoperiod. Mammillaria vivipara grown and analyzed at 20/15°C assimilates CO2 at low rates during all parts of a 24 h period with the greatest CO2 fixation rates occuring from midday to late afternoon. The total carbon gain under the 20/15°C thermoperiod is less than that for this species under the 35/15°C thermoperiod. Decreasing the night temperature of plants grown under the warm conditions to 10°C or 5°C results in a depression of the night CO2 fixation in both species. E. viridiflorus from the cool growth conditions showed an enhancement of the CO2 uptake during the night, early morning and late afternoon when subjected to the cooler night temperatures (10°C and 5°C). The CO2 uptake of M. vivipara grown at 20/15°C shows an enhancement during the night and early morning while the CO2 fixation during midday and late afternoon is slightly depressed under cool night temperatures (10° and 5°C). Under the 35/15°C thermoperiod both species exhibit depressed rates of CO2 fixation during the night and early morning when water stressed. Plants of both species grown under the 20/15°C thermoperiod exhibit no net CO2 fixation following five weeks of water deprivation. Upon rewatering, E. viridiflorus begins to recover its capacity for CO2 fixation within 24 h under both the warm and cool temperature regimes. However, M. vivipara did not show recovery within 48 h following rewatering under the warm or cool temperature regime. Contrasting the patterns of gas exchange of the subdominant species, E. viridiflorus and M. vivipara, with a dominant CAM species of the shortgrass prairie, Opuntia polyacantha reveals significant differences that may well dictate the role of these species in this ecosystem. E. viridiflorus and M. vivipara have a lower capacity of carbon gain and recovery from water stress than O. polyacantha mainly due to their lack of late afternoon CO2 uptake. This study suggests that carbon gain plays an important role in limiting E. viridiflorus and M. vivipara in the shortgrass prairie ecosystem.  相似文献   

15.
Summary Trinitrocresolate (TNC) at a concentration of 2×10–3 m brings about rapid loss of K from starvingHalobacterium cells. Higher concentrations of other anions such as salicylate, thiocyanate, and perchlorate produce a similar effect. The TNC-induced K loss is not significantly reversed when TNC is removed from the ambient medium. The rate of K loss in the presence of 2×10–3 m TNC is only slightly increased by the temperature in the ranges of 30 to 40°C and 0 to 20°C; between 20 and 30°C, however, the rate increases 10-fold. The K loss was partly replaced by Na+. These data are interpreted in terms of the hypothesis that K is retained in starvingHalobacterium sp. not by active transport, but rather by selective binding on loci which are modified by TNC.  相似文献   

16.
Survival of stressed Escherichia coli with or without the rpoS gene was assessed after 2 and 6 days in sterile seawater. Cells were submitted to thermal (48°C), acidic (pH 5.1), oxidative (H2O2 1mm), nutritional (C, N, P starvation), or osmotic (NaCl 0.5m) stresses for periods ranging from 0 to 4 h. We found a stress-mediated cross protection against seawater relative to controls. Viability was higher when cells were acid, oxidatively, nutritionally or osmotically stressed. Survival increased in cells stressed at 37°C as compared with 20°C. With the exception of osmotic stress, we found that this stress-induced cross protection was rpoS dependent.Correspondence to: P.M. Munro.  相似文献   

17.
Summary The effect of pH, temperature, and carbon and nitrogen interaction on the growth and sporulation ofAspergillus nidulans (Eidam)Wint.,A. rugulosus Thom &Raper,A. variecolor (Berk. &Br.)Thom &Raper andA. quadrilineatus was studied. All the moulds could grow on a wide range of pH (2.0 to 12.0) but the growth was poor on too acid and too alkaline media. Best growth ofA. rugulosus, A. quadrilineatus, andA. violaceus was seen at pH 6.5 and that ofA. nidulans andA. variecolor at pH 7.0. In general maximum production of perithecia was recorded between pH 6.0 and 8.0.All the above species ofAspergillus under study could grow between a temperature range of 10° C–48° C, but the growth was poor at 10° C and 48° C. The present moulds showed good growth at 20° C, 25°C, and 30° C. At 40° CA. nidulans andA. rugulosus showed moderate growth while the rest of the Aspergilli attained good growth. Temperatures between 20° C–30° C favoured excellent perithecial production.In general, little improvement in growth was noted on media containing good carbon and nitrogen sources. Malic acid was found to be useless when supplied singly. But, poor growth was recorded when supplied in combination with amino acids, amide, and peptone. This was due to the fact that these N sources also supplied carbon for their metabolism.  相似文献   

18.
Summary The dry weights of three isolates ofColletotrichum graminicola (Ces.)Wills., growing at 10°, 15°, 20°, 30°, and 35° C in yeast extract liquid medium were recorded. Two temperature growth optima and minima occurred at 20°C, 30°C and 10°C, 25°C respectively.Portion of a Ph. D. thesis, The Ohio State University, Columbus 10, Ohio, U.S.A. Department of Botany and Plant Pathology. Paper Number 657.  相似文献   

19.
The growth-temperature range of the actinomycete, Thermomonospora curvata, was influenced by the nature of the soluble carbon sources used, which were derived from cellulose, pectin, starch and xylan. This thermophile had the broadest (38 to 65°C) and narrowest (42 to 59°C) temperature range during growth on cellobiose (from cellulose) and 4-deoxy-Lxxx-threo-t-hexoseulose uronic acid (from pectin), respectively. This substrate-temperature interaction was accompanied by changes in cellular fatty acids: uronic-acid-grown cells had relatively low amounts of branched chain fatty acids (particularly iso-16:0) and high amounts of monounsaturated fatty acids (particularly cis-18:1) compared with cells grown on any other substrate. Moreover, uronic-acid-grown cells could not respond to increased growth temperature by altering the ratio of branched chain fatty acids to straight chain fatty acids.F.J. Stutzenberger is with the Department of Microbiology, Clemson University, Clemson, SC 29634-1909, USA; T.C. Jenkins is with the Department of Animal, Dairy and Veterinary Sciences at the same university.  相似文献   

20.
The paper deals with the influence of temperature on the growth and sporulation of two species ofPhytophthora, viz.,P. palmivora Butl. andP. parasitica Dast. var.macrospora Ashby, the causal agents of fruit rots ofAchras sapota L. andAnona squamosa L. respectively. Germination of sporangia at different temperatures were also undertaken. There was marked variation in growth and sporulation of these two organisms. Isolate C (Phytophthora palmivora) showed no growth at 5° and 35°C, scanty growth at 10° and 32.5° with an optimum temperature between 26–28°C. On the other hand, Isolate S (Phytophthora parasitica var.macroscora) showed no growth at 10°C, but slight growth even at 37°C. Eight days exposure at 37°C completely stopped the growth of this Isolate. It showed best growth at 30°C and hence this was its optimum temperature. In general, Isolate C sporulated abundantly at all temperatures tested but reached its maximum at 25°C. On the other hand Isolate S showed best growth but failed to sporulate at any of the temperatures in 98 hours growth, although it sporulated freely when the incubation period extended up to two weeks. On the basis of temperature toleration the twoPhytophthora isolates are distinguished from each other as two different species. This confirms the earlier observations and nomenclature criterion as emphasized and formulated byTucker (1931). In the germination studies, it was observed that the indirect germination with the formation of abundant zoospores started from 5° and continued even up to 35°C, reaching maximum at 20°C. High temperature was not favourable for indirect germination. As the temperature proceeded increasing, the percentage of direct germination by formation of germ tubes also increased. Direct germination was observed from 10° which continued up to 37°C, with a maximum reach at 30°C. This confirms the epidemic of fruit rots in nature during monsoon season which is prevalent with the persistence of high humidity and rainfall.Taken from a thesis submitted by the author for the degree of Master of Science in the Faculty of Agriculture, Poona University, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号