首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A monoclonal antibody specific for Lewis lung carcinoma (3LL) cells (Mab 5B5) was found to recognize antigens expressed on murine macrophages and on a macrophage hybridoma line upon cell adhesion on plastic surfaces. These antigens were also present on the surface of murine macrophage tumor M5076 cells which develop solid tumors and metastases. The M5076 tumor cells freshly isolated from the primary tumor and from hepatic metastases strongly bound Mab 5B5 but lost this capacity after adhesion. Freshly isolated thioglycolate-elicited peritoneal mouse macrophages were not labeled by Mab 5B5; however, after 1 h of adhesion, 50% of the adherent macrophages were directly incubated with Mab 5B5 prior to harvesting by scraping. Permeabilization of peritoneal macrophages by saponin showed that the antigens recognized by Mab 5B5 were present inside the cells before adhesion. Similar results were obtained with the 2C11-12 macrophage hybridoma cells. P388D1 cells (a weakly adherent macrophage tumor cell line), HL60 cells (a human promyelocytic cell line), and human monocytes were poorly labeled without permeabilization but were strongly labeled by Mab 5B5 upon permeabilization. The specificity of the monoclonal antibody in relation to the adherence capacity of these cells is discussed.  相似文献   

2.
Monoclonal antibody designated 1B10 (Mab 1B10) has been shown to be highly specific for the beta-chain of human chorionic gonadotrophin (HCG). We used this antibody to investigate its paratope using anti-idiotypic antibodies. Purified Mab 1B10 has been used to immunize syngeneic BALB/c mice to produce anti-idiotypic monoclonal antibodies. An enzyme immunoassay (ELISA) on Mab 1B10 coated plate was employed to screen the supernatants of growing hybridomas. The specificity of each antibody selected was assessed using an inhibition ELISA and immunoblotting. Monoclonal antibodies belonging to two categories were selected. (a) Those (designated Mab 4F8 and Mab 7G9) recognizing epitopes of the Ig molecule located in/or near the antigen-binding site of Mab 1B10. In ELISA these antibodies were shown to inhibit in a dose-dependent manner, the reaction of Mab 1B10 with its specific antigen; (b) those (Mab 2B8, Mab 3B8) reacting with epitopes located outside of the antigen binding site of the antiHCG antibody molecule and did not influence the reactions of Mab 1B10 and its antigen. Following immunization of syngeneic BALB/c mice monoclonal antibodies (Mab 4F8, Mab 7G9) were produced which recognized epitopes located on the variable region of Mab 1B10 since they did not react with other marine monoclonal antibodies of the same isotype. These antibodies inhibited the binding of Mab 1B10 to its corresponding epitope on the molecule of HCG and they can be defined as syngeneic anti-idiotypic antibodies.  相似文献   

3.
We have generated a monoclonal antibody (Mab E1C) that recognizes the differentiated nervous system in Drosophila embryos. At the cellular blastoderm stage, Mab E1C behaves as a general ectodermal marker but, in subsequent stages, it also labels the mesoderm. As neurogenesis takes place, staining increases within the neuromeres and is almost exclusively restricted to the nervous tissue by the time neuronal differentiation is completed. In third instar larvae, Mab E1C stains the central nervous system (CNS) as well as the imaginal discs which display a staining pattern related to their degree of neuronal differentiation. No labelling can be detected in adult brains or ovaries. Western blots are consistent with this developmental profile and allow the characterization of a major glycoprotein of 135 X 10(3) Mr (135K) which cosediments with a membrane fraction prepared from embryos. Additional glycoproteins (100K and 80K) are extracted from embryo homogenates by immunoaffinity procedures. In larvae, the 100K polypeptide is not detected. The properties of the 135K and 100K components are highly reminiscent of the molecular pattern of the Drosophila insulin receptor homologue (Petruzzelli et al. (1985) J. biol. Chem. 250, 16072-16075). It is shown that a Mab directed against the human insulin receptor stains the same cells as Mab E1C in imaginal discs and in the CNS. Moreover, this Mab cross-reacts with the 135K and 100K components of the embryonic antigen E1C.  相似文献   

4.
To identify a cell surface molecule other than CD4 involved in infection of cultured cells with human immunodeficiency virus type 1 (HIV-1), mice were immunized with the CD4-negative Raji human B-cell line in order to isolate a monoclonal antibody (mAb). We isolated mAb 33A, which inhibited the infection of CD4-positive T cells, B cells, human peripheral blood lymphocytes (PBL), and brain-derived cells with HIV-1. Formation of viral DNA was also blocked when CD4-positive Raji cells were treated with 33A after adsorption of HIV-1, but not before its adsorption. mAb 33A had little effect on syncytium formation induced by cocultivation with HIV-1-producing cells. Flow cytometry revealed that 33A reacted with HTLV-I-positive T-cell lines, Burkitt's lymphoma cell lines, phytohemagglutinin (PHA) -stimulated PBL, brain-derived fibroblast-like cells, and some adherent cell lines, but hardly at all with immature T-cell lines. Immunoblotting experiments showed that 33A recognized an antigen with an apparent molecular mass of 32 kDa, but did not recognize chemokine receptors such as CXCR4, CCR5, or CCR3. The distribution characteristic of the antigen recognized by 33A on various cells and its molecular weight suggest that mAb 33A recognizes a new cellular antigen that is necessary for HIV-1 entry.  相似文献   

5.
In leech, the central projections of peripheral sensory neurons segregate into specific axonal tracts, which are distinguished by differential expression of surface antigens recognized by the monoclonal antibodies Lan3-2 and Lan4-2. Lan3-2 recognizes an epitope expressed on axons that segregate into three distinct axon fascicles. In contrast, the Lan4-2-positive axons selectively project into only one of the Lan3-2-positive axon tracts. These observations provide evidence for a hierarchy of guidance cues mediating specific pathway formation in this system. Since the Lan3-2 antibody has been shown to perturb this process and since, as shown here, the Lan3-2 and Lan4-2 antigens are closely molecularly interrelated, these antibodies may help define molecules and epitopes mediating neuronal recognition and axonal guidance.  相似文献   

6.
The spatiotemporal distribution of neural cell adhesion molecule (N-CAM) in the retinotectal system of adult goldfish was assessed by immunofluorescence using the monoclonal antibody (Mab) D3 against chick N-CAM. In immunoblots with extracts of cell surface membranes of fish brains, Mab D3 recognized a prominent band at 170K and a weak band at 130K (K = 10(3) Mr). N-CAM immunofluorescence on cells was restricted to the marginal growth zones of the retina and the tectum and, in normal fish, to the youngest axons from the new ganglion cells of the peripheral retinal margin. In fish with previously transected optic nerves (ONS), Mab D3 staining was found transiently on all axons from the site of the cut into the retinorecipient layers of the tectum, but disappeared from these axons 450 days after ONS. Growing retinal axons in vitro exhibited N-CAM immunofluorescence throughout their entire extent, including their growth cones. Glial cells cultured from regenerating optic nerves were, however, unlabeled. These data are consistent with the idea that N-CAM is involved in adhesive interactions of growing axons. The temporally regulated expression of N-CAM on the new retinal axons may contribute to the creation of the age-related organization of the axons in the retinotectal pathway of fish.  相似文献   

7.
This report describes a new rat monoclonal IgM/k antibody, monoclonal antibody (MAb) 2B6, which reacts with a cell surface antigen present on a subpopulation of both thymocytes (85%) and peripheral T lymphocytes (55-60%). The antigen recognized by MAb 2B6 has multiple properties in common with the L3T4 antigen, as defined by the recently described MAb GK1.5. Thus, MAb 2B6 and MAb GK1.5 give very similar flow cytometry staining patterns on thymocytes, purified spleen T cells and all tested T-cell hybridomas. Depletion of MAb 2B6-positive cells with antibody and complement led to simultaneous depletion of MAb GK1.5-positive cells, and vice versa. Depletion of Lyt 2-positive cells led to enrichment of both MAb 2B6- and MAb GK1.5-positive cells. Both MAb 2B6 and MAb GK1.5 immunoprecipitate the same pattern of cell surface molecules from detergent extracts of radiolabeled thymocytes, the main components being a 55-kDa and a 115-kDa band. We therefore conclude that MAb 2B6 reacts with the L3T4 antigen. Interestingly, MAb 2B6 and MAb GK1.5 do not cross-block and therefore most probably react with distinct epitopes on the L3T4 molecule. The determinant recognized by MAb GK1.5 is called L3T4a. We suggest that the determinant recognized by MAb 2B6 be named L3T4b. As MAb 2B6 was selected for its ability to inhibit the action of interleukin 1 (IL-1) in the thymocyte costimulator assay, it is likely that the L3T4 molecule is functionally involved in the events taking place during IL-1 induction of thymocyte proliferation.  相似文献   

8.
In the rat sciatic nerve, the relationship between Schwann cells, axons, the extracellular matrix and perineurial sheath cells undergoes extensive modification between embryo day 15 and the onset of myelination during the first postnatal day. Little is known about molecular changes in Schwann cells in this important prenatal period. In the present paper, we use immunofluorescence to study the prenatal development and postnatal regulation of the antigen(s) recognized by the 04 monoclonal antibody and a well-characterized rat monoclonal antibody to sulfatide, A007. We show that, in a series of immunochemical tests, the 04 antibody recognizes only sulfatide in neonatal and adult rat nerves. Both antibodies first bind to Schwann cells in the sciatic nerve at embryo day 16-17, and all Schwann cells bind both antibodies at birth. In the adult nerve, both nonmyelin-forming and myelin-forming cells are labelled with the antibodies. Schwann cells dissociated from embryo day 15 nerves and cultured in the absence of axons develop neither 04 nor A007 binding on schedule, and 04-positive and A007-positive Schwann cells from postnatal nerves lose the ability to bind these antibodies during the first few days in culture. Schwann cells in the distal stump of transected nerves also sharply down-regulate cell surface binding of 04. High numbers of 04-positive or A007-positive Schwann cells reappear in cultures treated with agents that mimic or elevate intracellular cAMP. We conclude that two anti-sulfatide antibodies 04 and A007, recognize an antigen, probably sulfatide, that appears very early in Schwann cell development (one to two days prior to galactocerebroside) but is nevertheless subject to upregulation by axonal contact or elevation of intracellular cAMP.  相似文献   

9.
We have previously reported that the cell-type distribution and pattern of expression of the surface antigen recognized by the monoclonal antibody 69A1, suggests that it may be involved during the period of nerve fibre outgrowth and the formation of fibre bundles in the rat (Pigott & Kelly, 1986). In this current study, we have examined the expression of the epitope recognized by antibody 69A1 in regions of the rat central nervous system in which it is possible to distinguish between neurones with axons that fasciculate to form clearly defined fibre tracts and neurones with non-fasciculating processes. We have also examined antibody 69A1 labelling in several regions of the peripheral nervous system. We report that the 69A1 epitope is expressed on neurones with axons that fasciculate but is not found on neurones with short, non-fasciculating axons or on neurones without a morphologically identifiable axon. The antigen 69A1 has been purified and shown to be immunochemically closely related or identical to the L1 antigen.  相似文献   

10.
《Developmental biology》1986,115(1):105-118
A monoclonal antibody, generated by immunization with gastrula stage Drosophila melanogaster embryonic cells, recognizes a cell surface antigen which shows tissue and stage specificity. The antigen appears for the first time during cellularization of the blastoderm embryo and is present on all cells until around 12 hr of development. It becomes progressively restricted to specific tissues during the second half of embryogenesis. By the time of hatching, only the nervous system, germ cells, and imaginal cells are positive. During metamorphosis differentiating imaginal tissues become negative so that in the adult only the nervous system and undifferentiated germ cells are positive, with gonadal sheaths showing some staining. A third wave of antigen loss occurs during gametogenesis, resulting in negative staining on the mature sperm and oocyte. All positive tissues appear to contain the same 63-kDa cell surface antigen. The antigen behaves as a general differentiation marker lost by tissues as they approach their terminal differentiated state. The nervous system and possibly gonadal sheaths may be exceptions to this general behavior.  相似文献   

11.
A new monoclonal antibody specific for human B cell differentiation antigen (HLB-1) is produced by a hybridoma established by fusion of splenocytes of mice immunized with the Epstein-Barr virus (EBV)-transformed peripheral B cell line, RPMI-8057. This monoclonal, antibody designated anti-HLB-1 monoclonal antibody (anti-HLB-1), reacted with surface immunoglobulin (sIg)-positive B cells of normal peripheral blood and lymphoid tissues and sIg-positive leukemic cells. The cells of T cell leukemia, non-T non-B acute lymphoblastic leukemia (ALL) and nonlymphoid leukemia were HLB-1 negative. These data were further confirmed by studying a panel of cultured human hematopoietic cell lines. Anti-HLB-1 reacted with B cell lines derived from pre-B, Burkitt's lymphoma, B cell type ALL and EBV-transformed peripheral B cells. Anti-HLB-1 was reactive with only one of three human myeloma cell lines, and with none of the T cell, myeloid and non-T non-B ALL cell lines. This newly defined HLB-1 antigen is different from other conventional human B cell markers such as sIg, Ia antigens, and receptors for the Fc portion of Ig and complement C3.  相似文献   

12.
In the present report, we characterize a monoclonal antibody directed at a surface differentiation antigen on human T cells. The monoclonal antibody, OKT17, recognizes a cell surface antigen present on the majority of resting normal peripheral T cells. In contrast, OKT17 is unreactive with normal B cells, B cell lines, T cell lines, or SIg+ CLL. Interestingly, after activation, the antigen recognized by OKT17 is lost from a subset of OKT4+ cells. We took advantage of this finding to explore further the functional heterogeneity within activated OKT4+ cells. Evidence was obtained that the PWM-activated OKT4+ subset remaining after depletion of OKT17-reactive T cells (OKT4+ 17-) contains radiosensitive helperr cells but is devoid of suppressor cells. In contrast, the activated OKT4+ 17+ population contains potent radiosensitive suppressor cells as well as radioresistant helpe cells. Taken together, these studies suggest that the OKT17 monoclonal antibody can differentiate two functionally mature, activated OKT4+ human T cells: OKT4+ OKT17+ radiosensitive suppressor cells and OKT4+ 17- radiosensitive helper cells.  相似文献   

13.
The gene for a cell surface glycoprotein recognized by a mouse monoclonal antibody (Mab 4), has been assigned to human chromosome 11 by the study of mouse-human lymphocyte hybrids. The antigen is present on all human peripheral blood leukocytes, on human fibroblasts, and on human lymphoid and erythroid cell lines, but not on erythrocytes. Immunoprecipitation and polyacrylamide slab gel electrophoresis of both human cells and mouse-human hybrid clones carrying human chromosome 11 show that the apparent molecular weight of this glycoprotein is 75,000.  相似文献   

14.
Summary The monoclonal antibody A2B5 reacts with the surface membrane of most neurons in monolayer cultures of cerebellum, retina, spinal cord, and dorsal root ganglion of embryonic and early postnatal C57BL/6J mice maintained in vitro for culture periods of 2 to 10 days. A small percentage of astroglial cells also expresses A2B5 antigen in murine, chicken and rabbit cerebellum, in chicken retina, and in murine spinal cord and dorsal root ganglion. Less mature astroglial cells are stained for A2B5 antigen to a greater extent than the more mature astrocytes. Astrocytes from rat cerebellum and mouse retina were not found to express A2B5 antigen under the present culture conditions. Some of the less mature oligodendrocytes recognized by 04 antibodies express A2B5 antigen, while the more mature 01 antigen and galactocerebroside-positive oligodendrocytes were not found to be A2B5 antigen-positive. Fibroblasts or fibroblast-like cells do not express detectable levels of A2B5 antigen. After fixation of the cells with paraformaldehyde and ethanol, all cell types present in culture are labeled by the A2B5 antibody intracellularly.  相似文献   

15.
 With the use of the monoclonal antibody UA301, which specifically recognizes the nervous system in ascidian larvae, the neuronal connections of the peripheral and central nervous systems in the ascidian Ciona intestinalis were observed. Three types of peripheral nervous system neurons were found: two located in the larval trunk and the other in the larval tail. These neurons were epidermal and their axons extended to the central nervous system and connected with the visceral ganglion directly or indirectly. The most rostral system (rostral trunk epidermal neurons, RTEN) was distributed bilateral-symmetrically. In addition, presumptive papillar neurons in palps were found which might be related to the RTEN. Another neuron group (apical trunk epidermal neurons, ATEN) was located in the apical part of the trunk. The caudal peripheral nervous system (caudal epidermal neurons, CEN) was located at the dorsal and ventral midline of the caudal epidermis. In the larval central nervous system, two major axon bundles were observed: one was of a photoreceptor complex and the other was connected with RTEN. These axon bundles joined in the posterior sensory vesicle, ran posteriorly through the visceral ganglion and branched into two caudal nerves which ran along the lateral walls of the caudal nerve tube. In addition, some immunopositive cells existed in the most proximal part of the caudal nerve tube and may be motoneurons. Received: 8 September 1997 / Accepted: 14 December 1997  相似文献   

16.
A set of monoclonal antibodies against the purified surface gp 83 of T. cruzi trypomastigotes was produced and the ability of these monoclonals to inhibit the attachment of trypomastigotes to heart myoblasts was investigated. Western blots of solubilized trypomastigotes, epimastigotes or amastigotes probed with this set of monoclonal antibodies show that the gp 83 is present in invasive trypomastigotes, but not in non-invasive epimastigotes or amastigotes. One monoclonal antibody (Mab 4A4) from this set inhibits the attachment of trypomastigotes to heart myoblasts, whereas the others (MAbs 2H6, 4B9, 2D11) do not. These results show that the Mab 4A4 recognizes an epitope on the gp 83 of invasive trypomastigotes required for parasite binding to host cells.  相似文献   

17.
Summary The specific binding and nature of the epitope recognized by monoclonal antibody (Mab) 1H10, which binds an antigen expressed on human cervical tumors, was characterized by enzyme digestion, lectin competition assay and immuno-electron microscopy. Membrane homogenates of CaSki cervical carcinoma cells were digested with various enzymes, then analysed by SDS-PAGE and immunoblotting. Cells grown on coverslips were treated with various enzymes and in situ binding of Mab 1H10 to cells was analysed by electron microscopy. The ability of lectin-conjugates to block Mab 1H10 binding to CaSki cells was also examined. Treatment of samples with sodium periodate abrogated antigen recognition by Mab 1H10. Neuraminidase and hyaluronidase digestion decreased but did not eliminate Mab 1H10 binding to cells in situ. Chondroitinase ABC digestion, in contrast, removed Mab 1H10 binding sites both in vitro and in situ. Trypsin and chymotrypsin digestion of cell membrane homogenates decreased the molecular weight of the Mab 1H10 antigen but did not decrease the binding intensity. Wheat germ agglutinin (WGA) strongly bound to CaSki cells and partially blocked Mab 1H10 binding, indicating that the antigen contains N-acetyl-galactosamine residues at or near the epitope recognized by Mab 1H10. Ricinus communis agglutinin (RCA) exhibited a similar binding pattern to WGA. However, concanavalin A bound only weakly to CaSki cells and was ineffective at blocking Mab 1H10 binding. The tumor-associated antigen recognized by Mab 1H10 is concluded to be a chondroitin sulphate glycoprotein or proteoglycan rather than a mucopolysaccharide or lipoprotein.  相似文献   

18.
The Drosophila CNS midline glia (MG) are multifunctional cells that ensheath and provide trophic support to commissural axons, and direct embryonic development by employing a variety of signaling molecules. These glia consist of two functionally distinct populations: the anterior MG (AMG) and posterior MG (PMG). Only the AMG ensheath axon commissures, whereas the function of the non-ensheathing PMG is unknown. The Drosophila MG have proven to be an excellent system for studying glial proliferation, cell fate, apoptosis, and axon-glial interactions. However, insight into how AMG migrate and acquire their specific positions within the axon-glial scaffold has been lacking. In this paper, we use time-lapse imaging, single-cell analysis, and embryo staining to comprehensively describe the proliferation, migration, and apoptosis of the Drosophila MG. We identified 3 groups of MG that differed in the trajectories of their initial inward migration: AMG that migrate inward and to the anterior before undergoing apoptosis, AMG that migrate inward and to the posterior to ensheath commissural axons, and PMG that migrate inward and to the anterior to contact the commissural axons before undergoing apoptosis. In a second phase of their migration, the surviving AMG stereotypically migrated posteriorly to specific positions surrounding the commissures, and their final position was correlated with their location prior to migration. Most noteworthy are AMG that migrated between the commissures from a ventral to a dorsal position. Single-cell analysis indicated that individual AMG possessed wide-ranging and elaborate membrane extensions that partially ensheathed both commissures. These results provide a strong foundation for future genetic experiments to identify mutants affecting MG development, particularly in guidance cues that may direct migration. Drosophila MG are homologous in structure and function to the glial-like cells that populate the vertebrate CNS floorplate, and study of Drosophila MG will provide useful insights into floorplate development and function.  相似文献   

19.
We have examined the distribution of microtubule-associated protein 2 (MAP2) in the lumbar segment of spinal cord, ventral and dorsal roots, and dorsal root ganglia of control and beta,beta'-iminodipropionitrile- treated rats. The peroxidase-antiperoxidase technique was used for light and electron microscopic immunohistochemical studies with two monoclonal antibodies directed against different epitopes of Chinese hamster brain MAP2, designated AP9 and AP13. MAP2 immunoreactivity was present in axons of spinal motor neurons, but was not detected in axons of white matter tracts of spinal cord and in the majority of axons of the dorsal root. A gradient of staining intensity among dendrites, cell bodies, and axons of spinal motor neurons was present, with dendrites staining most intensely and axons the least. While dendrites and cell bodies of all neurons in the spinal cord were intensely positive, neurons of the dorsal root ganglia were variably stained. The axons of labeled dorsal root ganglion cells were intensely labeled up to their bifurcation; beyond this point, while only occasional central processes in dorsal roots were weakly stained, the majority of peripheral processes in spinal nerves were positive. beta,beta'- Iminodipropionitrile produced segregation of microtubules and membranous organelles from neurofilaments in the peripheral nervous system portion and accumulation of neurofilaments in the central nervous system portion of spinal motor axons. While both anti-MAP2 hybridoma antibodies co-localized with microtubules in the central nervous system portion, only one co-localized with microtubules in the peripheral nervous system portion of spinal motor axons, while the other antibody co-localized with neurofilaments and did not stain the central region of the axon which contained microtubules. These findings suggest that (a) MAP2 is present in axons of spinal motor neurons, albeit in a lower concentration or in a different form than is present in dendrites, and (b) the MAP2 in axons interacts with both microtubules and neurofilaments.  相似文献   

20.
To identify and analyse precursor cells of neuronal and glial cell lineages during the early development of the chick peripheral nervous system, monoclonal antibodies were raised against a population of undifferentiated cells of E6 dorsal root ganglia (DRG). Non-neuronal cells of E6 DRG express surface antigens that are recognized by four monoclonal antibodies, G1, G2, GLI 1 and GLI 2. The proportion of non-neuronal cells in DRG that express the GLI 1 antigen is very high during ganglion formation (80% at E4) and decreases during later development (15% at E14). GLI 2 antigen is expressed only on a minority of the cells at E6 and increases with development. The G1 and G2 antigens are expressed on about 60-80% of the cells between E6 and E14. All cells that express the established glia marker O4 are also positive for the new antigens. In addition, it was demonstrated that GLI 1-positive cells from early DRG, which are devoid of O4 antigen, could be induced in vitro to express the O4 antigen. Thus, the antigen-positive cells are considered as glial cells or glial precursor cells. Surprisingly, the antigen expression by satellite cells of peripheral ganglia is dependent on the type of ganglion: antigens G1, G2 and GLI 1 were not detectable on glial cells of lumbosacral sympathetic ganglia and GLI 2 was expressed only by a small subpopulation. These results demonstrate an early immunological difference between satellite cells of sensory DRG and sympathetic ganglia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号