首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theropod dinosaurs are well known for having a ziphodont dentition: serrated, blade-shaped teeth that they used for cutting through prey. Serrations along the carinae of theropod teeth are composed of true denticles, a complex arrangement of dentine, enamel, and interdental folds. This structure would have supported individual denticles and dissipated the stresses associated with feeding. These particular serrations were previously thought to be unique to theropod dinosaurs and some other archosaurs. Here, we identify the same denticles and interdental folds forming the cutting edges in the teeth of a Permian gorgonopsian synapsid, extending the temporal and phylogenetic distribution of this dental morphology. This remarkable instance of convergence not only represents the earliest record of this adaptation to hypercarnivory but also demonstrates that the first iteration of this feature appeared in non-mammalian synapsids. Comparisons of tooth serrations in gorgonopsians with those of earlier synapsids and hypercarnivorous mammals reveal some gorgonopsians acquired a complex tissue arrangement that differed from other synapsids.  相似文献   

2.
Summary A rich engineering literature exists that is applicable to many aspects of vertebrate jaw mechanics and has been referred to in many studies in this sector. But mechanical engineering technology has provided few theoretical bases that are directly helpful in the study of predator teeth. Hence, analyses of puncturing and slicing functions of these teeth have lacked a firm physical technology as a background. Predator teeth have evolved to pierce and cut animal tissues that are usually compliant in that they readily undergo relatively large deformations under applied stress before they actually yield. The bulk of engineering theory is directed toward such noncompliant materials as wood and metal, the design of tools that cut them, and the mechanics involved in this. The purpose of the present paper is to scan the mechanical implications of different tooth designs, pose hypotheses that relate to primary considerations of the physics of cutting compliant substrates, and offer a preliminary approach that is intended as a useful guide to further studies on sharks and on other vertebrate groups. Thus, in this paper I have attempted to formulate some tentative and preliminary generalizations concerning the mechanics of cutting compliant materials. Then comes a survey of the teeth of a particular group of predators, three families of sharks, in terms of these preliminary formulations. The approach views the shark teeth in isolation from the complex cranial mechanism (presently under study) that functionally integrates with the teeth. Therefore, adaptive conclusions are minimal, because the evolutionary significance of tooth form cannot properly be assessed outside of an integrated study. However, certain correlations do exist between structural tooth characteristics and mechanics. Slender, smooth-edged (or nearly so) teeth can readily pierce prey, but are of less use in slicing it. Such teeth are typical of the lower jaw dentition in many sharks and, in a few species, they are present in both upper and lower jaws. Usually these slender teeth display a reversed curvature at their tips, so that although most of the tooth's crown is curved inward toward the mouth cavity, the tip is turned outward. This outward turning of the tip can enhance the probability of initial prey penetration, without much compromising the prey-retaining properties of the inward curvature of the greater, more proximal portion of the tooth. Many sharks possess upper teeth with serrations along the edges. The serrations vary from one species to another in coarseness and in distribution along tooth edges. Serrated teeth can make greater use of the available biting forces, and they have a greater cutting effect than do smooth-edged teeth. These latter depend upon friction which, because the coefficient friction is always less than 1.0 (often very much less), can make use of only a fraction of the total bite force. However, smooth tooth blades can pierce prey with less resistance and are less prone to binding (becoming immobilized) in the prey tissue. In many shark species serrations are concentrated along the proximal portions of the tooth crown, where the bases of adjacent teeth are in near contact along the jaw margin. In these regions food can be pressed during feeding, resulting in a binding of the teeth in the prey. Release of the binding must be accomplished by cutting the jammed food, to permit clearance of the prey material so it can slip past the tooth rows. The more prominent serrations in such regions may act to puncture and slice the jammed tissue. It is noted that commercial saws are typically designed in various ways to promote clearance between adjacent saw teeth. The pitch or rake of the teeth of sharks is discussed, as is the overall form of the tooth rows along the jaw margins. The relationship between the distribution of teeth along the jaw margins and surface irregularities of the prey surfaces is also considered.  相似文献   

3.
The pharyngeal teeth and the masticatory process of the basioccipital bone were compared in fifteen species and subspecies of Japanese bitterlings.Acheilognathus lanceolata, A. limbata and two subspecies ofRhodeus ocellatus, which are characterized by the absence of serrations on the side of the pharyngeal teeth, have reduced occlusal grooves on the pharyngeal teeth. In the larvae of these species, the occlusal grooves are fairly developed. The occlusal grooves of the adult pharyngeal teeth in herbivorous species are more developed than those in omnivorous species. The occlusal grooves seem to have developed in relation to the feeding habits. On the basis of the combination of developmental degrees of the anterior part of the masticatory process, the occlusal grooves and the chewing area on the pharyngeal first tooth, Japanese bitterlings were classified into two groups and two types and/or five subtypes, suggesting phylogenetic relationships among them.  相似文献   

4.
An almost complete skeleton with partial cranial material (ZMNH-M8739) is recovered from the Early or Middle Jurassic of southwest China. ZMNH-M8739 is identified as a juvenile individual of basal sauropodomorph dinosaur, Yunnanosaurus robustus Young, 1951. The revised diagnoses are as follows: absence of anteroposterior expansion on the medial end of astragalus and dorsoventrally compressed medium shaft of the metatarsal IV. Unfused neural arch and finely grooved long bone surface texture indicate that this individual is in the immature growth stage. ZMNH-M8739 possesses the tooth–tooth wear facet on its mesial maxillary and dentary teeth. However, the distal maxillary teeth have coarse serrations. Such a characteristic dentition could represent a unique feeding mechanism of this animal. Finally, ZMNH-M8739 constitutes a monophyletic group with Y. robustus (holotype), and Y. huangi is nesting this clade in the phylogenetic tree of the present analysis. Comparison of juvenile and adult specimen reveals distinctive growth changes of Y. robustus. This clade is positioned in an unnamed clade at a sister taxon of Sauropoda. Finally, some members of the so-called prosauropod dinosaurs constitute a monophyletic group in the present result.  相似文献   

5.
Relative warp analyses of landmarks describing cranial and mandibular shape are used for investigating patterns of morphological variation among extant bears (Mammalia, Carnivora, Ursidae) indicative of diet and feeding behavior. These patterns are used for deriving inferences about the autecology of two extinct species previously assumed to have had different dietary preferences, the North American giant, short-faced bear Arctodus simus and the Eurasian cave bear Ursus spelaeus . Results reveal a set of shared craniodental traits among the herbivorous bears, including short and vaulted skulls with well-developed zygomatic arches, lateralized orbits and small canines, concave jaws with a highly positioned condyle, large moment arms for the temporalis and masseter muscles, and long cheek teeth. In contrast, those bears that consume animal resources have long skulls with small zygomatic arches, frontalized orbits and well-developed canines, and long jaws with a deep mandibular symphysis, low muscle leverages, a condyle situated at the level of the tooth row and reduced cheek teeth. The craniodental morphology of omnivorous bears is intermediate between those of faunivores and herbivores. This is also the case of the short-faced bear and the cave bear, which suggests that previous reconstructions of the feeding ecology of these extinct species (highly carnivorous for A. simus and herbivorous for U. spelaeus ) should be revised.  相似文献   

6.
Infection with Sarcocystis species is common in herbivores but is rare in bears. Histological sections of 374 black bears (Ursus americanus) from Pennsylvania were examined for sarcocysts. In total, 3 sarcocysts were found in 3 bears, with 1 sarcocyst per section. Sarcocysts from 2 bears were considered a new species, Sarcocystis ursusi. Sarcocysts of S. ursusi n. sp. were microscopic and contained only bradyzoites. By light microscopy, the sarcocyst wall was thin (< 0.5 microm thick) and had minute serrations. Ultrastructurally, the serrations on the sarcocyst wall consisted of villar protrusions (Vp) that were mostly 0.5 microm long. The Vp had bundles of electron-dense microtubules that were as wide as long; these microtubules extended deep into the ground substance layer, a feature that distinguished this species from unnamed sarcocysts from black bear. Bradyzoites were 4.8-6.0 microm long. The sarcocyst from the third bear was structurally different from S. ursusi; its sarcocyst wall was approximately 2 microm thick and had finger-like villi on the cyst wall giving the sarcocyst wall a striated appearance.  相似文献   

7.
Atomic force microscopy study of tooth surfaces   总被引:6,自引:0,他引:6  
Atomic force microscopy (AFM) was used to study tooth surfaces in order to compare the pattern of particle distribution in the outermost layer of the tooth surfaces. Human teeth and teeth from a rodent (Golden hamster), from a fish (piranha), and from a grazing mollusk (chiton) with distinct feeding habits were analyzed in terms of particle arrangement, packing, and size distribution. Scanning electron microscopy and transmission electron microscopy were used for comparison. It was found that AFM gives high-contrast, high-resolution images and is an important tool as a source of complementary and/or new structural information. All teeth were cleaned and some were etched with acidic solutions before analysis. It was observed that human enamel (permanent teeth) presents particles tightly packed in the outer surface, whereas enamel from the hamster (continuously growing teeth) shows particles of less dense packing. The piranha teeth have a thin cuticle covering the long apatite crystals of the underlying enameloid. This cuticle has a rough surface of particles that have a globular appearance after the brief acidic treatment. The similar appearance of the in vivo naturally etched tooth surface suggests that the pattern of globule distribution may be due to the presence of an organic material. Elemental analysis of this cuticle indicated that calcium, phosphorus, and iron are the main components of the structure while electron microdiffraction of pulverized cuticle particles showed a pattern consistent with hydroxyapatite. The chiton mineralized tooth cusp had a smooth surface in an unabraded region and a very rough structure with the magnetite crystals (already known to make part of the structure) protruding from the surface. It was concluded that the structures analyzed are optimized for efficiency in feeding mechanism and life span of the teeth.  相似文献   

8.
Preening is the principle behavioral defense used by birds to combat ectoparasites. Most birds have a small overhang at the tip of their bills that is used to shear through the tough cuticle of ectoparasitic arthropods, making preening much more efficient. Birds may also scratch with their feet to defend against ectoparasites. This is particularly important for removing ectoparasites on the head, which birds cannot preen. Scratching may be enhanced by the comb-like serrations that are found on the claws of birds in many avian families. We examined the prevalence and intensity of ectoparasites of barn owls (Tyto alba pratincola) in southern Idaho in relation to bill hook length and morphological characteristics of the pectinate claw. The barn owls in our study were infested with 3 species of lice (Phthiraptera: Ischnocera): Colpocephalum turbinatum , Kurodaia subpachygaster, and Strigiphilus aitkeni . Bill hook length was associated with the prevalence of these lice. Owls with longer hooks were more likely to be infested with lice. Conventional wisdom suggests that the bill morphology of raptors has been shaped by selection for efficient foraging; our data suggest that hook morphology may also play a role in ectoparasite defense. The number of teeth on the pectinate claw was also associated with the prevalence of lice. Owls that had claws with more teeth were less likely to be infested with lice, which suggests that larger pectinate claws may offer relatively more protection against ectoparasitic lice. Experiments that manipulate the bill hook and pectinate claw are needed to confirm whether these host characters are involved in ectoparasite defense. Finally, we recovered mammalian ectoparasites from 4 barn owls. We recovered species of mammalian lice (Phthiraptera:Anoplura) and fleas (Siphonaptera) that are commonly found on microtine rodents. The owls probably acquired these parasites from recently eaten prey. This represents 1 of the few documented cases of parasites "straggling" from prey to predator.  相似文献   

9.
Leopard seals (Hydrurga leptonyx) are unusual among apex predators in that they feed at both the top and near the bottom of marine food webs; they capture and consume marine amniotes (seals and penguins) as well as krill. This is thought to be achieved with their unusual dentition: rostral caniniform teeth function to grip large prey and tricuspate postcanines function to sieve krill. The use of canine teeth is known, yet until now, the function of the postcanines has never been documented. Here, we present the first direct observations of filter feeding in leopard seals. Suction was used to draw small prey into the mouth followed by expulsion of ingested seawater through the sieve formed by postcanine teeth. Individuals show abrasive wear on canines and incisors, but not postcanines. This suggests that postcanines are not systematically used for piercing prey during macrophagous feeding, confirming that the postcanines primarily serve a sieving function. Rather than being less efficient at feeding as a result of its polarized diet, the leopard seal is well adapted towards two disparate feeding modes.  相似文献   

10.
Tetraodontiform fishes are characterized by jaws specialized for powerful biting and a diet dominated by hard-shelled prey. Strong biting by the oral jaws is an unusual feature among teleosts. We present a functional morphological analysis of the feeding mechanism of a representative tetraodontiform, Balistes vetula. As is typical for the order, long, sharp, strong teeth are mounted on the short, robust jaw bones of B. vetula. The neurocranium and suspensorium are enlarged and strengthened to serve as sites of attachment for the greatly hypertrophied adductor mandibulae muscles. Electromyographic recordings made from 11 cranial muscles during feeding revealed four distinct behaviors in the feeding repertoire of B. vetula. Suction is used effectively to capture soft prey and is associated with a motor pattern similar to that reported for many other teleosts. However, when feeding on hard prey, B. vetula directly bit the prey, exhibiting a motor pattern very different from that of suction feeding. During buccal manipulation, repeated cycles of jaw opening and closing (biting) were coupled with rapid movement of the prey in and out of the mouth. Muscle activity during buccal manipulation was similar to that seen during bite-captures. A blowing behavior was periodically employed during prey handling, as prey were forcefully “spit out” from the mouth, either to reposition them or to separate unwanted material from flesh. The motor pattern used during blowing was distinct from similar behaviors described for other fishes, indicating that this behaviors may be unique to tetraodontiforms. Thus B. vetula combines primitive behaviors and motor patterns (suction feeding and buccal manipulation) with specialized morphology (strong teeth, robust jaws, and hypertrophied adductor muscles) and a novel behavior (blowing) to exploit armored prey such as sea urchins molluscs, and crabs. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Foraging behaviours used by two female Australian fur seals (Arctocephalus pusillus doriferus) were documented during controlled feeding trials. During these trials the seals were presented with prey either free-floating in open water or concealed within a mobile ball or a static box feeding device. When targeting free-floating prey both subjects primarily used raptorial biting in combination with suction, which was used to draw prey to within range of the teeth. When targeting prey concealed within either the mobile or static feeding device, the seals were able to use suction to draw out prey items that could not be reached by biting. Suction was followed by lateral water expulsion, where water drawn into the mouth along with the prey item was purged via the sides of the mouth. Vibrissae were used to explore the surface of the feeding devices, especially when locating the openings in which the prey items had been hidden. The mobile ball device was also manipulated by pushing it with the muzzle to knock out concealed prey, which was not possible when using the static feeding device. To knock prey out of this static device one seal used targeted bubble blowing, where a focused stream of bubbles was blown out of the nose into the openings in the device. Once captured in the jaws, prey items were manipulated and re-oriented using further mouth movements or chews so that they could be swallowed head first. While most items were swallowed whole underwater, some were instead taken to the surface and held in the teeth, while being vigorously shaken to break them into smaller pieces before swallowing. The behavioural flexibility displayed by Australian fur seals likely assists in capturing and consuming the extremely wide range of prey types that are targeted in the wild, during both benthic and epipelagic foraging.  相似文献   

12.
The largest specimen of the four‐winged dromaeosaurid dinosaur Microraptor gui includes preserved gut contents. Previous reports of gut contents and considerations of functional morphology have indicated that Microraptor hunted in an arboreal environment. The new specimen demonstrates that this was not strictly the case, and offers unique insights into the ecology of nonavian dinosaurs early in the evolution of flight. The preserved gut contents are composed of teleost fish remains. Several morphological adaptations of Microraptor are identified as consistent with a partially piscivorous diet, including dentition with reduced serrations and forward projecting teeth on the anterior of the dentary. The feeding habits of Microraptor can now be understood better than that of any other carnivorous nonavian dinosaur, and Microraptor appears to have been an opportunistic and generalist feeder, able to exploit the most common prey in both the arboreal and aquatic microhabitats of the Early Cretaceous Jehol ecosystem.  相似文献   

13.

Background

Owls have developed serrations, comb-like structures, along the leading edge of their wings. Serrations were investigated from a morphological and a mechanical point of view, but were not yet quantitatively compared for different species. Such a comparative investigation of serrations from species of different sizes and activity patterns may provide new information about the function of the serrations.

Results

Serrations on complete wings and on tenth primary remiges of seven owl species were investigated. Small, middle-sized, and large owl species were investigated as well as species being more active during the day and owls being more active during the night. Serrations occurred at the outer parts of the wings, predominantly at tenth primary remiges, but also on further wing feathers in most species. Serration tips were oriented away from the feather rachis so that they faced into the air stream during flight. The serrations of nocturnal owl species were higher developed as demonstrated by a larger inclination angle (the angle between the base of the barb and the rachis), a larger tip displacement angle (the angle between the tip of the serration and the base of the serration) and a longer length. Putting the measured data into a clustering algorithm yielded dendrograms that suggested a strong influence of activity pattern, but only a weak influence of size on the development of the serrations.

Conclusions

Serrations are supposed to be involved in noise reduction during flight and also depend on the aerodynamic properties that in turn depend on body size. Since especially nocturnal owls have to rely on hearing during prey capture, the more pronounced serrations of nocturnal species lend further support to the notion that serrations have an important function in noise reduction. The differences in shape of the serrations investigated indicate that a silent flight requires well-developed serrations.  相似文献   

14.
Abstract

Many types of wear facets can be found in mammalian teeth. Some are related to the initial surface, others use the cross-section of the enamel as the main tool. In primary occlusal surfaces facets mark the gradual wear, that are related to a relatively late ontogeny. Facets in teeth with secondary occlusal surfaces, however, represent specific arrangements of crests of enamel and dentine. Such facets require some initial wear to become fully functional. The tooth morphology guarantees such facets to be effective for a long period of time. Therefore they can be discriminated as specialized facets. From the different types of facets three specialized ones were selected, blade facets, rasp-facets, and nipper-facets, because they ate widely distributed, function differently, and are comparable with mechanical tools. They are long lasting and differ in the amount of exposed dentine. The amount of dentine is used to differentiate phases during late ontogeny, the part of the life history, when teeth are exposed to wear. Consequently the various types of facets can be related to different ontogenetic phases. The relevant phases are prolonged at the cost of other ontogenetic phases. Therefore, the various specialized wear facets represent heterochronies within the ontogeny of teeth.  相似文献   

15.
Relationship between morphology and diets of six neotropical loricariids   总被引:1,自引:0,他引:1  
Most loricariids are algivorous and detritivorous and play an important role in both the grazer and detritus food chains of neotropical waters. Relationships between morphological variation and diet were analysed in six syntopic species ( Rhinelepis aspera, Hypostomus regani, H. ternetzi, H. margaritifer, H. microstomus and Megalancistrus aculeatus ) fished commercially in a 10 km2 area of the Upper Paraná River upstream from the Itaipu Reservoir. Species feeding on fine grained detritus use suction to obtain food, and possess a well-developed respiratory membrane, long gill rakers, rudimentary labial and pharyngeal teeth, a thin stomach wall, and a long intestine. Species feeding on coarser material (e.g. periphyton), ingest food by scraping the substratum. Their morphological characteristics are large, strong, spatulate teeth, short gill rakers, a well-developed stomach, and a shorter intestine. The first species group is composed by R. aspera while the latter by M. aculeatus and H. microstomus . The others species had an intermediary position.  相似文献   

16.
The Middle Eocene (Lutetian) strata constituting the top of the Subathu Formation in Jammu and Kashmir, have yielded a large number of ziphodont crocodilians. The affinity of these serrated-toothed crocodiles has been assigned to the Eusuchian Pristichampsus rather than to the Sebecosuchia. The teeth are morphologically diverse, strongly fluted with serrations varying from fine to coarse. It is believed that the Kashmir ziphodont crocodiles are migrant descendants of Chinese forms which spread across the Indian sub-continent. Their presence in Europe may be accounted by migration along with Asiatosuchus across the Turgai Straits sometime in the Early Eocene.  相似文献   

17.
A new crocodylomorph tooth assemblage from the Lower Member of the Douiret Formation (uppermost Jurassic–lowermost Cretaceous) in southeastern Tunisia is described. These teeth have been grouped into five morphotypes based on their diagnostic morphological features. The sample includes teeth, which have not been reported until now, such as non-Machimosaurini teleosauroid teeth, and labiolingually compressed tooth crowns with cutting edges devoid of serrations. Certain minor morphometric differences have been interpreted as ontogenetic or being possibly related to the position of the teeth in the jaws. Three trophic entities have subsequently been defined on the basis of the morphological characteristics of the teeth, and a possible niche partitioning between at least three crocodylomorph taxa is highlighted for the first time in the Tataouine Basin. On the other hand, the stratigraphic context of the Douiret Formation is thoroughly discussed in order to show how stratigraphic uncertainties could significantly impact previous attempts at reconstructing the macroevolutionary history of Crocodylomorpha. The latter should be treated with caution when the stratigraphic context of the fossil bearing formation remains a subject of debate.  相似文献   

18.
Pinnipeds generally target relatively small prey that can be swallowed whole, yet often include larger prey in their diet. To eat large prey, they must first process it into pieces small enough to swallow. In this study we explored the range of prey‐processing behaviors used by Australian sea lions (Neophoca cinerea) when presented with large prey during captive feeding trials. The most common methods were chewing using the teeth, shaking prey at the surface, and tearing prey held between the teeth and forelimbs. Although pinnipeds do not masticate their food, we found that sea lions used chewing to create weak points in large prey to aid further processing and to prepare secured pieces of prey for swallowing. Shake feeding matches the processing behaviors observed in fur seals, but use of forelimbs for “hold and tear” feeding has not been previously reported for other otariids. When performing this processing method, prey was torn by being stretched between the teeth and forelimbs, where it was secured by being squeezed between the palms of their flippers. These results show that Australian sea lions use a broad repertoire of behaviors for prey processing, which matches the wide range of prey species in their diet.  相似文献   

19.
Two specimens of the peculiar squalid shark,Trigonognathus kabeyai gen. et sp. nov., were collected from the coastal waters of Wakayama and Tokushima, Japan, by bottom trawl at depths of 330 and 360 meters. Shape of teeth similar in both jaws; slender, unicuspid, canine-like, without any cusplets or serrations, with weak thin fold on both lingual and labial sides in anterior teeth on both jaws; tooth at symphysis of each jaw longest. Interspace between teeth very wide. Both jaws triangular in shape. Most of dermal denticles on body and head roughly rhombic, swollen very much near central part, with about 10–40 facets on the dorsal surface of its crown. Preoral snout length very short. Many small organs considered to be photophores present mainly on ventral surfaces of head and body.  相似文献   

20.
The Coccinellidae is an economically important family within the Coleoptera. Some members are phytophagous pests, but many are beneficial predators and valuable biocontrol agents. This study investigates the morphology of the mandibles of adult Coccinellidae in relation to diet. Using scanning electron microscopy on 86 species of Coccinellidae, it was found that the morphology of the mandibles was dictated by the general feeding method, and could only be used to indicate a phytophagous, mycophagous or carnivorous diet. Phytophagous Coccinellidae of the subfamily Epilachninae had mandibles with denticulate apical teeth and setae for feeding on leaf material. The mandibles of the mycophagous Psylloborini had secondary teeth on the ventral apical tooth for collecting fungal spores. The mandibles of carnivorous Coccinellidae and Scymninae had either a bifid or unidentate apex. The unidentate mandible seemed to be restricted to coccidophagous species. Many species also had a mandibular groove along which prey body juices were conducted. Although mandible morphology could be related to the overall feeding method, there was no relationship between specific diet or food taxon and mandible shape. Mandible shape does not appear to be especially restricting for changes in diet either in the ecological sense or over evolutionary time. Mandible morphology is of limited use in determining diet and host specificity in Coccinellidae that are being selected as potential biocontrol agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号