首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Industrial Microbiology & Biotechnology - Nonribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of numerous peptide and peptide-like natural products that have...  相似文献   

2.
The initial condensation event in the nonribosomal biosynthesis of the peptide antibiotics gramicidin S and tyrocidine A takes place between a phenylalanine activating racemase GrsA/TycA and the first proline-activating module of GrsB/TycB. Recently we established a minimal in vitro model system for NRPS with recombinant His6-tagged GrsA (GrsAPhe-ATE; 127 kDa) and TycB1 (TycB1Pro-CAT; 120 kDa) and demonstrated the catalytic function of the C-domain in TycB1Pro-CAT to form a peptide bond between phenylalanine and proline during diketopiperazine formation (DKP). In this work we took advantage of this system to identify catalytically important residues in the C-domain of TycB1Pro-CAT using site-directed mutagenesis and peptide mapping. Mutations in TycB1Pro-CAT of 10 strictly conserved residues among 80 other C-domains with potential catalytic function, revealed that only R62A, H147R and D151N are impaired in peptide-bond formation. All other mutations led to either unaffected (Q19A, C154A/S, Y166F/W and R284A) or insoluble proteins (H146A, R67A and W202L). Although 100 nm of the serine protease inhibitors N-alpha-tosyl-l-phenylalanylchloromethane or phenylmethanesulfonyl fluoride completely abolished DKP synthesis, no covalently bound inhibitor derivatives in the C-domain could be identified by peptide mapping using HPLC-MS. Though the results do not reveal a particular mechanism for the C-domain, they exhibit a possible way of catalysis analogous to the functionally related enzymes chloramphenicol acetyltransferase and dihydrolipoyl transacetylase. Based on this, we propose a mechanism in which one catalytic residue (H147) and two other structural residues (R62 and D151) are involved in amino-acid condensation.  相似文献   

3.
T. Stein  J. Vater 《Amino acids》1996,10(3):201-227
Summary The biosynthesis of microbial bioactive peptides is accomplished nonribosomally by large multifunctional enzymes consisting of linearly arranged building blocks of 1,000–1,500 amino acid residues. Each of these units acts as an independent enzyme which catalyzes the selection, activation, and in some cases modification (epimerization, N-methylation) of its cognate amino acid, as well as the elongation of the peptide product. The specific linkage of amino acid activating modules upon such polyenzymes defines the sequence of the peptide product. A series of functional domains could be identified upon an amino acid activating module which are involved in the sequential reactions in nonribosomal peptide biosynthesis.Abbrevations aaRS aminoacyl tRNA synthetase - GS1 gramicidin S synthetase 1 (phenylalanine racemase) - GS2 gramicidin S synthetase 2 - TY1 and 2 tyrocidine synthetase 1 and 2 - ACV [-(l--aminoadipyl)-l-cysteinyl-d-valine] - FITC fluorescein 5-isothiocyanate - FAB-, ESI-MS fast atom bombardment-, electrospray ionization-mass spectrometry - Pan 4-phosphopantetheine - NMR nuclear magnetic resonance - ACP acyl carrier protein - SAM S-adenosyl-l-methionine - CM carboxy-methyl - NES Nethylsuccinimido  相似文献   

4.
Quinoxaline antibiotics are chromopeptide lactones embracing the two families of triostins and quinomycins, each having characteristic sulfur-containing cross-bridges. Interest in these compounds stems from their antineoplastic activities and their specific binding to DNA via bifunctional intercalation of the twin chromophores represented by quinoxaline-2-carboxylic acid (QA). Enzymatic analysis of triostin A-producing Streptomyces triostinicus and quinomycin A-producing Streptomyces echinatus revealed four nonribosomal peptide synthetase modules for the assembly of the quinoxalinoyl tetrapeptide backbone of the quinoxaline antibiotics. The modules were contained in three protein fractions, referred to as triostin synthetases (TrsII, III, and IV). TrsII is a 245-kDa bimodular nonribosomal peptide synthetase activating as thioesters for both serine and alanine, the first two amino acids of the quinoxalinoyl tetrapeptide chain. TrsIII, represented by a protein of 250 kDa, activates cysteine as a thioester. TrsIV, an unstable protein of apparent Mr about 280,000, was identified by its ability to activate and N-methylate valine, the last amino acid. QA, the chromophore, was shown to be recruited by a free-standing adenylation domain, TrsI, in conjunction with a QA-binding protein, AcpPSE. Cloning of the gene for the QA-binding protein revealed that it is the fatty acyl carrier protein, AcpPSE, of the fatty acid synthase of S. echinatus and S. triostinicus. Analysis of the acylation reaction of AcpPSE by TrsI along with other A-domains and the aroyl carrier protein AcmACP from actinomycin biosynthesis revealed a specific requirement for AcpPSE in the activation and also in the condensation of QA with serine in the initiation step of QA tetrapeptide assembly on TrsII. These data show for the first time a functional interaction between nonribosomal peptide synthesis and fatty acid synthesis.  相似文献   

5.
非核糖体肽合成酶(NRPSs)作用机理与应用的研究进展   总被引:1,自引:0,他引:1  
王世媛 《微生物学报》2007,47(4):734-737
许多微生物能利用非核糖体肽合成酶(NRPSs)合成结构复杂、种类繁多的的生物活性肽。非核糖体肽因其独特的理化特性和药理学特性已被广泛关注,极具商业开发潜力。NRPSs由多个模块组成,模块的不同空间排列顺序决定其多肽产物的氨基酸序列特异性。NRPSs以多载体巯基化模板机理进行多肽合成,其底物特异性由腺苷酰化结构域和缩合结构域共同实现。目前,人们已经利用天然的NRPSs、某些特定结构域、将已知NRPSs的模块或特定结构域进行组合甚至杂合组合而构建成的新的NRPSs来合成目的多肽。  相似文献   

6.
《Cell》2022,185(9):1506-1520.e17
  1. Download : Download high-res image (207KB)
  2. Download : Download full-size image
  相似文献   

7.
From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium‐dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Recent studies on type II thioesterases (TEIIs) involved in microbial secondary metabolism described a role for these enzymes in the removal of short acyl-S- phosphopantetheine intermediates from misprimed holo-(acyl carrier proteins) and holo-(peptidyl carrier proteins) of polyketide synthases and nonribosomal peptide synthetases. Because of the absence of structural information on this class of enzymes, we performed a mutational analysis on a prototype TEII essential for efficient production of the lipopeptide antibiotic surfactin (TEII(srf)), which led to identification of catalytic and structural residues. On the basis of sequence alignment of 16 TEIIs, 10 single and one double mutant of highly conserved residues of TEII(srf) were constructed and biochemically investigated. We clearly identified a catalytic triad consisting of Ser86, Asp190 and His216, suggesting that TEII(srf) belongs to the alpha/beta-hydrolase superfamily. Exchange of these residues with residues with aliphatic side chains abolished enzyme activity, whereas replacement of the active-site Ser86 with cysteine produced an enzyme with marginally reduced activity. In contrast, exchange of the second strictly conserved asparagine (Asp163) with Ala resulted in an active but unstable enzyme, excluding a role for this residue in catalysis and suggesting a structural function. The results define three catalytic and at least one structural residue in a nonribosomal peptide synthetase TEII.  相似文献   

9.
Dissecting and exploiting nonribosomal peptide synthetases   总被引:1,自引:0,他引:1  
Over the past decade striking advances in microbialgenetics have propelled a revolution in our ability todeduce, analyze and manipulate the biosynthesis of struc-turally complex and biologically important families of na-ture products, one most notable cla…  相似文献   

10.
Actinobacteria such as streptomycetes are renowned for their ability to produce bioactive natural products including nonribosomal peptides (NRPs) and polyketides (PKs). The advent of genome sequencing has revealed an even larger genetic repertoire for secondary metabolism with most of the small molecule products of these gene clusters still unknown. Here, we employed a "protein-first" method called PrISM (Proteomic Investigation of Secondary Metabolism) to screen 26 unsequenced actinomycetes using mass spectrometry-based proteomics for the targeted detection of expressed nonribosomal peptide synthetases or polyketide synthases. Improvements to the original PrISM screening approach (Nat. Biotechnol. 2009, 27, 951-956), for example, improved de novo peptide sequencing, have enabled the discovery of 10 NRPS/PKS gene clusters from 6 strains. Taking advantage of the concurrence of biosynthetic enzymes and the secondary metabolites they generate, two natural products were associated with their previously "orphan" gene clusters. This work has demonstrated the feasibility of a proteomics-based strategy for use in screening for NRP/PK production in actinomycetes (often >8 Mbp, high GC genomes) versus the bacilli (2-4 Mbp genomes) used previously.  相似文献   

11.
《Mycoscience》2020,61(3):101-110
Over 90 years have passed since Alexander Fleming's discovery of penicillin, the first recognized, naturally occurring antibiotic. Penicillin is a representative of a group of metabolites produced by large multienzyme complexes [nonribosomal peptide synthetases (NRPSs)] in a ribosome-independent fashion. Nonribosomal peptides (NRPs) are structurally diverse metabolites produced almost exclusively by bacteria and fungi. NRPs include bioactive compounds useful for pharmaceutical applications (e.g., antibiotics, antitumor compounds, and immunosuppressants) and therefore much progress has been made in our understanding of medically relevant characteristics of NRPs in the past decades. Natural roles of NRP metabolites, on the other hand, have been largely ignored, and much less is known about the biological/physiological significance of NRPs under natural settings. In the present review, we summarize past and current work on natural functions of NRPs in their fungal producers, with a focus on virulence, development, and stress tolerance, and highlight the diverse roles these small peptide metabolites play. Some NRPs are involved in interactions with host organisms, others work in fungus-environment interfaces, and still others are crucial for vegetative and reproductive development of the producing fungi.  相似文献   

12.
Roche ED  Walsh CT 《Biochemistry》2003,42(5):1334-1344
Nonribosomal peptide synthetases (NRPSs) make many natural products of clinical importance, but a deeper understanding of the protein domains that compose NRPS assembly lines is required before these megasynthetases can be effectively engineered to produce novel drugs. The N-terminal amide bond-forming condensation (C) domain of the enterobactin NRPS EntF was excised from the multidomain synthetase using endpoints determined from sequence alignments and secondary structure predictions. The isolated domain was well-folded when compared by circular dichroism to the vibriobactin NRPS VibH, a naturally free-standing C domain. The EntF domain was also fully functional in an assay based on a synthetic small-molecule substrate, seryl N-acetylcysteamine. Active site mutants of the EntF C domain were surprisingly inactive in vitro as compared to their VibH counterparts, yet maintained the overall domain structure. An in vivo assay was developed in the context of the full-length EntF protein to more sensitively probe the activity level of the C domain mutants, and this supported strong effects for the active site mutations. The crucial role of histidine-138 was confirmed by assay of the full-length protein in vitro. These results suggest a strong resemblance of catalysis by the EntF C domain to chloramphenicol acetyltransferase, including an active site organized by an arginine-aspartate salt bridge, a key histidine acting as a general base, and an asparagine instead of a serine stabilizing the proposed tetrahedral intermediate by hydrogen bonding. The precise definition of a functional C domain excised from a NRPS should aid efforts at swapping NRPS domains between assembly lines.  相似文献   

13.
Nonribosomal peptide synthetases (NRPSs) use phosphopantetheine (pPant) bearing carrier proteins to chaperone activated aminoacyl and peptidyl intermediates to the various enzymes that effect peptide synthesis. Using components from siderophore NRPSs that synthesize vibriobactin, enterobactin, yersiniabactin, pyochelin, and anguibactin, we examined the nature of the interaction of such cofactor-carrier proteins with acyl-activating adenylation (A) domains. While VibE, EntE, and PchD were all able to utilize "carrier protein-free" pPant derivatives, the pattern of usage indicated diversity in the binding mechanism, and even the best substrates were down at least 3 log units relative to the native cofactor-carrier protein. When tested with four noncognate carrier proteins, EntE and VibE differed both in the range of substrate utilization efficiency and in the distribution of the efficiencies across this range. Correlating sequence alignments to kinetic efficiency allowed for the construction of eight point mutants of VibE's worst substrate, HMWP2 ArCP, to the corresponding residue in its native VibB. Mutants S49D and H66E combined to increase activity 6.2-fold and had similar enhancing effects on the downstream condensation domain VibH, indicating that the two NRPS enzymes share carrier protein recognition determinants. Similar mutations of HMWP2 ArCP toward EntB had little effect on EntE, suggesting that the position of recognition determinants varies across NRPS systems.  相似文献   

14.
15.
Modular peptide synthetases, which act as the protein templates for the synthesis of a large number of peptide antibiotics and siderophores, hold great potential for the development of novel compounds. Recently, significant progress has been made towards understanding their molecular architecture and substrate specificity. The first crystal structure of a peptide synthetase has been solved, and the enzymes responsible for post-translational modification of peptide synthetases have recently been discovered. These will allow addressing important yet poorly understood mechanistic aspects.  相似文献   

16.
Schneider TL  Walsh CT 《Biochemistry》2004,43(50):15946-15955
Oxazole and thiazole rings are present in numerous nonribosomal peptide natural products. Oxidase domains are responsible for catalyzing the oxidation of thiazolines and oxazolines to yield fully aromatic heterocycles. Unlike most domains, the placement of oxidase domains within assembly line modules varies. Noting this tolerance, we investigated the portability of an oxidase domain to a heterologous assembly line. The epimerase domain of PchE, involved in pyochelin biosynthesis, was replaced with the oxidase domain from MtaD, involved in myxothiazol biosynthesis. The chimeric module was expressed in soluble form as a flavin mononucleotide-containing flavoprotein. The functionality of the inserted oxidase domain was assayed within PchE and in transfer of the growing siderophore acyl chain from PchE to the next downstream module. While pyochelin-like product release was not observed downstream, the robust activity of the transplanted oxidase domain and the ability of the chimeric module to produce an advanced intermediate bound to the synthetase underscore the possibility of future engineering within nonribosomal peptide synthetase pathways using oxidase domains.  相似文献   

17.
The kinetics of the reaction of Boc-Xaa fluorophenyl esters (where Xaa = Ala, Val, Phe, Ser, Leu, Gly, Met, Pro, or Ile) with leucinamide was studied measuring changes in the fluorescence emission at 375 nm of the fluorophenyl chromophore accompanying the reaction. It was found that the experimental kinetic data couldn't be described by a simple scheme of the second order reaction. The measurements of the kinetic parameters of the reaction at various initial concentrations of reagents indicated that the reaction rate can be expressed as: v = kCNaCAEb, where k is the reaction rate constant, CN is the concentration of leucinamide, and LeuNH2, CAE is the concentration of fluorophenyl ester. The a and b reaction orders were close to 1/2 and 3/2 for Xaa = Ala, Val, Phe, Ser, or Leu, 1/2 and 1 for Gly, Met, or Pro, and 1 and 2 for Ile. The experimental equations for the reaction rate can theoretically be derived from a single scheme of chain reactions with various deactivation ways for active intermediates. The English version of the paper.  相似文献   

18.
Polyketides and non-ribosomal peptides are in a class of natural products important both as drug sources and as dangerous toxins and virulence factors. While studies over the last two decades have provided substantial characterization of the modular synthases that produce these compounds at the genetic level, their understanding at the protein level is much less understood. New proteomic platforms called an orthogonal active site identification system (OASIS) and proteomic interrogation of secondary metabolism (PrISM) have been developed to identify and quantify natural product synthase enzymes. Reviewed here, these tools offer the means to discover and analyze modular synthetic pathways that are limited by genetic techniques, opening the tools of contemporary proteomics to natural product sciences.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号