首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we focused upon expression and changes of endogenous insulin-like growth factor-1 (IGF-1) in the hippocampus of the Mongolian gerbil after ischemic insult. In sham-operated animals, IGF-1 immunoreactivity was absent from the hippocampus. IGF-1-immunoreactive (IR) neurons were detected at 12 h and 1 day after ischemic insult. In the hippocampal CA1 area, the IGF-IR neurons were non-pyramidal cells (GABAergic neurons). In the hippocampal CA2/3 areas, the IGF-1-IR neurons were pyramidal and non-pyramidal cells, and in the dentate gyrus the IGF-1-IR neurons were hilar neurons. Four days after ischemia-reperfusion, IGF-1 immunoreactivity disappeared from neurons, and significantly increased in astrocytes and microglia. These results suggest that the induction of IGF-1 in the CA1 area during the early stage (12-24 h after ischemic insult) is associated with the relative vulnerabilities of pyramidal glutamatergic neurons and non-pyramidal GABAergic neurons. The later increase (4 days after ischemic insult) of IGF-1 expression and protein content was found to promote the activities of astrocytes and microglia. These increases of IGF-1 in astrocytes and in microglia are associated with mechanisms that compensate for the effects of delayed neuronal death.  相似文献   

2.
Kang  Tae-Cheon  Hwang  In Koo  Park  Seung-Kook  An  Sung-Jin  Yoon  Dae-Kun  Moon  Seung Myung  Lee  Yoon-Bok  Sohn  Heon-Soo  Cho  Sa Sun  Won  Moo Ho 《Brain Cell Biology》2001,30(12):945-955
We investigated changes of immunoreactivities of N-methyl-D-aspartate receptor (NR) and of excitatory amino acid carrier 1 (EAAC-1), the neuronal glutamate transporter, in the vulnerable CA1 area and the less vulnerable subiculum of the gerbil hippocampus at various times following transient forebrain ischemia. At 30 min after ischemia-reperfusion, the intensity of NR immunoreactivity increased markedly in neurons of CA1 and subiculum, particularly NR2A/B, while EAAC-1 immunoreactivity was reduced in CA1. At 3 hr after reperfusion, the density of NR1 immunoreactivity markedly decreased in CA1. In contrast EAAC-1 immunoreactivity increased in CA1 and in the subiculum. At 12 hr after reperfusion, the decrease of NR1 immunoreactivity was not detected whereas EAAC-1 immunoreactivities in the CA1 area were intensified. In the subiculum, both NR subunits immunoreactivities decreased significantly, in contrast to the maintenance of EAAC-1 immunoreactivity. At 24 hr after reperfusion, both NR2A/B and EAAC-1 immunoreactivities decreased markedly in CA1 and subiculum. We tentatively suggest that the increase of NR immunoreactivity in CA1 at early times after ischemia-reperfusion may increase the delayed neuronal death, and that the increase or maintenance of EAAC-1 immunoreactivity at early times after ischemia-reperfusion may be an important factor in survival of neurons.  相似文献   

3.
Although oxidative stress and excitotoxicity may be interdependent mechanisms that are involved in delayed neuronal death, the temporal participation of these events in the early stage after ischemia-reperfusion insult is unclear. Therefore, in the present study, using the gerbil global ischemic model we investigated whether oxidative stress could be correlated with the expression of the glutamate transporters in the hippocampus, and whether these events are related and cooperate in the events that link ischemia to neuronal death in vivo. Thirty minutes after ischemia, the intensities of glutamate transporter-1 (GLT-1), glutamate/aspar-tate transporter (GLAST), and 8-hydroxy2'-deoxy-guanosine (8-OHdG) immunoreactivities were markedly increased in the hippocampal CA1 area. In contrast, excitatory amino acid carrier-1 (EAAC-1) immunoreactivity was 30% lower in the CA1 area than in the sham level. At 3 h post-reperfusion, the EAAC-1 expression began to increase in the CA1 area. Twelve hours after reperfusion, the reduction of both GLT-1 and GLAST immunoreactivity was salient, while the EAAC-1 immunoreactivity level intensified significantly. The 8-OHdG immunoreactivity peaked at this time point. These findings suggest that oxidative stress and alterations in the glutamate transporter expression in the CA1 area may simultaneously trigger neuronal damages very early after ischemia.  相似文献   

4.
Hwang IK  Yoo KY  Kim DS  Jeong YK  Kim JD  Shin HK  Lim SS  Yoo ID  Kang TC  Kim DW  Moon WK  Won MH 《Life sciences》2004,75(16):1989-2001
Grape seed extract (GSE) possess cardioprotective abilities by functioning as in vivo antioxidants and by virtue of their ability to directly scavenge ROS including hydroxyl and peroxyl radicals. In the present study, we investigated the neuroprotective effects of grape seed extract (GSE) in the gerbil hippocampus after 5 min transient forebrain ischemia. Neuronal cell density in GSE-treated ischemic animals was significantly increased as compared with vehicle-treated ischemic animals 4 days after ischemic insult. In the GSE-treated groups, about 60% of pyramidal cells of the sham-operated group were stained with cresyl violet 4 days after ischemic insult. In this study, we found that GSE had neuroprotective effects on neuronal injury by inhibiting DNA damage in the CA1 region after ischemia. In vehicle-treated groups, 8-hydroxy-2'-deoxyguanosine (8-OHdG) immunoreactivity was significantly changed time-dependently, whereas the immunoreactivity in the GSE-treated group was similar to the sham-operated group. In addition, we confirmed that astrocytes and microglia did not show significant activation in the CA1 region 4 days after ischemia-reperfusion, because many CA1 pyramidal cells were not damaged. Therefore, these results suggest that GSE can protect ischemic neuronal damage by inhibiting DNA damage after transient forebrain ischemia.  相似文献   

5.
6.
7.
Oxidative stress is a major pathogenic event occurring in several brain disorders and is a major cause of brain damage due to ischemia/reperfusion. Thiol proteins are easily oxidized in cells exposed to reactive oxygen species (ROS). In the present study, we investigated transient ischemia-induced chronological changes in hyperoxidized peroxiredoxins (Prx-SO3) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH-SO3) immunoreactivity and protein levels in the gerbil hippocampus induced by 5 min of transient forebrain ischemia. Weak Prx-SO3 immunoreactivity is detected in the hippocampal CA1 region of the sham-operated group. Prx-SO3 immunoreactivity was significantly increased 12 h and 1 day after ischemia/reperfusion, and the immunoreactivity was decreased to the level of the sham-operated group 2 days after ischemia/reperfusion. Prx-SO3 immunoreactivity in the 4 days post-ischemia group was increased again, and the immunoreactivity was expressed in glial components for 5 days after ischemia/reperfusion. GAPDH-SO3 immunoreactivity was highest in the CA1 region 1 day after ischemia/reperfusion, the immunoreactivity was decreased 2 days after ischemia/reperfusion. Four days after ischemia/reperfusion, GAPDH-SO3 immunoreactivity increased again, and the immunoreactivity began to be expressed in glial components from 5 days after ischemia/reperfusion. Prx-SO3 and GAPDH-SO3 protein levels in the ischemic CA1 region were also very high 12 h and 1 day after ischemia/reperfusion and returned to the level of the sham-operated group 3 days after ischemia/reperfusion. Their protein levels were increased again 5 days after ischemia/reperfusion. In conclusion, Prx-SO3 and GAPDH-SO3 immunoreactivity and protein levels in the gerbil hippocampal CA1 region are significantly increased 12 h-24 h after ischemia/reperfusion and their immunoreactivity begins to be expressed in glial components from 4 or 5 days after ischemia/reperfusion.  相似文献   

8.
In this study, the authors examined the difference of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) in the hippocampal CA1 region (CA1) between adult and aged gerbils after 5 min of transient cerebral ischemia. Delayed neuronal death in the CA1 of the aged group was much slower than that in the adult group after ischemia/reperfusion (I/R). pERK1/2 immunoreaction was observed in the CA1 region of the sham-operated adult gerbil. pERK1/2 immunoreactivity and protein levels in the ischemic CA1 region of the adult group were markedly increased 4 days after I/R, and then reduced up to 10 days after I/R. In contrast, pERK1/2 immunoreaction was hardly detected in the CA1 region of sham-operated aged gerbils, and the immunoreactivity increased from 1 day after the ischemic insult, and still observed until 10 days post-ischemia. In addition, pERK1/2-immunoreaction was expressed in astrocytes in the ischemic CA1 region: The expression in the ischemia-operated aged gerbils was later than that in the ischemia-operated adult gerbils. These results indicate that different patterns of ERK1/2 immunoreactivity may be associated with different processes of delayed neuronal death in adult and aged animals.  相似文献   

9.
The maintenance of intracellular pH is important in neuronal function. Na+/HCO3 cotransporter (NBC), a bicarbonate-dependent acid–base transport protein, may contribute to cellular acid–base homeostasis in pathophysiological processes. We examined the alterations of NBC immunoreactivity and its protein levels in the hippocampal CA1 region after transient cerebral ischemia in gerbils. In the sham-operated group, moderate NBC immunoreactivity was detected in CA1 pyramidal neurons, and, 12 h after I/R, the immunoreactivity in the pyramidal neurons was markedly increased over controls. Three days after I/R, NBC immunoreactivity nearly disappeared in the CA1 pyramidal neurons. However, NBC immunoreactivity was detected in the non-pyramidal neurons of the ischemic CA1 region at 3 days after I/R. From double immunofluorescence study with glial markers, NBC immunoreactivity was detected in astrocytes, not in microglia, at 4 days after I/R. NBC protein level in the CA1 region was significantly increased at 12 h post-ischemia and significantly decreased at 2 days post-ischemia. Thereafter, NBC protein level was again increased and returned to the level of the sham-operated group at 4 days post-ischemia. On the other hand, treatment with 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS), an inorganic anion exchanger blocker including Cl-bicarbonate exchanger, protected CA1 pyramidal neurons from I/R injury at 4 days post-ischemia. These results indicate that changes in NBC expressions may play an important role in neuronal damage and astrocytosis induced by transient cerebral ischemia.  相似文献   

10.
缺血再灌注对小鼠肠神经丛nNOS 和iNOS表达的影响   总被引:1,自引:0,他引:1  
目的观察缺血再灌注后小鼠回肠神经型一氧化氮合酶(neuron alnitric oxide synthase,nNOS)和诱导型一氧化氮合酶(induciblenitric oxide synthase,iNOS)的表达,探讨肠缺血再灌注损伤(ischemia-reperfusion injury,IRI)的发生机制。方法采用小鼠肠系膜上动脉缺血再灌注模型,根据不同再灌注时间对小鼠随机分1d组、3d组、5d组、7d组、对照组和假手术组,用SP法检测小鼠回肠nNOS和iNOS的表达情况。结果与对照组和假手术组相比较,nNOS在再灌注1d后开始在肌间神经丛持续高表达(P<0.01);而iNOS在再灌注3d后开始在肌间神经丛持续高表达(P<0.05)。结论nNOS和iNOS在肠缺血再灌注后的表达增强,提示一氧化氮及一氧化氮合酶与肠神经节细胞在缺血再灌注中的损伤有着密切关系。  相似文献   

11.
Oxidative stress‐induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat‐Atox1 and examined the roles of Tat‐Atox1 in oxidative stress‐induced hippocampal HT‐22 cell death and an ischaemic injury animal model. Tat‐Atox1 effectively transduced into HT‐22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)‐induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat‐Atox1 regulated cellular survival signalling such as p53, Bad/Bcl‐2, Akt and mitogen‐activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat‐Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat‐Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat‐Atox1 protects against oxidative stress‐induced HT‐22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat‐Atox1 has potential as a therapeutic agent for the treatment of oxidative stress‐induced ischaemic damage.  相似文献   

12.
DNA methylation is a key epigenetic modification of DNA that is catalyzed by DNA methyltransferases (Dnmt). Increasing evidences suggest that DNA methylation in neurons regulates synaptic plasticity as well as neuronal network activity. In the present study, we investigated the changes in DNA methyltransferases 1 (Dnmt1) immunoreactivity and its protein levels in the gerbil hippocampal CA1 region after 5 min of transient global cerebral ischemia. CA1 pyramidal neurons were well stained with NeuN (a neuron-specific soluble nuclear antigen) antibody in the sham-group, Four days after ischemia–reperfusion (I–R), NeuN-positive (+) cells were significantly decreased in the stratum pyramidale (SP) of the CA1 region, and many Fluro-Jade B (a marker for neuronal degeneration)+ cells were observed in the SP. Dnmt1 immunoreactivity was well detected in all the layers of the sham-group. Dnmt1 immunoreactivity was hardly detected only in the stratum pyramidale of the CA1 region from 4 days post-ischemia; however, at these times, Dnmt1 immunoreactivity was newly expressed in GABAergic interneurons or astrocytes in the ischemic CA1 region. In addition, the level of Dnmt1 was lowest at 4 days post-ischemia. In brief, both the Dnmt1 immunoreactivity and protein levels were distinctively decreased in the ischemic CA1 region 4 days after transient cerebral ischemia. These results indicate that the decrease of Dnmt1 expression at 4 days post-ischemia may be related to ischemia-induced delayed neuronal death.  相似文献   

13.
液压打击损伤后海马CA1区神经元兴奋性变化的研究   总被引:4,自引:0,他引:4  
为考察脑损伤对海马CA1区锥体神经元电活动的影响并研究大黄素对神经元的超兴奋性和突触传递的作用,应用液压打击大鼠脑损伤模型和细胞外记录方法提取诱发的海马CA1区场兴奋性突触后电位(fPSP)和群峰电位(PS),进行相关的数据处理和分析。发现损伤侧比非损伤侧的fPSP斜率明显升高,PS波峰个教显著增加,而PS潜伏期明显减小;在灌流液中施加大黄素,CA1区诱发场电位明显减弱。研究结果表明:颅脑损伤可造成海马CA1区锥体神经元的迟发性过度兴奋;大黄素对神经元的兴奋性有抑制作用,可能对颅脑损伤后的中枢神经系统具有保护功能。  相似文献   

14.
15.
Ascorbic acid (AA) and dehydroascorbic acid (DHA) have been shown to have protective effects as anti-oxidants in experimental neurological disorder models such as stroke, ischemia, and epileptic seizures. The present study was conducted to examine the protective effects of AA and DHA on kainic acid (KA) neurotoxicity using organotypic hippocampal slice cultures. After 12 h KA treatment, significant delayed neuronal death was detected in the CA3, but not the CA1, region. Pretreatment with intermediate doses of AA and DHA significantly prevented cell death and inhibited reactive oxygen species (ROS) level, and mitochondrial dysfunction in the CA3 region. In contrast, pretreatment with low or high doses of AA or DHA was not effective. These data suggest that pretreatment with both AA and DHA has dose-dependent neuroprotective effects on KA-induced neuronal injury through inhibiting ROS generation and mitochondrial dysfunction.  相似文献   

16.
Redd1, also known as RTP801/Dig2/DDIT4, is a stress-induced protein and marked changes of Redd1 expression occurs in response to hypoxia or cerebral ischemia. In the present study, we examined the time-course changes in Redd1 protein expressions in the rat hippocampal CA1 region following chronic cerebral hypoperfusion (CCH) induced by permanent bilateral common carotid arteries occlusion (2VO). Redd1 immunoreactivity in the pyramidal neurons of the hippocampal CA1 region was increased at 7 days after 2VO surgery, and then the immunoreactivity was decreased with time. Especially, very weak Redd1 immunoreactivity was observed in the hippocampal CA1 region at 28 days after 2VO surgery. Western blot analysis showed that Redd1 level in the hippocampal CA1 region was significantly increased at 7 days following CCH and significantly decreased at 28 days after 2VO surgery, compared with that of the sham-operated group. These results indicate that Redd1 expressions is markedly changed in the hippocampal CA1 region following CCH and that change of Redd1 expression may be associated with the CCH-induced neuronal damage in the hippocampal CA1 region.  相似文献   

17.
We examined the neuroprotective effects of oren-gedoku-to (TJ15), a herbal medicine, after transient forebrain ischemia. Transient forebrain ischemia was induced by occlusion of both common carotid arteries for 15 min in C57BL/6 mice treated with TJ15. In the control ischemic group without TJ15 treatment, histologic examination of brain tissue collected seven days after reperfusion showed death of pyramidal cells in CA2-3 area of the hippocampus, unilaterally or bilaterally. In mice treated with oral TJ15 (845 mg/kg/day) for five weeks, the frequency of ischemic neuronal death was significantly lower. Immunohistochemistry for Cu/Zn-superoxide dismutase (Cu/Zn-SOD) showed strongly reactive astrocytes in the hippocampus of ischemic mice treated with TJ15. Damage to nerve cells by free radicals plays an important role in the induction of neuronal death by ischemia-reperfusion injury. Our results suggest that TJ15 protects against ischemic neuronal death by increasing the expression of Cu/Zn-SOD and suggest that oren-gedoku-to reduces the exposure of hippocampal neurons to oxidative stress.  相似文献   

18.
Immature motoneurons are highly susceptible to degeneration following axon injury. The response of perineuronal glia to axon injury may significantly influence neuronal survival and axon regeneration. We have examined the central reactions to neonatal facial nerve transection with emphasis on the expression of complement component C3 (C3) and the multifunctional apolipoprotein J (ApoJ). Axotomy was performed on one-day-old rats. Animals were perfused from eight hours to two weeks after the lesion. The astroglial marker, glial fibrillary acidic protein (GFAP) was increased from one day and the microglial marker OX-42 from two days after injury. ApoJ immunoreactivity was increased in axotomized neuronal perikarya and astroglial cells from one day postaxotomy, but no C3 immunoreactive profiles were found at any postoperative survival time. Cell proliferation as judged by bromodeoxyuridine labeling and immunoreactivity for the cyclin Ki-67 antigen (antibody MIB5) occurred only at two days after injury. Double immunostaining revealed that the vast majority of proliferating cells were microglia, although occasional cells double labeled astrocytes were found as well. Our results indicate that the non-neuronal response in neonatal animals differ from that of adult ones as follows: 1) microglia transform rapidly into phagocytes in parallel with the degeneration of axotomized neurons, 2) despite the presence of neuronal degeneration, no expression of C3 was found, and the upregulation of the expression of the complement C3 receptor (CR3) is delayed, 3) ApoJ is strongly upregulated in perineuronal astrocytes as well as in the axotomized motoneurons. The marked upregulation of ApoJ in both instances suggests a general role of this protein in the neuronal response to axotomy.  相似文献   

19.
Adrenalectomy (ADX) has been useful for a good in vivo model for apoptosis in the hippocampus by the absence of corticosteroids following ADX. In some neurodegenerative diseases, GABAergic neurons are more resistant to neuronal damage as compared with glutamatergic neurons. In the present study, we observed chronological changes in three GABA degradation enzymes, e.g., GABA transaminase (GABA-T), succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR) immunoreactivity and protein levels in the gerbil hippocampal CA1 region after ADX. Changes in their immunoreactivities were distinct in the stratum pyramidale of the CA1 region. GABA-T immunoreactivity and protein level were significantly increased in the CA1 region 3 h after ADX, in contrast, SSAR and SSADH immunoreactivity and protein level were increased 12 h and 3–12 h, respectively, after ADX. These results suggest that the increases of GABA-T, SSADH and SSAR immunoreactivity and protein levels in the hippocampal CA1 region in ADX gerbils may be associated with the control of GABA levels in this region.  相似文献   

20.
目的 :观察利多卡因和硫喷妥钠对生后 2 2d大鼠培养海马脑片的实验型缺血后神经元损伤的影响。方法 :将培养的SD大鼠海马脑片实验型缺血 (缺氧缺糖 ) 1 0min ,给药组在缺血前 1 0min给予 1 0nmol/L、1 0 0nmol/L的利多卡因或 2 50nmol/L、60 0nmol/L的硫喷妥钠 ,缺血后换用正常培养基继续培养 7d ,并用荧光染料PropidiumIo dide(PI)连续观察海马CA1区和齿状回神经元的损伤。结果 :缺血后第 1d缺血组即出现神经元损伤高峰 ,CA1区和齿状回的PI指数显著增加 (P <0 .0 1 ) ;直至缺血后第 7d其损伤指数仍显著高于缺血前水平 (P <0 .0 1 )。两浓度的利多卡因和硫喷妥钠均可降低缺血后CA1区和齿状回神经元损伤的程度 (P <0 .0 1 ) ,并可将CA1区和齿状回的神经元损伤高峰推迟至缺血后第 3d。结论 :利多卡因和硫喷妥可减轻缺血后海马CA1区和齿状回的神经元损伤 ,推迟神经元的损伤高峰。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号