首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to the classical model of insect neurogenesis, neuron fate and survival is determined largely by cell autonomous mechanisms with no requirement for cell-cell interactions to control the total number of neurons. In a recent paper by Booth et al.,(1) however, the central tenet of this model has been called into question. Using a combination of mutations and targeted glial ablation, this paper shows that, contrary to common thinking, neuron survival in the embryonic nervous system of Drosophila is dependent upon normal glial function. This surprising result suggests that insect neurogenesis may have more in common with vertebrate neurogenesis than previously thought.  相似文献   

2.
The elaboration of pattern within insect segments is a well-studied example of cellular patterning during development. This process requires that each cell develop appropriately for its position. Experimental embryology suggests that intercellular communication plays a key role in imparting positional information to cells. Drosophila genetics has identified numerous genes whose activity is required for patterning within segments, and whose molecular genetic analyses suggest they constitute and control cell communication circuits. Particular genes are expressed or required by cells that will follow distinct developmental pathways, and some appear to confer or interpret intercellular signals. Other patterning genes are ubiquitously required and may provide the machinery through which the signals are transmitted.  相似文献   

3.
The constitutive criterion for the evolutionary successful clade of ecdysozoans is a protective exoskeleton. In insects the exoskeleton, the so-called cuticle consists of three functional layers, the waterproof envelope, the proteinaceous epicuticle and the chitinous procuticle that are produced as an extracellular matrix by the underlying epidermal cells. Here, we present our electron-microscopic study of cuticle differentiation during embryogenesis in the fruit fly Drosophila melanogaster. We conclude that cuticle differentiation in the Drosophila embryo occurs in three phases. In the first phase, the layers are established. Interestingly, we find that establishment of the layers occurs partially simultaneously rather than in a strict sequential manner as previously proposed. In the second phase the cuticle thickens. Finally, in the third phase, when secretion of cuticle material has ceased, the chitin laminae acquire their typical orientation, and the epicuticle of the denticles and the head skeleton darken. Our work will help to understand the phenotypes of embryos mutant for genes encoding essential cuticle factors, in turn revealing mechanisms of cuticle differentiation.  相似文献   

4.
The spectrum of lectin binding sites as it emerges during embryonic development of Drosophila was analysed by means of fluorescein-labelled lectins. As development and morphogenesis proceed, the reaction pattern becomes more and more complex. Mannose/glucose-, mannose-, N-acetylglucosamine- and poly-N-ace-tylglucosamine-specific lectins bind ubiquitously. Nuclear envelopes only have binding sites for wheat germ agglutinin. N-acetylgalactosamine-binding lectins are specific for ectodermal derivatives. Ga-3-N-acetylgalac-tosamine-binding lectins are highly selective markers for neural structures, haemocytes and Garland cells. It is also shown that Drosophila laminin is differentially glycosylated. The possible implications of differential and germ layer-specific glycosylation are discussed.Dedicated to the memory of Jan Callaerts  相似文献   

5.
6.
7.
The function of PS integrins during Drosophila embryogenesis   总被引:19,自引:0,他引:19  
M Leptin  T Bogaert  R Lehmann  M Wilcox 《Cell》1989,56(3):401-408
The Drosophila position-specific (PS) antigens are homologous to the vertebrate fibronectin receptor family, or integrins. A Drosophila gene required for embryonic morphogenesis, l(1)myospheroid, codes for a product homologous to the beta subunit of the vertebrate integrins. l(1)myospheroid mutants die during embryogenesis. We show here that they lack the beta subunit of the PS antigens. In the absence of the beta subunit in mutant embryos, the PS alpha subunits are not expressed on the cell surface. We conclude that the l(1)myospheroid phenotype represents the lack-of-function phenotype for these Drosophila integrins. In wild-type embryos, PS antigens are found at the interface between mesoderm and ectoderm, and later mainly at the attachment sites of muscles to the epidermis and gut. Together these results indicate that during embryogenesis, Drosophila integrins are used to attach mesoderm to ectoderm, and are required for the proper assembly of the extracellular matrix and for muscle attachment.  相似文献   

8.
9.
Drosophila spectrin: the membrane skeleton during embryogenesis   总被引:12,自引:9,他引:3       下载免费PDF全文
《The Journal of cell biology》1989,108(5):1697-1709
The distribution of alpha-spectrin in Drosophila embryos was determined by immunofluorescence using affinity-purified polyclonal or monoclonal antibodies. During early development, spectrin is concentrated near the inner surface of the plasma membrane, in cytoplasmic islands around the syncytial nuclei, and, at lower concentrations, throughout the remainder of the cytoplasm of preblastoderm embryos. As embryogenesis proceeds, the distribution of spectrin shifts with the migrating nuclei toward the embryo surface so that, by nuclear cycle 9, a larger proportion of the spectrin is concentrated near the plasma membrane. During nuclear cycles 9 and 10, as the nuclei reach the cell surface, the plasma membrane-associated spectrin becomes concentrated into caps above the somatic nuclei. Concurrent with the mitotic events of the syncytial blastoderm period, the spectrin caps elongate at interphase and prophase, and divide as metaphase and anaphase progress. During cellularization, the regions of spectrin concentration appear to shift: spectrin increases near the growing furrow canal and concomitantly increases at the embryo surface. In the final phase of furrow growth, the shift in spectrin concentration is reversed: spectrin decreases near the furrow canal and concomitantly increases at the embryo surface. In gastrulae, spectrin accumulates near the embryo surface, especially at the forming amnioproctodeal invagination and cephalic furrow. During the germband elongation stage, the total amount of spectrin in the embryo increases significantly and becomes uniformly distributed at the plasma membrane of almost all cell types. The highest levels of spectrin are in the respiratory tract cells; the lowest levels are in parts of the forming gut. The spatial and temporal changes in spectrin localization suggest that this protein plays a role in stabilizing rather than initiating changes in structural organization in the embryo.  相似文献   

10.
11.
We expressed two green fluorescent protein (GFP)-tagged Nopp140 isoforms in transgenic Drosophila melanogaster to study nucleolar dynamics during oogenesis and early embryogenesis. Specifically, we wanted to test whether the quiescent oocyte nucleus stored maternal Nopp140 and then to determine precisely when nucleoli formed during embryogenesis. During oogenesis nurse cell nucleoli accumulated GFP-Nopp140 gradually such that posterior nurse cell nucleoli in egg chambers at stage 10 were usually brighter than the more anterior nurse cell nucleoli. Nucleoli within apoptotic nurse cells disassembled in stages 12 and 13, but not all GFP-Nopp140 entered the oocyte through inter-connecting cytoplasmic bridges. Oocytes, on the other hand, lost their nucleoli by stage 3, but GFP-Nopp140 gradually accumulated in oocyte nuclei during stages 8–13. Most oocyte nuclei at stage 10 stored GFP-Nopp140 uniformly, but many stage 10 oocytes accumulated GFP-Nopp140 in presumed endobodies or in multiple smaller spheres. All oocyte nuclei at stages 11-12 were uniformly labeled, and GFP-Nopp140 diffused to the cytoplasm upon nuclear disassembly in stage 13. GFP-Nopp140 reappeared during embryogenesis; initial nucleologenesis occurred in peripheral somatic nuclei during embryonic stage 13, one stage earlier than reported previously. These GFP-Nopp140-containing foci disassembled at the 13th syncytial mitosis, and a second nucleologenesis occurred in early stage 14. The resulting nucleoli occupied nuclear regions closest to the periphery of the embryos. Pole cells contained GFP-Nopp140 during the syncytial embryonic stages, but their nucleologenesis started at gastrulation. This work was supported by the National Science Foundation (grant MCB-0234245). O'Keith Dellafosse was supported by the Louisiana Alliance for Minority Participation (LAMP).  相似文献   

12.
The fushi tarazu (ftz) gene of Drosophila acts early in embryogenesis to regulate body segmentation. The localization of the ftz protein product in embryos was examined using indirect immunofluorescence microscopy. Antibodies were prepared against a β-galactosidase-ftz hybrid protein made in E. coli. The ftz protein was first detectable in blastoderm-stage embryos as seven stripes of nuclei encircling the embryos transversely. The stripes persist through the early events of gastrulation, but disappear before overt segmentation is visible. The ftz protein is expressed a second time in some nuclei of the developing nervous system. In contrast to the early pattern, at the later stage, ftz is expressed in each of fifteen metameric subunits of the embryo.  相似文献   

13.
14.
A collagen gene (Dcg1) was characterized in Drosophila melanogaster and shown to encode a peptide related to vertebrate basement membrane type IV collagen chains. To study the function of type IV collagen during Drosophila development, we transformed flies with a partially truncated Dcg1 gene under the control of a heat-shock promotor. This construct induced synthesis of shortened pro- chains which associated with normal ones and thereby caused degradation of the shortened and normal pro- chains through a process called pro-collagen suicide. A large proportion of embryos expressing the transgene developed a phenotype exhibiting absence or partial retraction of the germ band with defects in nerve cord condensation and dorsal closure. Together these results indicated that, during embryogenesis, type IV collagen was an essential guiding factor for cell-matrix interactions in morphogenetic events.  相似文献   

15.
Trumbly RJ  Jarry B 《The EMBO journal》1983,2(8):1281-1290
The changes in protein species synthesized during early Drosophila embryogenesis were characterized by two-dimensional electrophoresis. Of the 261 proteins scored, 68 (26%) show dramatic changes in rates of synthesis during the first 8 h of embryogenesis. These stage-specific proteins can be classified into three categories: early, detected at 1, 2 and 3 h but not later; late, not detected at 1 h, but appearing later; and discontinuous, detected before and after, but not at 3 and 4 h. RNA was extracted from three representative stages, translated in vitro, and the translation products separated on two-dimensional gels. There was a strong correlation between the patterns of synthesis in vivo and in vitro, suggesting that the early proteins are translated from maternal mRNA, and the late proteins from zygotic mRNA. A thorough comparison was made between the proteins synthesized in wild-type and dorsal embryos, in which virtually only dorsal hypoderm differentiates. The first observed difference was a reduced synthesis of actin I at 8 h, indicating that the absence of mesodermal and endodermal tissues is not detectable at the level of moderately abundant protein until the onset of differentiation.  相似文献   

16.
Li J  Li W  Calhoun HC  Xia F  Gao FB  Li WX 《Mechanisms of development》2003,120(12):1455-1468
The JAK/STAT pathway mediates cytokine signaling in mammals and is involved in the function and development of the hematopoietic and immune systems. To investigate the biological functions of the JAK/STAT pathway during Drosophila development, we examined the tissue-specific localization of the tyrosine-phosphorylated, or activated form of Drosophila STAT, STAT92E. Here we show that during Drosophila embryonic development STAT92E activation is prominently detected in multiple tissues and in different developmental stages. These tissues include the tracheal pits, elongating intestinal tracks, and growing axons. We demonstrate that stat92E mutants are defective in tracheal formation, hindgut elongation, and nervous system development. Conversely, STAT92E overactivation caused premature development of the tracheal and nervous systems, and over-elongation of the hindgut. These results suggest that STAT activation is involved in proper differentiation and morphogenesis of multiple tissues during Drosophila embryogenesis.  相似文献   

17.
The odd-skipped (odd) gene encodes a zinc finger protein that represses other segmentation genes in the early Drosophila embryo. Though odd is initially expressed in a striped pattern that reflects its function within the segmentation hierarchy, it is also expressed in a variety of patterns during later stages of embryogenesis. To identify the cells and tissues that correspond to these latter patterns, we examined the distribution of the Odd protein at all embryonic stages. Our results indicate that Odd is a specific and persistent marker for subsets of cells in developing mesoderm, ectoderm, and neural tissue. We conclude that Odd is a useful tool for studying cell specification, cell migrations and morphogenetic movements during organogenesis of the heart, gut and central nervous system.  相似文献   

18.
Schneider M  Baumgartner S 《Fly》2008,2(1):29-35
Dystroglycan (DG) is a widely expressed extracellular matrix (ECM) receptor required for muscle viability, synaptogenesis, basement-membrane formation and epithelial development. As an integral component of the Dystrophin-associated glycoprotein complex, DG plays a central role in linking the ECM and the cytoskeleton. Disruption of this linkage in skeletal muscle is the underlying cause in various types of muscular dystrophies (MD). One particular type of MD is caused by alterations of O-linked glycosylation in the mucin-like domain of DG, which is required for binding of the ECM molecules Laminin and Perlecan. In epithelial cells, reduced expression of DG is associated with increased invasiveness of cancer cells and loss of cell polarity. Drosophila Dg is, in contrast to vertebrate Dg, subjected to differential splicing of the mRNA. Interestingly, the shorter DG splice forms lack the mucin?like domain. Here, we describe the embryonic expression patterns of full-length DG and a short variant of DG. We find that differential splicing of Dg is developmentally regulated and tissue-specific. In some tissues, e.g., hindgut, midgut constrictions, gonads, both DG variants can be detected. For the long form, we detected specific expression at the blastoderm stage, in the epidermis and in the tracheal pits. The short form showed exclusive expression in dorsal vessel cells, chordotonal organs and dorsal median cells. In the nervous system, the long form is predominantly expressed on axons, while the short form is present on glial cells. Our findings further support the idea that DG forms lacking the mucin-like domain serve a specific function in Drosophila.  相似文献   

19.
Larval behavioral patterns arise in a gradual fashion during late embryogenesis as the innervation of the somatic musculature and connectivity within the central nervous system develops. In this paper, we describe in a quantitative manner the maturation of behavioral patterns. Early movements are locally restricted "twitches" of the body wall, involving single segments or parts of segments. These twitches occur at a low frequency and have low amplitude, reflecting weak muscle contractions. Towards later stages twitches increase in frequency and amplitude and become integrated into coordinated movements of multiple segments. Most noticeable among these is the peristaltic wave of longitudinal segmental contractions by which the larva moves forward or backward. Besides becoming more complex as development proceeds, embryonic movements also acquire a pronounced rhythm. Thus, late embryonic movements occur in bursts, with phases of frequent movement separated by phases of no movement at all; early movements show no such periodicity. These data will serve as a baseline for future studies that address the function of embryonic lethal genes controlling neuronal connectivity and larval behavior. We have analyzed behavioral abnormalities in two embryonic lethal mutations with severe neural defects, tailless (tll), which lacks the protocerebrum, and glial cells missing (gcm), in which glial cells are absent. Our results reveal prominent alterations in embryonic motility for both of these mutations, indicating that the protocerebrum and glial cells play a crucial role in the neural mechanism controlling larval movement in Drosophila.  相似文献   

20.
We determined the absolute rates of RNA synthesis during embryogenesis in Drosophila melanogaster by measuring the incorporation of 3H-5-orotic acid into RNA, and the specific activity of the UTP pool. Initially (preblastoderm) the rate of RNA synthesis is relatively high, but declines to a lower level by gastrulation. The data suggest that RNA synthesis is initiated during very early embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号