首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Shapiro  E A Fox  J F Riordan 《Biochemistry》1989,28(4):1726-1732
The role of lysines in the ribonucleolytic and angiogenic activities of human angiogenin has been examined by chemical modification and site-directed mutagenesis. It was demonstrated previously [Shapiro, R., Weremowicz, S., Riordan, J.F., & Vallee, B.L. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8783-8787] that extensive treatment with lysine reagents markedly decreases the ribonucleolytic activity of angiogenin. In the present study, limited chemical modification with 1-fluoro-2,4-dinitrobenzene followed by C18 high-performance liquid chromatography yielded several (dinitrophenyl)angiogenin derivaties. The major derivative formed had slightly increased enzymatic activity compared with the unmodified protein. Tryptic peptide mapping demonstrated the site of modification to be Lys-50. A second derivative, modified at Lys-60, was 34% active. Analysis of a third derivative indicated that modification of Lys-82 did not decrease activity. Thus, Lys-50 and Lys-82 are unessential for enzymatic activity while Lys-60 may play a minor role. No pure derivative modified at Lys-40, corresponding to the active-site residue Lys-41 of the homologous protein ribonuclease A, could be obtained by chemical procedures. Therefore, we employed oligonucleotide-directed mutagenesis to replace this lysine with glutamine or arginine. The Gln-40 derivative had less than 0.05% enzymatic activity compared with the unmodified protein and substantially reduced angiogenic activity when examined with the chick embryo chorioallantoic membrane assay. These results suggest that the angiogenic activity of the protein is dependent on an intact enzymatic active site. The Arg-40 derivative had 2.2% ribonucleolytic activity compared with unmodified angiogenin. The effects of reductive methylation of this derivative indicate that no lysines other than Lys-40 are critical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Malate dehydrogenase specifically oxidizes malate to oxaloacetate. The specificity arises from three arginines in the active site pocket that coordinate the carboxyl groups of the substrate and stabilize the newly forming hydroxyl/keto group during catalysis. Here, the role of Arg-153 in distinguishing substrate specificity is examined by the mutant R153C. The x-ray structure of the NAD binary complex at 2.1 A reveals two sulfate ions bound in the closed form of the active site. The sulfate that occupies the substrate binding site has been translated approximately 2 A toward the opening of the active site cavity. Its new location suggests that the low catalytic turnover observed in the R153C mutant may be due to misalignment of the hydroxyl or ketone group of the substrate with the appropriate catalytic residues. In the NAD.pyruvate ternary complex, the monocarboxylic inhibitor is bound in the open conformation of the active site. The pyruvate is coordinated not by the active site arginines, but through weak hydrogen bonds to the amide backbone. Energy minimized molecular models of unnatural analogues of R153C (Wright, S. K., and Viola, R. E. (2001) J. Biol. Chem. 276, 31151-31155) reveal that the regenerated amino and amido side chains can form favorable hydrogen-bonding interactions with the substrate, although a return to native enzymatic activity is not observed. The low activity of the modified R153C enzymes suggests that precise positioning of the guanidino side chain is essential for optimal orientation of the substrate.  相似文献   

3.
The activation of sorghum NADP-malate dehydrogenase is initiated by thiol/disulfide interchanges with reduced thioredoxin followed by the release of the C-terminal autoinhibitory extension and a structural modification shaping the active site into a high efficiency and high affinity for oxaloacetate conformation. In the present study, the role of the active site arginines in the activation and catalysis was investigated by site-directed mutagenesis and arginyl-specific chemical derivatization using butanedione. Sequence and mass spectrometry analysis were used to identify the chemically modified groups. Taken together, our data reveal the involvement of Arg-134 and Arg-204 in oxaloacetate coordination, suggest an indirect role for Arg-140 in substrate binding and catalysis, and clearly confirm that Arg-87 is implicated in cofactor binding. In contrast with NAD-malate dehydrogenase, no lactate dehydrogenase activity could be promoted by the R134Q mutation. The decreased susceptibility of the activation of the R204K mutant to NADP and its increased sensitivity to the histidine-specific reagent diethylpyrocarbonate indicated that Arg-204 is involved in the locking of the active site. These results are discussed in relation with the recently published NADP-MDH three-dimensional structures and the previously established three-dimensional structures of NAD-malate dehydrogenase and lactate dehydrogenase.  相似文献   

4.
M D Bond  B L Vallee 《Biochemistry》1990,29(13):3341-3349
The region of human angiogenin containing residues 8-21 is highly conserved in angiogenins from four mammalian species but differs substantially from the corresponding region of the homologous protein ribonuclease A (RNase A). Regional mutagenesis has been employed to replace this segment of angiogenin with the corresponding RNase A sequence, and the activities of the resulting covalent angiogenin/RNase hybrid, designated ARH-III, have been examined. The ribonucleolytic activity of ARH-III is unchanged toward most substrates, including tRNA, naked 18S and 28S rRNA, CpA, CpG, UpA, and UpG. In contrast, the capacity of ARH-III to inhibit cell-free protein synthesis is decreased 20-30-fold compared to that of angiogenin. The angiogenic activity of ARH-III is also different; it is actually more potent. It induces a maximal response in the chick chorioallantoic membrane assay at 0.1 ng per egg, a 10-fold lower dose than required for angiogenin. In addition, binding of ARH-III to the placental ribonuclease inhibitor is increased by at least 1 order of magnitude (Ki less than or equal to 7 x 10(-17) M) compared to angiogenin. Thus, mutation of a highly conserved region of angiogenin markedly affects those properties likely involved in its biological function(s); it does not, however, alter ribonucleolytic activity toward most substrates.  相似文献   

5.
R Shapiro  B L Vallee 《Biochemistry》1989,28(18):7401-7408
The roles of His-13 and His-114 in the ribonucleolytic and angiogenic activities of human angiogenin have been investigated by site-directed mutagenesis. Replacement of either residue by alanine (H13A and H114A) decreases enzymatic activity toward tRNA by at least 10,000-fold and virtually abolishes 10,000-fold and virtually abolishes angiogenic activity in the chick embryo chorioallantoic membrane assay. Both the H13A and H114A mutant proteins compete effectively with angiogenin in the latter assay; only a 5-fold molar excess of H13A over unmodified protein is required for complete inhibition. The His----Ala substitutions, however, do not have any significant effect on the interaction of angiogenin with human placental ribonuclease inhibitor, an extremely potent inhibitor of angiogenin (Ki approximately 7 x 10(-16 M) previously shown to interact with another active-site residue, Lys-40. The effects of more conservative replacements-glutamine at position 13 and asparagine at position 114--were also examined. While the enzymatic activity of the H114N mutant was at least 3300-fold less than for the unmodified protein, the H13Q derivative had only 300-fold reduced activity toward tRNA and cytidylyl(3'----5') adenosine. Both substitutions substantially decreased angiogenic activity. The parallel effects on ribonucleolytic and biological activities observed with all four mutant proteins provide strong evidence that the latter activity of angiogenin is dependent on a functional enzymatic active site. The capacity of the H13A and H114A derivatives to compete with angiogenin in the chorioallantoic membrane assay suggests several additional features of the biological mode of action of this protein.  相似文献   

6.
Isolation of angiogenin from normal human plasma   总被引:22,自引:0,他引:22  
Angiogenin, a potent blood vessel inducing protein, was previously isolated from medium conditioned by a human adenocarcinoma cell line [Fett, J. W., Strydom, D.J., Lobb, R.R., Alderman, E.M., Bethune, J.L., Riordan, J.F., & Vallee, B.L. (1985) Biochemistry 24, 5480-5486]. We now report that a protein which is physically and functionally identical with angiogenin is present in normal human plasma and can be purified to homogeneity by CM 52 and Mono S cation-exchange chromatography. The plasma-derived angiogenin exhibits the same angiogenic and ribonucleolytic activities, amino acid composition, molecular weight, immunoreactivity, and chromatographic behavior as the tumor cell derived protein. Peptide mapping and sequencing studies indicate chemical identity of the two proteins. The present yield of angiogenin from either plasma or serum is 60-150 micrograms/L. These findings demonstrate that angiogenin is not a tumor-specific product and provide further opportunities for the investigation of the role and mechanism of action of angiogenin and its potential diagnostic or prognostic utility.  相似文献   

7.
Two distinct regions of angiogenin are critical for angiogenic activity: a catalytic site capable of cleaving RNA and a noncatalytic site, encompassing residues 60-68, which may bind to an endothelial cell-surface receptor [Hallahan, T. W., Shapiro, R., & Vallee, B. L. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 2222-2226]. We have now shown that Asn-61 is an essential residue within the cell-binding site and that in addition a segment containing Asn-109 is part of this site. Both asparagines undergo nonenzymatic deamidation during long-term storage or treatment at alkaline pH. While the isolated desamido-61 and desamido-109 derivatives retain nearly full enzymatic activity, their angiogenic activity on the chicken embryo chorioallantoic membrane is markedly attenuated and they do not inhibit angiogenin-induced neovascularization. Tryptic peptide mapping and Edman degradation demonstrate that the isolated deamidated derivatives primarily contain isoaspartic rather than aspartic acid at the positions in question (83% for desamido-61, greater than 99% for desamido-109). Aspartic acid replacement of Asn-61 and Asn-109 by site-directed mutagenesis results in the same ribonucleolytic and angiogenic activities as those of the spontaneous deamidation products. However, the aspartyl derivatives differ strikingly from their isoaspartyl counterparts in that they do inhibit angiogenin-induced angiogenesis. These results indicate that the combination of ribonucleolytic activity and receptor-binding capacity is not sufficient for angiogenic activity and that Asn-61 and Asn-109 within the noncatalytic site are required for some additional function, as yet undefined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A cluster of conserved histidines and arginines (His-62, His-167, Arg-21, Arg-38, and Arg-168) in 3-phosphoglycerate kinase (PGK) has been implicated as possibly involved in the binding of 3-phosphoglycerate (3-PG) and/or stabilization of the negatively charged transition state. The role of these residues in the catalytic function of yeast PGK and in the substrate- and sulfate-dependent activation was investigated by site-directed mutagenesis. The following substitutions, R21A, R21Q, H62Q, H167S, and R168Q, produced functional enzymes. In contrast, the R38A and R38Q mutations resulted in a complete loss of catalytic activity. These results demonstrate that of the basic residues studied, only arginine 38 is essential for the catalytic function of PGK. A moderate decrease in the catalytic efficiency as the result of the R21A, H167S, and R168Q mutations and an increased catalytic efficiency of the H62Q mutant rule out a possible role of a positive charge at these positions in the mechanism of phosphoryl transfer reaction. In contrast to the wild type PGK and the H62Q mutant, both of which are activated at low and inhibited at high sulfate concentration, the H167S, R168Q, and R21A mutants exhibited a progressive inhibition with increased concentration of sulfate. The activation observed at high concentration of either ATP or 3-PG as a variable substrate in the steady-state kinetics of wild type PGK was abolished as the result of the latter three mutations. The results of this work support the hypothesis that PGK has two binding sites for anionic ligands, the catalytic and regulatory sites for each substrate and the activatory and inhibitory sites for sulfate, and suggest that arginine 21, arginine 168, and histidine 167 are located in the activatory anion binding site, common for sulfate, 3-PG, and ATP. The increased Km values for both substrates and decreased specific activities of the mutants suggest that this regulatory site is close to the catalytic site.  相似文献   

9.
Two conserved catalytic arginines, Arg-173 and Arg-292, of the tyrosine site-specific recombinase Cre are essential for the transesterification steps of strand cleavage and joining in native DNA substrates containing scissile phosphate groups. The active site tyrosine (Tyr-324) provides the nucleophile for the cleavage reaction, and forms a covalent 3′-phosphotyrosyl intermediate. The 5′-hydroxyl group formed during cleavage provides the nucleophile for the joining reaction between DNA partners, yielding strand exchange. Previous work showed that substitution of the scissile phosphate (P) by methylphosphonate (MeP) permits strand cleavage by a Cre variant lacking Arg-292. We now demonstrate that MeP activation and cleavage are not blocked by substitution of Arg-173 or even simultaneous substitutions of Arg-173 and Arg-292 by alanine. Furthermore, Cre(R173A) and Cre(R292A) are competent in strand joining, Cre(R173A) being less efficient. No joining activity is detected with Cre(R173A, R292A). Consistent with their ability to cleave and join strands, Cre(R173A) and Cre(R292A) can promote recombination between two MeP-full-site DNA partners. These findings shed light on the overall contribution of active site electrostatics, and tease apart distinctive contributions of the individual arginines, to the chemical steps of recombination. They have general implications in active site mechanisms that promote important phosphoryl transfer reactions in nucleic acids.  相似文献   

10.
Three arginine residues (Arg-11, Arg-39, Arg-61) are found at the active site of 4-oxalocrotonate tautomerase in the X-ray structure of the affinity-labeled enzyme [Taylor, A. B., Czerwinski, R. M., Johnson, R. M., Jr., Whitman, C. P., and Hackert, M. L. (1998) Biochemistry 37, 14692-14700]. The catalytic roles of these arginines were examined by mutagenesis, kinetic, and heteronuclear NMR studies. With a 1,6-dicarboxylate substrate (2-hydroxymuconate), the R61A mutation showed no kinetic effects, while the R11A mutation decreased k(cat) 88-fold and increased K(m) 8.6-fold, suggesting both binding and catalytic roles for Arg-11. With a 1-monocarboxylate substrate (2-hydroxy-2,4-pentadienoate), no kinetic effects of the R11A mutation were found, indicating that Arg-11 interacts with the 6-carboxylate of the substrate. The stereoselectivity of the R11A-catalyzed protonation at C-5 of the dicarboxylate substrate decreased, while the stereoselectivity of protonation at C-3 of the monocarboxylate substrate increased in comparison with wild-type 4-OT, indicating the importance of Arg-11 in properly orienting the dicarboxylate substrate by interacting with the charged 6-carboxylate group. With 2-hydroxymuconate, the R39A and R39Q mutations decreased k(cat) by 125- and 389-fold and increased K(m) by 1.5- and 2.6-fold, respectively, suggesting a largely catalytic role for Arg-39. The activity of the R11A/R39A double mutant was at least 10(4)-fold lower than that of the wild-type enzyme, indicating approximate additivity of the effects of the two arginine mutants on k(cat). For both R11A and R39Q, 2D (1)H-(15)N HSQC and 3D (1)H-(15)N NOESY-HSQC spectra showed chemical shift changes mainly near the mutated residues, indicating otherwise intact protein structures. The changes in the R39Q mutant were mainly in the beta-hairpin from residues 50 to 57 which covers the active site. HSQC titration of R11A with the substrate analogue cis, cis-muconate yielded a K(d) of 22 mM, 37-fold greater than the K(d) found with wild-type 4-OT (0.6 mM). With the R39Q mutant, cis, cis-muconate showed negative cooperativity in active site binding with two K(d) values, 3.5 and 29 mM. This observation together with the low K(m) of 2-hydroxymuconate (0.47 mM) suggests that only the tight binding sites function catalytically in the R39Q mutant. The (15)Nepsilon resonances of all six Arg residues of 4-OT were assigned, and the assignments of Arg-11, -39, and -61 were confirmed by mutagenesis. The binding of cis,cis-muconate to wild-type 4-OT upshifts Arg-11 Nepsilon (by 0.05 ppm) and downshifts Arg-39 Nepsilon (by 1.19 ppm), indicating differing electronic delocalizations in the guanidinium groups. A mechanism is proposed in which Arg-11 interacts with the 6-carboxylate of the substrate to facilitate both substrate binding and catalysis and Arg-39 interacts with the 1-carboxylate and the 2-keto group of the substrate to promote carbonyl polarization and catalysis, while Pro-1 transfers protons from C-3 to C-5. This mechanism, together with the effects of mutations of catalytic residues on k(cat), provides a quantitative explanation of the 10(7)-fold catalytic power of 4-OT. Despite its presence in the active site in the crystal structure of the affinity-labeled enzyme, Arg-61 does not play a significant role in either substrate binding or catalysis.  相似文献   

11.
Previous photolabeling and limited proteolysis studies suggested that one of the four basic residues (Arg-141) of the N-terminal cytoplasmic loop connecting helices IV and V (loop 4-5) of the melibiose permease (MelB) from Escherichia coli has a potential role in its symport function (Ambroise, Y., Leblanc, G., and Rousseau, B. (2000) Biochemistry 39, 1338-1345). A mutagenesis study of Arg-141 and of the other three basic residues of loop 4-5 was undertaken to further examine this hypothesis. Cys replacement analysis indicated that Arg-141 and Arg-149, but not Lys-138 and Arg-139, are essential for MelB transport activity. Replacement of Arg-141 by neutral residues (Cys or Gln) inactivated transport and energy-independent carrier-mediated flows of substrates (counterflow, efflux), whereas it had a limited effect on co-substrate binding. R141C sugar transport was partially rescued on reintroducing a positive charge with a charged and permeant thiol reagent. Whereas R149C was completely inactive, R149K and R149Q remained functional. Strikingly, introduction of an additional mutation in the C-terminal helix X (Gly for Val-343) of R149C restored sugar transport. Impermeant thiol reagents inhibited R149C/V343G transport activity in right-side-out membrane vesicles and prevented sugar binding in a sugar-protected manner. All these data suggest that MelB loop 4-5 is close to the sugar binding site and that the charged residue Arg-141 is involved in the reaction of co-substrate translocation or substrate release in the inner compartment.  相似文献   

12.
The sulfurylase domain of the mouse bifunctional enzyme ATP sulfurylase/adenosine 5'-phosphosulfate (APS) kinase contains HXXH and PP-loop motifs. To elucidate the functional importance of these motifs and of conserved arginines and histidines, chemical modification and site-directed mutagenesis studies were performed. Chemical modification of arginines and histidines with phenylglyoxal and diethyl pyrocarbonate, respectively, renders the enzyme inactive in sulfurylase, kinase, and overall assays. Data base searches and sequence comparison of bifunctional ATP sulfurylase/APS kinase and monofunctional ATP sulfurylases shows a limited number of highly conserved arginines and histidines within the sulfurylase domain. Of these conserved residues, His-425, His-428, and Arg-421 are present within or near the HXXH motif whereas His-506, Arg-510, and Arg-522 residues are present in and around the PP-loop. The functional role of these conserved residues was further studied by site-directed mutagenesis. In the HXXH motif, none of the alanine mutants (H425A, H428A, and R421A) had sulfurylase or overall activity, whereas they all exhibited normal kinase activity. A slight improvement in reverse sulfurylase activity (<10% residual activity) and complete restoration of forward sulfurylase was observed with R421K. Mutants designed to probe the PP-loop requirements included H506A, R510A, R522A, R522K, and D523A. Of these, R510A exhibited normal sulfurylase and kinase activity, R522A and R522K showed no sulfurylase activity, and H506A had normal sulfurylase activity but produced an effect on kinase activity (<10% residual activity). The single aspartate, D523A, which is part of the highly conserved GRD sequence of the PP-loop, affected both sulfurylase and kinase activity. This mutational analysis indicates that the HXXH motif plays a role only in the sulfurylase activity, whereas the PP-loop is involved in both sulfurylase and kinase activities. Residues specific for sulfurylase activity have also been distinguished from those involved in kinase activity.  相似文献   

13.
Submaxillaris protease, reportedly specific for arginine residues, was used to probe accessible arginines of chicken erythrocyte nucleosome cores. The relative rates of digestion of histones in nucleosome cores by this protease were H3 greater than H2b greater than H4 much greater than H2a. At most, 8 of 52 total arginines among the four core histones were reasonably accessible to attack. Sites most rapidly cleaved were Arg-26 in H3, a site approximately 13 residues from the NH2 terminus of H2b, and Lys-12 or Arg-17 in H4. Five sites attacked more slowly were Arg-8, -128, or -129 and Arg-49, -52, or -53 in H3; Arg-3 and Arg-17 or -19 in H4; and a site near one terminus of H2b or H3. H2a and fragments resulting from the above cleavages were highly resistant to attack, even after prolonged incubation. Similar results were obtained upon digestion of histones in intact chromatin. H1 and H5 in whole chromatin were attacked at rates comparable to H3. Seven of the eight accessible sites lie outside of structure-forming histone sequences, i.e. sequences that are immobilized in histone complexes, indicating that these sequences are inaccessible in nucleosome cores. The single exceptional site noted, approximately 50 residues from the NH2 terminus of H3, is consistent with previous observations that Glu-51 and Glu-60 of H3 in nucleosomes are accessible to attack by S. aureus protease (Rill, R. L., and Oosterhof, D. K. (1981). J. Biol. Chem. 256, 12687-12691). The relationships of these protease accessibilities to NMR assignments of mobile histone tails in nucleosome cores are discussed.  相似文献   

14.
In thymidylate synthase, four conserved arginines provide two hydrogen bonds each to the oxygens of the phosphate group of the substrate, 2'-deoxyuridine-5'-monophosphate. Of these, R23, R178, and R179 are far removed from the site of methyl transfer and contribute to catalysis solely through binding and orientation of ligands. These arginines can be substituted by other residues, while still retaining more than 1% activity of the wild-type enzyme. We compared the kinetics and determined the crystal structures of dUMP complexes of three of the most active, uncharged single mutants of these arginines, R23I, R178T, and R179T, and of double mutants (R23I, R179T) and (R178T, R179T). The dramatically higher K(m) for R178T compared to the other two single mutants arises from the effects of R178 substitution on the orientation of dUMP; 10-15-fold increases in for R23I and R178T reflect the role of these residues in stabilizing the closed conformation of TS in ternary complexes. The free energy for productive dUMP binding, DeltaG(S), increases by at least 1 kcal/mol for each mutant, even when dUMP orientation and mobility in the crystal structure is the same as in wild-type enzyme. Thus, the four arginines do not contribute excess positive charge to the PO(4)(-2) binding site; rather, they ideally complement the charge and geometry of the phosphate moiety. More-than-additive increases in DeltaG(S) seen in the double mutants are consistent with quadratic increases in DeltaG(S) predicted for deviations from ideal electrostatic interactions and may also reflect cooperative binding of the arginines to the phosphate oxygens.  相似文献   

15.
Characteristic ribonucleolytic activity of human angiogenin   总被引:29,自引:0,他引:29  
R Shapiro  J F Riordan  B L Vallee 《Biochemistry》1986,25(12):3527-3532
Angiogenin, a blood vessel inducing protein isolated from a human tumor cell line, has been found to exhibit ribonucleolytic activity. It catalyzes the cleavage of both 28S and 18S ribosomal RNA as determined by agarose gel electrophoresis. The major products formed with these substrates are 100-500 nucleotides in length. In contrast, angiogenin is inactive toward all of the more conventional substrates of the homologous pancreatic ribonucleases. In particular, it does not produce detectable amounts of acid-soluble fragments from high molecular weight wheat germ RNA, poly(C), or poly(U), nor does it hydrolyze cytidine or uridine cyclic 2',3'-phosphate. The high degree of sequence homology between angiogenin and the pancreatic ribonucleases, which includes all three catalytic residues, His-12, Lys-41, and His-119, has thus identified the chemical nature of a potential angiogenin substrate. These results may bear importantly on the physiological function of angiogenin.  相似文献   

16.
Leon BC  Tsigelny I  Adams JA 《Biochemistry》2001,40(34):10078-10086
Autophosphorylation of Tyr-1073 in the activation loop of the oncoprotein v-Fps enhances the phosphoryl transfer reaction without influencing substrate, ATP, or metal ion binding affinities [Saylor, P., et al. (1998) Biochemistry 37, 17875-17881]. A structural model of v-Fps, generated from the insulin receptor, indicates that pTyr-1073 chelates two arginines. Mutation of these residues to alanine (R1042A and R1066A) results in weakly phosphorylated enzymes, indicating that one electropositive center is insufficient for attaining maximum loop phosphorylation and concomitant high catalytic activity. While the turnover rate for R1066A is similar to that for a mutant lacking a phosphorylatable residue in the activation loop, the rate for R1042A is 50-fold slower. While solvent perturbation studies suggest that the former is due to a slow phosphoryl transfer step, the latter effect results from a slow conformational change in the mutant, potentially linked to motions in the catalytic loop. Binding of a stoichiometric quantity of Mg(2+) is essential for ATP binding and catalysis, while binding of an additional Mg(2+) ion activates further the wild-type enzyme. The affinity of the R1066A enzyme for the second Mg(2+) ion is 23-fold higher than that of the phosphorylated or unphosphorylated form of wild-type v-Fps, with substrate binding unaffected. Conversely, the affinity of R1066A for a substrate mimic lacking a phosphorylation site is 12-fold higher than that for the phosphorylated or unphosphorylated form of wild-type v-Fps, with binding of the second Mg(2+) ion unaffected. A comparison of these enzyme-independent parameters indicates that Arg-1042 and Arg-1066 induce strain in the active site in the repressed form of the enzyme. While this strain is not relieved in the phosphorylated form, the improvements in catalysis in activated v-Fps compensate for reduced metal and substrate binding affinities.  相似文献   

17.
Limited Proteolysis of Angiogenin by Elastase Is Regulated by Plasminogen   总被引:4,自引:0,他引:4  
Human neutrophil elastase cleaves angiogenin at the Ile-29/Met-30 peptide bond to produce two major disulfide-linked fragments with apparent molecular weights of 10,000 and 4000, respectively. Elastase-cleaved angiogenin has slightly increased ribonucleolytic activity, but has lost its ability to undergo nuclear translocation in endothelial cells, a process essential for angiogenic activity. Cleavage appears to alter the cell-binding properties of angiogenin, despite the fact that it occurs some distance from the putative receptor-binding site, since the elastase-cleaved protein fails to compete with its native counterpart for nuclear translocation in endothelial cells. Plasminogen specifically accelerates elastase proteolysis of angiogenin. It does not enhance elastase activity toward ribonuclease A or the synthetic peptide substrate MeOSuc-Ala-Ala-Pro-Val-pNA. Plasminogen-accelerated inactivation of angiogenin by elastase might be a significant event in the process of angiogenin-induced angiogenesis since (i) angiogenin and plasminogen circulate in plasma at high concentrations, (ii) angiogenin, especially when bound to actin, activates tissue plasminogen activator to generate plasmin from plasminogen, and (iii) elastase cleaves plasminogen to produce angiostatin, a potent inhibitor of angiogenesis and metastasis. Interrelationships among angiogenin, plasminogen, plasminogen activators, elastase, and angiostatin may provide a sensitive regulatory system to balance angiogenesis and antiangiogenesis.  相似文献   

18.
The active site of the tyrosine family site-specific recombinase Flp contains a conserved catalytic pentad that includes two arginine residues, Arg-191 and Arg-308. Both arginines are essential for the transesterification steps of strand cleavage and strand joining in DNA substrates containing a phosphate group at the scissile position. During strand cleavage, the active site tyrosine supplies the nucleophile to form a covalent 3′-phosphotyrosyl intermediate. The 5′-hydroxyl group produced by cleavage provides the nucleophile to re-form a 3′-5′ phosphodiester bond in a recombinant DNA strand. In previous work we showed that substitution of the scissile phosphate (P) by the charge neutral methylphosphonate (MeP) makes Arg-308 dispensable during the catalytic activation of the MeP diester bond. However, in the Flp(R308A) reaction, water out-competes the tyrosine nucleophile (Tyr-343) to cause direct hydrolysis of the MeP diester bond. We now report that for MeP activation Arg-191 is also not required. In contrast to Flp(R308A), Flp(R191A) primarily mediates normal cleavage by Tyr-343 but also exhibits a weaker direct hydrolytic activity. The cleaved MeP-tyrosyl intermediate formed by Flp(R191A) can be targeted for nucleophilic attack by a 5′-hydroxyl or water and channeled toward strand joining or hydrolysis, respectively. In collaboration with wild type Flp, Flp(R191A) promotes strand exchange between MeP- and P-DNA partners. Loss of a catalytically crucial positively charged side chain can thus be suppressed by a compensatory modification in the DNA substrate that neutralizes the negative charge on the scissile phosphate.  相似文献   

19.
J W Harper  E A Fox  R Shapiro  B L Vallee 《Biochemistry》1990,29(31):7297-7302
The primary structure of the blood vessel inducing protein angiogenin is 35% identical with that of pancreatic ribonuclease (RNase) and contains counterparts for the critical RNase active-site residues His-12, Lys-41, and His-119. Although angiogenin is a ribonucleolytic enzyme, its activity toward conventional substrates is lower than that of pancreatic RNase by several orders of magnitude. Comparison of the amino acid sequences of RNase and angiogenin reveals several striking differences in the region flanking the active-site lysine, including a deletion and a transposition of aspartic acid and proline residues. In order to examine how these sequence changes alter the functional properties of angiogenin, an angiogenin/RNase hybrid protein (ARH-II), in which residues 38-41 of angiogenin (Pro-Cys-Lys-Asp) have been replaced by the corresponding segment of bovine pancreatic RNase (Asp-Arg-Cys-Lys-Pro), was prepared by regional mutagenesis. Compared to angiogenin, ARH-II has markedly diminished angiogenic activity on the chick embryo chorioallantoic membrane but 5-75-fold greater enzymatic activity toward a variety of polynucleotide and dinucleotide substrates. In addition, the specificity of ARH-II toward dinucleotide substrates differs from that of angiogenin and is qualitatively similar to that of pancreatic RNase. Thus, non-active-site residues near Lys-40 in angiogenin appear to play a significant role in determining enzymatic specificity and reactivity as well as angiogenic potency. An additional angiogenin/RNase hybrid protein (ARH-IV), in which residues 59-71 of ARH-II have been replaced by the corresponding segment of pancreatic RNase, was also prepared.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the initial and committed step in glycerolipid biosynthesis. We previously cloned the cDNA sequence to murine mitochondrial GPAT (Yet, S-F., Lee, S., Hahm, Y. T., and Sul, H.S. (1993) Biochemistry 32, 9486-9491). We expressed the protein in insect cells which was targeted to mitochondria, purified, and reconstituted mitochondrial GPAT activity using phospholipids (Yet, S.-F., Moon, Y., and Sul, H. S. (1995) Biochemistry 34, 7303-7310). Deletion of the seven amino acids from mitochondrial GPAT, (312)IFLEGTR(318), which is highly conserved among acyltransferases in glycerolipid biosynthesis, drastically reduced mitochondrial GPAT activity. Treatment of mitochondrial GPAT with arginine-modifying agents, phenylglyoxal and cyclohexanedione, inactivated the enzyme. Two highly conserved arginine residues, Arg-318, in the seven amino stretch, and Arg-278, were identified. Substitution of Arg-318 with either alanine, histidine, or lysine reduced the mitochondrial GPAT activity by over 90%. On the other hand, although substitution of Arg-278 with alanine and histidine decreased mitochondrial GPAT activity by 90%, replacement with lysine reduced activity by only 25%. A substitution of the nonconserved Arg-279 with either alanine, histidine, or lysine did not alter mitochondrial GPAT activity. Moreover, R278K mitochondrial GPAT still showed sensitivity to arginine-modifying agents, as in the case of wild-type mitochondrial GPAT. These results suggest that Arg-318 may be critical for mitochondrial GPAT activity, whereas Arg-278 can be replaced by a basic amino acid. Examination of the other conserved residues in the seven amino acid stretch revealed that Phe-313 and Glu-315 are also important, but conservative substitutions can partially maintain activity; substitution with alanine reduced activity by 83 and 72%, respectively, whereas substituting Phe-313 with tyrosine and Glu-315 with glutamine had even lesser effect. In addition, there was no change in fatty acyl-CoA selectivity. Kinetic analysis of the R318K and R318A mitochondrial GPAT showed an 89 and 95%, respectively, decrease in catalytic efficiency but no major change in substrate binding as indicated by the K(m) values for palmitoyl-CoA and glycerol 3-phosphate. These studies indicate importance of the conserved seven amino acid stretch for mitochondrial GPAT activity and the significance of Arg-318 for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号