首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The GTPase dynamin has been clearly implicated in clathrin-mediated endocytosis of synaptic vesicle membranes at the presynaptic nerve terminal. Here we describe a novel 52-kDa protein in rat brain that binds the proline-rich C terminus of dynamin. Syndapin I (synaptic, dynamin-associated protein I) is highly enriched in brain where it exists in a high molecular weight complex. Syndapin I can be involved in multiple protein–protein interactions via a src homology 3 (SH3) domain at the C terminus and two predicted coiled-coil stretches. Coprecipitation studies and blot overlay analyses revealed that syndapin I binds the brain-specific proteins dynamin I, synaptojanin, and synapsin I via an SH3 domain-specific interaction. Coimmunoprecipitation of dynamin I with antibodies recognizing syndapin I and colocalization of syndapin I with dynamin I at vesicular structures in primary neurons indicate that syndapin I associates with dynamin I in vivo and may play a role in synaptic vesicle endocytosis. Furthermore, syndapin I associates with the neural Wiskott-Aldrich syndrome protein, an actin-depolymerizing protein that regulates cytoskeletal rearrangement. These characteristics of syndapin I suggest a molecular link between cytoskeletal dynamics and synaptic vesicle recycling in the nerve terminal.  相似文献   

2.
Insights into mechanisms coordinating membrane remodeling, local actin nucleation, and postsynaptic scaffolding during postsynapse formation are important for understanding vertebrate brain function. Gene knockout and RNAi in individual neurons reveal that the F-BAR protein syndapin I is a crucial postsynaptic coordinator in formation of excitatory synapses. Syndapin I deficiency caused significant reductions of synapse and dendritic spine densities. These syndapin I functions reflected direct, SH3 domain–mediated associations and functional interactions with ProSAP1/Shank2. They furthermore required F-BAR domain-mediated membrane binding. Ultra-high-resolution imaging of specifically membrane-associated, endogenous syndapin I at membranes of freeze-fractured neurons revealed that membrane-bound syndapin I preferentially occurred in spines and formed clusters at distinct postsynaptic membrane subareas. Postsynaptic syndapin I deficiency led to reduced frequencies of miniature excitatory postsynaptic currents, i.e., to defects in synaptic transmission phenocopying ProSAP1/Shank2 knockout, and impairments in proper synaptic ProSAP1/Shank2 distribution. Syndapin I–enriched membrane nanodomains thus seem to be important spatial cues and organizing platforms, shaping dendritic membrane areas into synaptic compartments.  相似文献   

3.
Dynamin I mediates vesicle fission during synaptic vesicle endocytosis (SVE). Its proline-rich domain (PRD) binds the Src-homology 3 (SH3) domain of a subset of proteins that can deform membranes. Syndapin I, amphiphysin I, and endophilin I are its major partners implicated in SVE. Syndapin binding is controlled by phosphorylation at Ser-774 and Ser-778 in the dynamin phospho-box. We now define syndapin and endophilin-binding sites by peptide competition and site-directed mutagenesis. Both bound the same region of the dynamin PRD and both exhibited unusual bidirectional binding modes around core PxxP motifs, unlike amphiphysin which employed a class II binding mode. Endophilin binds to tandem PxxP motifs in the sequence (778)SPTPQRRAPAVPPARPGSR(796) in dynamin, with SPTPQ being an overhang sequence. In contrast, syndapin binding involves two components in the region (772)RRSPTSSPTPQRRAPAVPPARPGSR(796). It required a single PxxP core and a non-PxxP N-terminally anchored extension which bridges the phospho-box and may contribute to binding specificity and affinity. Syndapin binding is exquisitely sensitive to the introduction of negative charges almost anywhere along this region, explaining why it is a highly tuned phospho-sensor. Over-expression of dynamin point mutants that fail to bind syndapin or endophilin inhibit SVE in cultured neurons. Due to overlapping binding sites the interactions between dynamin and syndapin or endophilin were mutually exclusive. Because syndapin acts as a phospho-sensor, this supports its role in depolarization-induced SVE at the synapse, which involves dynamin dephosphorylation. We propose syndapin and endophilin function either at different stages during SVE or in mechanistically distinct types of SVE.  相似文献   

4.
Despite the fact that inositol hexakisphosphate (InsP(6)) is the most abundant inositol metabolite in cells, its cellular function has remained an enigma. In the present study, we present the first evidence of a protein kinase identified in rat cerebral cortex/hippocampus that is activated by InsP(6). The substrate for the InsP(6)-regulated protein kinase was found to be the synaptic vesicle-associated protein, pacsin/syndapin I. This brain-specific protein, which is highly enriched at nerve terminals, is proposed to act as a molecular link coupling components of the synaptic vesicle endocytic machinery to the cytoskeleton. We show here that the association between pacsin/syndapin I and dynamin I can be increased by InsP(6)-dependent phosphorylation of pacsin/syndapin I. These data provide a model by which InsP(6)-dependent phosphorylation regulates synaptic vesicle recycling by increasing the interaction between endocytic proteins at the synapse.  相似文献   

5.
The existence of neuron-specific endocytic protein isoforms raises questions about their importance for specialized neuronal functions. Dynamin, a GTPase implicated in the fission reaction of endocytosis, is encoded by three genes, two of which, dynamin 1 and 3, are highly expressed in neurons. We show that dynamin 3, thought to play a predominantly postsynaptic role, has a major presynaptic function. Although lack of dynamin 3 does not produce an overt phenotype in mice, it worsens the dynamin 1 KO phenotype, leading to perinatal lethality and a more severe defect in activity-dependent synaptic vesicle endocytosis. Thus, dynamin 1 and 3, which together account for the overwhelming majority of brain dynamin, cooperate in supporting optimal rates of synaptic vesicle endocytosis. Persistence of synaptic transmission in their absence indicates that if dynamin plays essential functions in neurons, such functions can be achieved by the very low levels of dynamin 2.  相似文献   

6.
Syndapin I (SdpI) interacts with proteins involved in endocytosis and actin dynamics and was therefore proposed to be a molecular link between the machineries for synaptic vesicle recycling and cytoskeletal organization. We here report the identification and characterization of SdpII, a ubiquitously expressed isoform of the brain-specific SdpI. Certain splice variants of rat SdpII in other species were named FAP52 and PACSIN 2. SdpII binds dynamin I, synaptojanin, synapsin I, and the neural Wiskott-Aldrich syndrome protein (N-WASP), a stimulator of Arp2/3 induced actin filament nucleation. In neuroendocrine cells, SdpII colocalizes with dynamin, consistent with a role for syndapin in dynamin-mediated endocytic processes. The src homology 3 (SH3) domain of SdpI and -II inhibited receptor-mediated internalization of transferrin, demonstrating syndapin involvement in endocytosis in vivo. Overexpression of full-length syndapins, but not the NH(2)-terminal part or the SH3 domains alone, had a strong effect on cortical actin organization and induced filopodia. This syndapin overexpression phenotype appears to be mediated by the Arp2/3 complex at the cell periphery because it was completely suppressed by coexpression of a cytosolic COOH-terminal fragment of N-WASP. Consistent with a role in actin dynamics, syndapins localized to sites of high actin turnover, such as filopodia tips and lamellipodia. Our results strongly suggest that syndapins link endocytosis and actin dynamics.  相似文献   

7.
Neurotransmission involves the exo-endocytic cycling of synaptic vesicle (SV) membranes. Endocytic membrane retrieval and clathrin-mediated SV reformation require curvature-sensing and membrane-bending BAR domain proteins such as endophilin A. While their ability to sense and stabilize curved membranes facilitates membrane recruitment of BAR domain proteins, the precise mechanisms by which they are targeted to specific sites of SV recycling has remained unclear. Here, we demonstrate that the multi-domain scaffold intersectin 1 directly associates with endophilin A to facilitate vesicle uncoating at synapses. Knockout mice deficient in intersectin 1 accumulate clathrin-coated vesicles at synapses, a phenotype akin to loss of endophilin function. Intersectin 1/endophilin A1 complex formation is mediated by direct binding of the SH3B domain of intersectin to a non-canonical site on the SH3 domain of endophilin A1. Consistent with this, intersectin-binding defective mutant endophilin A1 fails to rescue clathrin accumulation at neuronal synapses derived from endophilin A1-3 triple knockout (TKO) mice. Our data support a model in which intersectin aids endophilin A recruitment to sites of clathrin-mediated SV recycling, thereby facilitating vesicle uncoating.  相似文献   

8.
Syndapins belong to the F-BAR domain protein family whose predicted functions in membrane tubulation remain poorly studied in vivo. At Drosophila neuromuscular junctions, syndapin is associated predominantly with a tubulolamellar postsynaptic membrane system known as the subsynaptic reticulum (SSR). We show that syndapin overexpression greatly expands this postsynaptic membrane system. Syndapin can expand the SSR in the absence of dPAK and Dlg, two known regulators of SSR development. Syndapin's N-terminal F-BAR domain, required for membrane tubulation in cultured cells, is required for SSR expansion. Consistent with a model in which syndapin acts directly on postsynaptic membrane, SSR expansion requires conserved residues essential for membrane binding in vitro. However, syndapin's Src homology (SH) 3 domain, which negatively regulates membrane tubulation in cultured cells, is required for synaptic targeting and strong SSR induction. Our observations advance knowledge of syndapin protein function by 1) demonstrating the in vivo relevance of membrane remodeling mechanisms suggested by previous in vitro and structural analyses, 2) showing that SH3 domains are necessary for membrane expansion observed in vivo, and 3) confirming that F-BAR proteins control complex membrane structures.  相似文献   

9.
Synaptophysin is a synaptic vesicle (SV) protein of unknown function. Here we show that a repeated sequence in the cytoplasmic tail of synaptophysin mediates the formation of a protein complex containing the GTPase dynamin. The formation of this complex requires a high Ca(2+) concentration, suggesting that it occurs preferentially at the sites of SV exocytosis. Coimmunoprecipitation of a dynamin-synaptophysin complex from brain extracts is promoted by dissociation of vesicle-associated membrane protein 2 from synaptophysin. This finding suggests that dynamin only associates with synaptophysin in vivo after vesicle-associated membrane protein 2 (VAMP2) enters the SNARE complex. GTP binding releases dynamin from synaptophysin, possibly serving to regulate dynamin selfassembly during endocytosis. Our results suggest that synaptophysin plays a role in SV recycling by recruiting dynamin to the vesicle membrane.  相似文献   

10.
Membrane topology control is thought to involve peripheral membrane proteins of the F-BAR domain family including syndapins. These proteins are predestined to shape membranes by partial insertion and by imposing their curved shape onto the lipid bilayer. Direct observation of such functions on cellular membranes, however, was precluded by the difficulty to combine high-resolution imaging with visualization of membrane topology. Here, we report the ultrastructural visualization of endogenous syndapin II at the plasma membrane of NIH 3T3 cells using a combination of freeze-fracturing, immunogold labeling and transmission electron microscopy. Surprisingly, syndapin II was detected at flat and curved membrane areas. Ultrastructural colocalization with caveolin 1 identified syndapin II-positive invaginations as caveolae. Consistent with the syndapin II F-BAR domain interacting with caveolin 1, F-BAR overexpression affected caveolin 1 localization. Syndapin II knockdown did not alter caveolin 1 expression or plasma membrane recruitment. Instead, syndapin II knockdown reduced the density of caveolae and strongly increased the number of caveolin 1 molecules at flat membrane areas. Comparative immunoelectron microscopy and tilt series revealed that syndapin II was asymmetrically localized at the neck of caveolae. Double-immunogold labeling showed that the caveolae-shaping molecule PTRF/cavin 1 behaved similarly and that syndapin II and PTRF/cavin 1 colocalized. Visualization of a transiently membrane-binding F-BAR protein in direct relation to membrane topology of mammalian cells thereby revealed that syndapin II binds to both flat and curved membranes in vivo and that it plays an important role in caveolar shaping, a role that it shares with PTRF/cavin 1.  相似文献   

11.
Spatial control of cortical actin nucleation is indispensable for proper establishment and plasticity of cell morphology. Cobl is a novel WH2 domain-based actin nucleator. The cellular coordination of Cobl's nucleation activity, however, has remained elusive. Here, we reveal that Cobl's cellular functions are dependent on syndapin. Cobl/syndapin complexes form in vivo, as demonstrated by colocalization, coimmunoprecipitation and subcellular recruitment studies. In vitro reconstitutions and subcellular fractionations demonstrate that, via its lipid-binding Fer/CIP4 Homology (FCH)-Bin/Amphiphysin/Rvs (F-BAR) domain, syndapin recruits Cobl to membranes. Consistently, syndapin I RNAi impairs cortical localization of Cobl. Further functional studies in neurons show that Cobl and syndapin I work together in dendritic arbor development. Importantly, both proteins are crucial for dendritogenesis. Cobl-mediated functions in neuromorphogenesis critically rely on syndapin I and interestingly also on Arp3. Endogenous Cobl, syndapin I and the Arp2/3 complex activator and syndapin-binding partner N-WASP were present in one complex, as demonstrated by coimmunoprecipitations. Together, these data provide detailed insights into the molecular basis for Cobl-mediated functions and reveal that different actin nucleators are functionally intertwined by syndapin I during neuromorphogenesis.  相似文献   

12.
Central synapses operate neurotransmission in several modes: synchronous/fast neurotransmission (neurotransmitters release is tightly coupled to action potentials and fast), asynchronous neurotransmission (neurotransmitter release is slower and longer lasting), and spontaneous neurotransmission (where small amounts of neurotransmitter are released without being evoked by an action potential). A substantial body of evidence from the past two decades suggests that seemingly identical synaptic vesicles possess distinct propensities to fuse, thus selectively serving different modes of neurotransmission. In efforts to better understand the mechanism(s) underlying the different modes of synaptic transmission, many research groups found that synaptic vesicles used in different modes of neurotransmission differ by a number of synaptic proteins. Synchronous transmission with higher temporal fidelity to stimulation seems to require synaptotagmin 1 and complexin for its Ca2+ sensitivity, RIM proteins for closer location of synaptic vesicles (SV) to the voltage operated calcium channels (VGCC), and dynamin for SV retrieval. Asynchronous release does not seem to require functional synaptotagmin 1 as a calcium sensor or complexins, but the activity of dynamin is indispensible for its maintenance. On the other hand, the control of spontaneous neurotransmission remains less clear as deleting a number of essential synaptic proteins does not abolish this type of synaptic vesicle fusion. VGCC distance from the SV seems to have little control on spontaneous transmission, while there is an involvement of functional synaptic proteins including synaptotagmins and complexin. Recently, presynaptic deficits have been proposed to contribute to a number of pathological conditions including cognitive and mental disorders. In this review, we evaluate recent advances in understanding the regulatory mechanisms of synaptic vesicle dynamics and in understanding how different molecular substrates maintain selective modes of neurotransmission. We also highlight the implications of these studies in understanding pathological conditions.  相似文献   

13.
Dynamin I, a GTPase involved in the endocytic cycle of synaptic vesicle membranes, is believed to support axonal outgrowth and/or synaptogenesis. To explore the temporal and spatial patterns of dynamin I distribution in neuronal morphogenesis, we compared the developmental expression of dynamin with the expression of presynaptic membrane proteins such as SV2, synaptotagmin, and syntaxin in the chick primary visual pathway. Western blots of retina and tectum revealed a steady increase of synaptotagmin and syntaxin from embryonic Day 7 (E7) to E11, whereas for the same time frame no detectable increase of dynamin was found. Later stages showed increasing amounts of all tested proteins until the first postnatal week. Immunofluorescence revealed that SV2, synaptotagmin, and syntaxin are present in retinal ganglion cell axons from E4 on. In later stages, the staining pattern in the retina and along the visual pathway paralleled the formation and maturation of axons. In contrast, dynamin is not detectable by immunofluorescence in the developing retina and optic tectum before synapse formation. Our data indicate that, in contrast to the early expression of synaptotagmin, SV2, and syntaxin during axonal growth, dynamin is upregulated after synapse formation, suggesting its function predominantly during and after synaptogenesis but not in axonogenesis.(J Histochem Cytochem 47:1297-1306, 1999)  相似文献   

14.
Dynamin I is phosphorylated in nerve terminals exclusively in the cytosolic compartment and in vitro by protein kinase C (PKC). Dephosphorylation is required for synaptic vesicle retrieval, suggesting that its phosphorylation affects its subcellular localization. An in vitro phospholipid binding assay was established that prevents lipid vesiculation and dynamin lipid insertion into the lipid. Dynamin I bound the phospholipid in a concentration-dependent and saturable manner, with an apparent affinity of 230 +/- 51 nM. Optimal binding occurred with mixtures of phosphatidylserine and phosphatidylcholine of 1:3 with little binding to phosphatidylcholine or phosphatidylserine alone. Phospholipid binding was abolished after dynamin I phosphorylation by PKC and was restored after dephosphorylation by calcineurin. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry revealed the phosphorylation site in PKCalpha-phosphorylated dynamin I as a single site at Ser-795, located near a binding site for the SH3 domain of p85, the regulatory subunit of phosphatidylinositol 3-kinase. However, phosphorylation had no effect on dynamin binding to a bacterially expressed p85-SH3 domain. Thus, phosphorylation of dynamin I on Ser-795 prevents its association with phospholipid, providing a basis for the cytosolic localization of the minor pool of phospho-dynamin I that mediates synaptic vesicle retrieval in nerve terminals.  相似文献   

15.
Syndapins were proposed to interconnect the machineries for vesicle formation and actin polymerization, as they interact with dynamin and the Arp2/3 complex activator N-WASP (neural Wiskott-Aldrich syndrome protein). Syndapins, however, have only one Src homology 3 domain mediating both interactions. Here we show that syndapins self-associate via direct syndapin/syndapin interactions, providing a molecular mechanism for the coordinating role of syndapin. Cross-link studies with overexpressed and endogenous syndapins suggest that predominantly dimers form in vivo. Our analyses show that the N-terminal Fes/Cip4 homology domain but not the central coiled-coil domain is sufficient for oligomerization. Additionally, a second interface located further C-terminally mediated interactions with the N terminus. The Src homology 3 domain and the NPF region are not involved and thus available for further interactions interconnecting different syndapin binding partners. Our analyses showed that self-association is crucial for syndapin function. Both syndapin-mediated cytoskeletal rearrangements and endocytosis were disrupted by a self-association-deficient mutant. Consistent with a role of syndapins in linking actin polymerization bursts with endocytic vesicle formation, syndapin-containing complexes had a size of 300-500 kDa in gel filtration analysis and contained both dynamin and N-WASP. The existence of an interconnection of the GTPase dynamin with N-WASP via syndapin oligomers was demonstrated both by coimmunoprecipitations and by reconstitution at membranes in intact cells. The interconnection was disrupted by coexpression of syndapin mutants incapable of self-association. Syndapin oligomers may thus act as multivalent organizers spatially and temporally coordinating vesicle fission with local actin polymerization.  相似文献   

16.
The dynamin family of GTP-binding proteins has been implicated as playing an important role in endocytosis. In Drosophila shibire, mutations of the single dynamin gene cause blockade of endocytosis and neurotransmitter release, manifest as temperature-sensitive neuromuscular paralysis. Mammals express three dynamin genes: the neural specific dynamin I, ubiquitous dynamin II, and predominantly testicular dynamin III. Mutations of dynamin I result in a blockade of synaptic vesicle recycling and receptor-mediated endocytosis. Here, we show that dynamin II plays a key role in controlling constitutive and regulated hormone secretion from mouse pituitary corticotrope (AtT20) cells. Dynamin II is preferentially localized to the Golgi apparatus where it interacts with G-protein betagamma subunit and regulates secretory vesicle release. The presence of dynamin II at the Golgi apparatus and its interaction with the betagamma subunit are mediated by the pleckstrin homology domain of the GTPase. Overexpression of the pleckstrin homology domain, or a dynamin II mutant lacking the C-terminal SH3-binding domain, induces translocation of endogenous dynamin II from the Golgi apparatus to the plasma membrane and transformation of dynamin II from activity in the secretory pathway to receptor-mediated endocytosis. Thus, dynamin II regulates secretory vesicle formation from the Golgi apparatus and hormone release from mammalian neuroendocrine cells.  相似文献   

17.
At a synapse, the synaptic vesicle protein cysteine-string protein-α (CSPα) functions as a co-chaperone for the SNARE protein SNAP-25. Knockout (KO) of CSPα causes fulminant neurodegeneration that is rescued by α-synuclein overexpression. The CSPα KO decreases SNAP-25 levels and impairs SNARE-complex assembly; only the latter but not the former is reversed by α-synuclein. Thus, the question arises whether the CSPα KO phenotype is due to decreased SNAP-25 function that then causes neurodegeneration, or due to the dysfunction of multiple as-yet uncharacterized CSPα targets. Here, we demonstrate that decreasing SNAP-25 levels in CSPα KO mice by either KO or knockdown of SNAP-25 aggravated their phenotype. Conversely, increasing SNAP-25 levels by overexpression rescued their phenotype. Inactive SNAP-25 mutants were unable to rescue, showing that the rescue was specific. Under all conditions, the neurodegenerative phenotype precisely correlated with SNARE-complex assembly, indicating that impaired SNARE-complex assembly due to decreased SNAP-25 levels is the ultimate correlate of neurodegeneration. Our findings suggest that the neurodegeneration in CSPα KO mice is primarily produced by defective SNAP-25 function, which causes neurodegeneration by impairing SNARE-complex assembly.  相似文献   

18.
Abstract: Synaptic vesicle recycling is a neuronal specialization of endocytosis that requires the GTPase activity of dynamin I and is triggered by membrane depolarization and Ca2+ entry. To establish the relationship between dynamin I GTPase activity and Ca2+, we used purified dynamin I and analyzed its interaction with Ca2+ in vitro. We report that Ca2+ bound to dynamin I and this was abolished by deletion of dynamin's C-terminal tail. Phosphorylation of dynamin I by protein kinase C promoted formation of a dynamin I tetramer and increased Ca2+ binding to the protein. Moreover, Ca2+ inhibited dynamin I GTPase activity after stimulation by phosphorylation or by phospholipids but not after stimulation with a GST-SH3 fusion protein containing the SH3 domain of phosphoinositide 3-kinase. These results suggest that in resting nerve terminals, phosphorylation of dynamin I by protein kinase C converts it to a tetramer that functions as a Ca2+-sensing protein. By binding to Ca2+, dynamin I GTPase activity is specifically decreased, possibly to regulate synaptic vesicle recycling.  相似文献   

19.
In this article, we investigate the contributions of actin filaments and accessory proteins to apical clathrin-mediated endocytosis in primary rabbit lacrimal acini. Confocal fluorescence and electron microscopy revealed that cytochalasin D promoted apical accumulation of clathrin, alpha-adaptin, dynamin, and F-actin and increased the amounts of coated pits and vesicles at the apical plasma membrane. Sorbitol density gradient analysis of membrane compartments showed that cytochalasin D increased [14C]dextran association with apical membranes from stimulated acini, consistent with functional inhibition of apical endocytosis. Recombinant syndapin SH3 domains interacted with lacrimal acinar dynamin, neuronal Wiskott-Aldrich Syndrome protein (N-WASP), and synaptojanin; their introduction by electroporation elicited remarkable accumulation of clathrin, accessory proteins, and coated pits at the apical plasma membrane. These SH3 domains also significantly (p 相似文献   

20.
Kwon SE  Chapman ER 《Neuron》2011,70(5):847-854
Despite being the most abundant synaptic vesicle membrane protein, the function of synaptophysin remains enigmatic. For example, synaptic transmission was reported to be completely normal in synaptophysin knockout mice; however, direct experiments to monitor the synaptic vesicle cycle have not been carried out. Here, using optical imaging and electrophysiological experiments, we demonstrate that synaptophysin is required for kinetically efficient endocytosis of synaptic vesicles in cultured hippocampal neurons. Truncation analysis revealed that distinct structural elements of synaptophysin differentially regulate vesicle retrieval during and after stimulation. Thus, synaptophysin regulates at least two phases of endocytosis to ensure vesicle availability during and after sustained neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号