首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of exogenous Mg2+ (2 millimolar) to illuminated intact spinach (Spinacia oleracea L.) chloroplasts caused acidification of the stroma and a 20% decrease in stromal K+. Addition of K+ (10-50 millimolar) reversed both stromal acidification and K+ efflux from the chloroplast caused by Mg2+. These data suggested that Mg2+ induced reversible H+/K+ fluxes across the chloroplast envelope. Ca2+ and Mn2+ (2 millimolar) were as effective as 4 millimolar Mg2+ in causing K+ efflux from chloroplasts and inhibition of O2 evolution. In contrast, 10 millimolar Ba2+ induced only a small amount of inhibition. The lack of strong inhibition by Ba2+ indicated that the effects of divalent cations such as Mg2+ cannot be attributed to generalized electrostatic interactions of the cation with the chloroplast envelope. With the chloroplasts used in this study, stromal acidification caused by 2 millimolar Mg2+ was small (0.07 to 0.15 pH units), but sufficient to account for the inhibition of O2 evolution (43%) induced by Mg2+.  相似文献   

2.
Photosynthesis, stroma-pH, and internal K+ and Cl concentrations of isolated intact chloroplasts from Spinacia oleracea, as well as ion (K+, H+, Cl) movements across the envelope, were measured over a wide range of external KCl concentrations (1-100 millimolar).

Isolated intact chloroplasts are a Donnan system which accumulates cations (K+ or added Tetraphenylphosphonium+) and excludes anions (Cl) at low ionic strength of the medium. The internally negative dark potential becomes still more negative in the light as estimated by Tetraphenylphosphonium+ distribution. At 100 millimolar external KCl, potentials both in the light and in the dark and also the light-induced uptake of K+ or Na+ and the release of protons all become very small. Light-induced K+ uptake is not abolished by valinomycin suggesting that the K+ uptake is not primarily active. Intact chloroplasts contain higher K+ concentrations (112-157 millimolar) than chloroplasts isolated in standard media. Photosynthetic activity of intact chloroplasts is higher at 100 millimolar external KCl than at 5 to 25 millimolar. The pH optimum of CO2 fixation at high K+ concentrations is broadened towards low pH values. This can be correlated with the observation that high external KCl concentrations at a constant pH of the suspending medium produce an increase of stroma-pH both in the light and in the dark. These results demonstrate a requirement of high external concentrations of monovalent cations for CO2 fixation in intact chloroplasts.

  相似文献   

3.
Chiang GG  Dilley RA 《Plant physiology》1989,90(4):1513-1523
Intact chloroplasts were compared to isolated thylakoids as to whether storage of the organelle in high KCl medium caused the energy coupling reactions to show a delocalized or a localized proton gradient energy coupling response. With isolated thylakoids, the occurrence of one or the other energy coupling mode can be reversibly controlled by the concentration of mono- and divalent cations used for the thylakoid storage media. Calcium was shown to be the key ion and previous evidence suggested a Ca2+-controlled gating of H+ fluxes in the thylakoid membrane system (G Chiang, RA Dilley [1987] Biochemistry 26: 4911-4916). Isolated, intact chloroplasts, which retained the outer envelope membranes during the 30 min or longer storage treatments in various concentrations of KCl and CaCl2 (with sorbitol to maintain iso-osmotic conditions), were osmotically burst in a reaction cuvette and within 3 minutes were assayed for either a localized or a delocalized proton gradient energy coupling (ATP formation) mode. The intact chloroplast system was analogous to isolated thylakoids, with regard to the effects of KCl and CaCl2 on the energy coupling mode. For example, adding 100 millimolar KCl to the intact organelle storage medium resulted in the subsequent ATP formation assay showing delocalized proton gradient coupling just as with isolated thylakoids. Adding 5 millimolar CaCl2 to the 100 millimolar KCl storage medium resulted in a localized proton gradient coupling mode. Suspending thylakoids in stromal material previously isolated from intact chloroplast preparations and testing the energy coupling response showed that the stromal milieu has enough Ca2+ to cause the localized coupling response even though there was about 80 millimolar K+ in the intact chloroplasts used in this study (determined by atomic absorption spectrophotometry). Extrapolating the intact chloroplast data to the whole leaf level, we suggest that proton gradient energy coupling is normally of the localized mode, but under certain conditions it could be either localized or delocalized, depending on factors that affect the putative Ca2+-regulated proton flux gating function.  相似文献   

4.
Effects of the ionophore A23187 on isolated broken and intact chloroplasts in the pH range of 6.2 to 7.6 have been studied. In both types of chloroplasts, uncoupling of photosynthetic electron transport by A23187 (6–10 μm) was mediated either by Mg2+ or—in the absence of divalent cations (i.e., when EDTA was added to the medium)—by high concentrations of Na+, but not of K+ ions. At increased concentrations of the ionophore (above about 10 μm) and high pH (7.2 to 7.6), uncoupling in broken chloroplasts was also mediated by K+ ions. The inhibition of the energy-dependent slow decline of chlorophyll fluorescence in intact chloroplasts by the ionophore (which denotes uncoupling) is reversed by EDTA in the presence of K+, but not of Na+ ions. In 3-(3′,4′-dichlorophenyl)1,1-dimethylurea-poisoned intact chloroplasts, the yield of variable chlorophyll fluorescence is lowered by A23187 + EDTA and increased again by addition of NaCl or KCl. Chlorophyll fluorescence spectra at 77 °K of intact chloroplasts incubated with A23187 + EDTA indicated that the distribution of excitation energy had changed in favor of photosystem I, as expected from a depletion of Mg2+. This change was reversed by MgCl2+, KCl, or NaCl. From a comparison of low-temperature fluorescence spectra of broken and intact chloroplasts at different levels of Mg2+ in the medium, the concentration of free Mg2+ in the stroma of the intact chloroplasts at pH 7.6 in the dark was estimated at 1 to 4 mm. The results show that in chloroplasts the specificity of A23187 for divalent cations is limited. In the presence of EDTA, the ionophore mediates fast Na+H+ exchange across thylakoid membranes, whereas K+ is transferred much less efficiently. Both Na+ and K+ ions seem to be transported readily across the chloroplast envelope by the action of the ionophore, leading to an exchange of Mg2+ for monovalent cations at the thylakoid membrane surfaces in intact chloroplasts.  相似文献   

5.
Studies were undertaken to further characterize the spinach (Spinacea oleracea) chloroplast envelope system, which facilitates H+ movement into and out of the stroma, and, hence, modulates photosynthetic activity by regulating stromal pH. It was demonstrated that high envelope-bound Mg2+ causes stromal acidification and photosynthetic inhibition. High envelope-bound Mg2+ was also found to necessitate the activity of a digitoxinand oligomycin-sensitive ATPase for the maintenance of high stromal pH and photosynthesis in the illuminated chloroplast. In chloroplasts that had high envelope Mg2+ and inhibited envelope ATPase activity, 2-(diethylamino)-N-(2,6-dimethylphenyl)acetamide was found to raise stromal pH and stimulate photosynthesis. 2-(Diethylamino)-N-(2,6-dimethylphenyl)acetamide is an amine anesthetic that is known to act as a monovalent cation channel blocker in mammalian systems. We postulate that the system regulating cation and H+ fluxes across the plastid envelope includes a monovalent cation channel in the envelope, some degree of (envelope-bound Mg2+ modulated) H+ flux linked to monovalent cation antiport, and ATPase-dependent H+ efflux.  相似文献   

6.
Studies of Spinacia oleracea L. were undertaken to characterize further how Mg2+ external to the isolated intact chloroplast interacts with stromal K+, pH, and photosynthetic capacity. Data presented in this report were consistent with the previously developed hypothesis that millimolar levels of external, unchelated Mg2+ result in lower stromal K+, which somehow is linked to stromal acidification. Stromal acidification directly results in photosynthetic inhibition. These effects were attributed to Mg2+ interaction (binding) to negative surface charges on the chloroplast envelope. Chloroplast envelope-bound Mg2+ was found to decrease the envelope membrane potential (inside negative) of the illuminated chloroplast by 10 millivolts. It was concluded that Mg2+ effects on photosynthesis were likely not mediated by this effect on membrane potential. Further experiments indicated that envelope-bound Mg2+ caused lower stromal K+ by restricting the rate of K+ influx; Mg2+ did not affect K+ efflux from the stroma. Mg2+ restriction of K+ influx appeared consistent with the typical effects imposed on monovalent cation channels by polyvalent cations that bind to negatively charged sites on a membrane surface near the outer pore of the channel. It was hypothesized that this interaction of Mg2+ with the chloroplast envelope likely mediated external Mg2+ effects on chloroplast metabolism.  相似文献   

7.
Our earlier studies indicate that stromal alkalinization is essential for light-induced increase in free Mg2+ concentration ([Mg2+]) in chloroplast. Stromal [Mg2+] was increased by dark incubation of chloroplasts in the K+-gluconate medium (pH 8.0), or by NH4Cl. These results indicate that stromal alkalinization can induce an increase in stromal [Mg2+] without illumination. Some inhibitors of envelope proton-translocating ATPase activity involved in H+ efflux inhibited the alkalinization-induced increase in [Mg2+].  相似文献   

8.
Aloni B  Daie J  Wyse RE 《Plant physiology》1988,88(2):367-369
Leaf discs of broad bean (Vicia faba L.), peeled on the spongy mesophyll side, rapidly altered the pH of the surrounding medium (apoplast). Using pH indicator paper appressed against the leaf, immediately after peeling, initial apoplastic pH was estimated to be 4.5. Changes in the apoplastic pH were measured with a microelectrode placed into a 100-microliter drop of an unbuffered solution (2 millimolar KCl, 0.5 millimolar CaCl2, and 200 millimolar mannitol) on the peeled surface. Discs acidified the medium until the pH stabilized at about 5.0 (about 10 minutes). Acidification was inhibited by 50 micromolar sodium vanadate, an inhibitor of the plasmalemma H+-ATPase and attenuated by omitting the osmoticum or potassium ions from the medium. Fusicoccin (10 micromolar) greatly enhanced the rate of acidification. The presence of 0.1 to 1 micromolar gibberellic acid resulted in a slower rate of medium acidification. Gibberellic acid appeared to modulate the activity of the H+-translocating ATPase located at the plasma membrane of the mesophyll cells.  相似文献   

9.
When suspended in media lacking free Mg2+, chloroplasts from young pea plants (Pisum sativum CV Progress No. 9) lose 25 to 75% of their stromal Mg2+ content to the medium, without breakage. This effect amounts for the inhibition of protein synthesis in the dark by ATP in excess of the Mg2+ provided, since free ATP chelates Mg2+. The rate of loss is from 1 to 4.5 microgram-atoms Mg2+/milligram Chl/hour; and depleted chloroplasts take up Mg2+ from the medium at even faster rates, to a total amount not much more than that present originally (0.8 to 1.8 microgram-atoms/milligram Chl with an average of 1.33 ± 0.32 μg-atoms/mg Chl). Leakage is completely prevented by 0.25 to 0.40 millimolar external Mg2+. Addition of Mg2+ at a level sufficient to prevent leakage from intact chloroplasts results in approximately 20% stimulation in light-driven protein synthesis.  相似文献   

10.
Addition of 100 millimolar KCl, NaCl, or Na2SO4 strongly promoted acidification of the medium by cells of Nicotiana tabacum/gossii in suspension culture. Acidification was greater in the case of NaCl-adapted than in that of wild type cells, and strikingly so in KCl medium when fusicoccin (FC) was present. Back-titration indicated that net proton secretion in KCl medium was increased 4-fold by FC treatment in the case of adapted cells; but was not even doubled in wild type cells. Membrane potential was higher in NaCl-adapted cells. FC treatment hyperpolarized wild, but not NaCl-adapted cells, suggesting a higher degree of coupling between H+ efflux and K+ influx in adapted cells; FC enhanced net K+ uptake in adapted but not in wild cells. Acidification by cells suspended in 10 millimolar KCl was highly sensitive to vanadate, but that after addition of 100 millimolar KCl or NaCl was much less sensitive. Addition of 100 millimolar NaCl to wild type cells already provided with 10 millimolar KCl briefly accelerated, then slowed down the rate of acidification. If the addition was made after acidification had already ceased, alkalization was observed, particularly in the presence of FC. The results are consistent with the operation of a Na+-H+ antiporter.  相似文献   

11.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

12.
A comparison has been made of the optimal concentrations of Mg2+ and K+ ions necessary for both light-driven protein synthesis in intact spinach chloroplasts and for ATP-driven protein synthesis in broken chloroplasts, and the products of the two systems have been compared by polyacrylamide gel electrophoresis. Light-driven incorporation of amino acids into polypeptides in intact chloroplasts assayed in buffer systems containing sucrose or sorbitol as the osmoticum is inhibited by the addition of Mg2+, the effect being most marked at low concentrations (less than 40 mm) of KCl. On the other hand, chloroplasts suspended in 0.2 m KCl as osmoticum require Mg2+ (3 mm) for optimal light-driven protein-synthesizing activity. Incorporation of amino acids by broken chloroplasts in the dark, supplemented with ATP and GTP, requires 9 mm Mg2+ for maximum activity. A requirement for monovalent cations is best filled by K+ (approx 30 mm) in the case of the light-driven, intact chloroplast system whereas, in the ATP-driven, broken chloroplast system, NH4+ (approx 80 mm) gave the highest activity.Autoradiographs of Na dodecyl sulfate-polyacrylamide gels of the products from both the light-driven, intact chloroplasts and from the ATP-driven, broken chloroplasts reveal qualitatively similar patterns. There are at least four radioactive polypeptides in the soluble protein fraction the dominant product being coincident with the large subunit of Fraction 1 protein. In the membrane fraction at least nine discrete products can be resolved.  相似文献   

13.
The internal cation levels of chloroplasts isolated from a green sea alga, Bryopsis maxima, were studied. Atomic absorption spectroscopy, combined with the determination of the sorbitol-impermeable and water-permeable spaces, revealed that chloroplasts contain an extremely high concentration of K+ and high levels of Na+, Mg2+ and Ca2+. A method was developed to estimate the thermodynamic activities of monovalent and divalent cations present in chloroplasts. pH changes induced by the addition of an ionophore (plus an H+ carrier), which makes the outer limiting membranes of chloroplasts permeable to both a cation and H+, were determined. Provided that the external pH was set equal to the internal pH, the internal concentration of the cation was estimated by determining the external cation concentration which gave rise to no electrochemical potential difference of the cation and hence no pH change on addition of the ionophore. The internal pH was determined by measuring distributions of radioactive methylamine and 5,5-dimethyloxazolidine-2,4-dione between the chloroplast and medium (Heldt, H.W., Werdan, K., Milovancev, M. and Geller, G. (1973) Biochim. Biophys. Acta 314, 224–241). The internal pH was also estimated by measuring pH changes caused by the disruption of the outer limiting membrane with Triton X-100. The results indicate that a significant part of the monovalent cations and most of the divalent cations are attracted into a diffuse layer adjacent to the negatively charged surfaces of membranes and proteins, or form complexes with organic and inorganic compounds present in the intact chloroplasts.  相似文献   

14.
The vacuolar pH and the trans-tonoplast ΔpH modifications induced by the activity of the two proton pumps H+-ATPase and H+-PPase and by the proton exchanges catalyzed by the Na+/H+ and Ca2+/H+ antiports at the tonoplast of isolated intact vacuoles prepared from Catharanthus roseus cells enriched in inorganic phosphate (Y Mathieu et al 1988 Plant Physiol [in press]) were measured using the 31P NMR technique. The H+-ATPase induced an intravacuolar acidification as large as 0.8 pH unit, building a trans-tonoplast ΔpH up to 2.2 pH units. The hydrolysis of the phosphorylated substrate and the vacuolar acidification were monitored simultaneously to estimate kinetically the apparent stoichiometry between the vectorial proton pumping and the hydrolytic activity of the H+-ATPase. A ratio of H+ translocated/ATP hydrolyzed of 1.97 ± 0.06 (mean ± standard error) was calculated. Pyrophosphate-treated vacuoles were also acidified to a significant extent. The H+-PPase at 2 millimolar PPi displayed hydrolytic and vectorial activities comparable to those of the H+-ATPase, building a steady state ΔpH of 2.1 pH units. Vacuoles incubated in the presence of 10 millimolar Na+ were alkalinized by 0.4 to 0.8 pH unit. It has been shown by using 23Na NMR that sodium uptake was coupled to the H+ efflux and occurred against rather large concentration gradients. For the first time, the activity of the Ca2+/H+ antiport has been measured on isolated intact vacuoles. Ca2+ uptake was strongly inhibited by NH4Cl or gramicidin. Vacuoles incubated with 1 millimolar Ca2+ were alkalinized by about 0.6 pH unit and this H+ efflux was associated to a Ca2+ uptake as demonstrated by measuring the external Ca2+ concentration with a calcium specific electrode. Steady state accumulation ratios of Ca2+ as high as 100 were reached for steady state external concentrations about 200 micromolar. The rate of Ca2+ uptake appeared markedly amplified in intact vacuoles when compared to tonoplast vesicles but the antiport displayed a much lower affinity for calcium. The different behavior of intact vacuoles compared to vesicles appears mainly to be due to differences in the surface to volume ratio and in the rates of dissipation of the pH gradient. Despite its low affinity, the Ca2+/H+ antiport has a high potential capacity to regulate cytoplasmic concentration of calcium.  相似文献   

15.
NaCl Induces a Na/H Antiport in Tonoplast Vesicles from Barley Roots   总被引:22,自引:10,他引:12       下载免费PDF全文
Evidence was found for a Na+/H+ antiport in tonoplast vesicles isolated from barley (Hordeum vulgare L. cv California Mariout 72) roots. The activity of the antiport was observed only in membranes from roots that were grown in NaCl. Measurements of acridine orange fluorescence were used to estimate relative proton influx and efflux from the vesicles. Addition of MgATP to vesicles from a tonoplast-enriched fraction caused the formation of a pH gradient, interior acid, across the vesicle membranes. EDTA was added to inhibit the ATPase, by chelating Mg2+, and the pH gradient gradually dissipated. When 50 millimolar K+ or Na+ was added along with the EDTA to vesicles from control roots, the salts caused a slight increase in the rate of dissipation of the pH gradient, as did the addition of 50 millimolar K+ to vesicles from salt-grown roots. However, when 50 millimolar Na+ was added to vesicles from salt-grown roots it caused a 7-fold increase in the proton efflux. Inclusion of 20 millimolar K+ and 1 micromolar valinomycin in the assay buffer did not affect this rapid Na+/H+ exchange. The Na+/H+ exchange rate for vesicles from salt-grown roots showed saturation kinetics with respect to Na+ concentration, with an apparent Km for Na+ of 9 millimolar. The rate of Na+/H+ exchange with 10 millimolar Na+ was inhibited 97% by 0.1 millimolar dodecyltriethylammonium.  相似文献   

16.
1. A23187 will uncouple electron transport by broken chloroplasts in a divalent cation dependent manner provided that they have been treated with a low concentration of EDTA.2. A23187 stimulates oxaloacetate-dependent oxygen evolution and inhibits phosphoglycerate reduction by intact chloroplasts isolated in a cation-free medium whereas the full effect of nigericin was dependent on the presence of external K+.3. Uncoupling of oxaloacetate reduction by A23187 in intact chloroplasts is inhibited by EDTA and this effect is overcome by excess Mg2+.4. The results suggest that divalent and not monovalent cations are available for collapsing the light-induced H+ gradient within the intact organelle.  相似文献   

17.
To clarify the kinetic characteristics and ionic requirements of the tonoplast H+-translocating inorganic pyrophosphatase (H+-PPiase), PPi hydrolysis and PPi-dependent H+ transport were studied in tonoplast vesicles isolated from leaf mesophyll tissue of Kalanchoë daigremontiana Hamet et Perrier de la Bâthie. The tonoplast H+-PPiase showed an absolute requirement for a monovalent cation and exhibited hyperbolic kinetics with respect to cation concentration. H+-PPiase activity was maximal in the presence of K+ (K50 approximately 3 millimolar), with PPi-dependent H+ transport being more selective for K+ than PPi hydrolysis. When assayed in the presence of 50 millimolar KCl at fixed PPi concentrations, H+-PPiase activity showed sigmoidal kinetics with respect to total Mg concentration, reflecting a requirement for a Mg/PPi complex as substrate and free Mg2+ for activation. At saturating concentrations of free Mg2+, H+-PPiase activity exhibited Michaelis-Menten kinetics towards MgPPi2− but not Mg2PPi, demonstrating that MgPPi2− was the true substrate of the enzyme. The apparent Km (MgPPi2−) for PPi hydrolysis (17 micromolar) was significantly higher than that for PPi-dependent H+ transport (7 micromolar). Free Mg2+ was shown to be an allosteric activator of the H+-PPiase, with Hill coefficients of 2.5 for PPi hydrolysis and 2.7 for PPi-dependent H+ transport. Half-maximal H+-PPiase activity occurred at a free Mg2+ concentration of 1.1 millimolar, which lies within the range of accepted values for cytosolic Mg2+. In contrast, cytosolic concentrations of K+ and MgPPi2− appear to be saturating for H+-PPiase activity. We propose that one function of the H+-PPiase may be to act as an ancillary enzyme that maintains the proton-motive force across the vacuolar membrane when the activity of the tonoplast H+-ATPase is restricted by substrate availability. As ATP levels decline in the cytosol, free Mg2+ would be released from the MgATP2− complex, thereby activating the tonoplast H+-PPiase.  相似文献   

18.
The role of monovalent cations in the photosynthesis of isolated intact spinach chloroplasts was investigated. When intact chloroplasts were assayed in a medium containing only low concentrations of mono- and divalent cations (about 3 mval l-1), CO2-fixation was strongly inhibited although the intactness of chloroplasts remained unchanged. Addition of K+, Rb+, or Na+ (50–100 mM) fully restored photosynthesis. Both the degree of inhibition and restoration varied with the plant material and the storage time of the chloroplasts in low-salt medium. In most experiments the various monovalent cations showed a different effectiveness in restoring photosynthesis of low-salt chloroplasts (K+>Rb+>Na+). Of the divalent cations tested, Mg2+ also restored photosynthesis, but to a lesser extent than the monovalent cations.In contrast to CO2-fixation, reduction of 3-phosphoglycerate was not ihibited under low-salt conditions. In the dark, CO2-fixation of lysed chloroplasts supplied with ATP, NADPH, and 3-phosphoglycerate strictly required the presence of Mg2+ but was independent of monovalent cations. This finding excludes a direct inactivation of Calvin cycle enzymes as a possible basis for the inhibition of photosynthesis under low-salt conditions.Light-induced alkalization of the stroma and an increase in the concentration of freely exchangeable Mg2+ in the stroma, which can be observed in normal chloroplasts, did not occur under low-salt conditions but were strongly enhanced after addition of monovalent cations (50–100 mM) or Mg2+ (20–50 mM).The relevance of a light-triggered K+/H+ exchange at the chloroplast envelope is discussed with regard to the light-induced increase in the pH and the Mg2+ concentration in the stroma, which are thought to be obligatory for light activation of Calvincycle enzymes.  相似文献   

19.
Addition of sorbitol, which facilitated reductions in reaction medium osmotic potential from standard (0.33 molar sorbitol, −10 bars) isotonic conditions to a stress level of 0.67 molar sorbitol (−20 bars), inhibited the photosynthetic capacity of isolated spinach (Spinacia oleracea) chloroplasts. This inhibition, which ranged from 64 to 74% under otherwise standard reaction conditions, was dependent on reaction medium inorganic phosphate concentration, with the phosphate optimum for photosynthesis reduced to 0.05 millimolar at the low osmotic potential stress treatment from a value of 0.25 millimolar under control conditions.

Stromal alkalating agents such as NH4Cl (0.75 millimolar) and KCl (35 millimolar) were also found to affect the degree of low osmotic potential inhibition of photosynthesis. Both agents doubled the rate of NaHCO3-supported O2 evolution under the stress treatment, while hardly affecting the control rate at optimal concentrations. These agents also reduced the length of the lag phase of photosynthetic O2 evolution under the stress treatment to a much greater degree. The rate-enhancement effect of these agents under the stress treatment was reversed by sodium acetate, which is known to facilitate stromal acidification.

The reaction medium pH optimum for photosynthesis under the stress treatment was higher than under control conditions. In the presence of optimal NH4Cl, this shift was no longer evident.

Internal pH measurements indicated that the stress treatment caused a 0.43 and 0.24 unit reduction in the stromal and intrathylakoid pH, respectively, under illumination. This osmotically induced acidification was not evident in the dark. The presence of 0.75 millimolar NH4Cl partially reversed the osmotically induced reduction in the illuminated stromal pH. It was concluded that stromal acidification is a mediating mechanism of the most severe site of low osmotic potential inhibition of the photosynthetic process.

  相似文献   

20.
Light-mediated activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) in intact spinach chloroplasts (Spinacia oleracea L.) is enhanced in the presence of 10−5 molar external free Ca2+. The most pronounced effect is observed during the first minutes of illumination. Ruthenium red, an inhibitor of light-induced Ca2+ influx, inhibits this Ca2+ stimulated activation. In isolated stromal preparations, the activation of fructose-1,6-bisphosphatase is already enhanced by 2 minutes of exposure to elevated Ca2+ concentrations in the presence of physiological concentrations of Mg2+ and fructose-1,6-bisphosphate. Maximal activation of the enzyme is achieved between 0.34 and 0.51 millimolar Ca2+. The Ca2+ mediated activation decreases with increasing fructose-1,6-bisphosphate concentration and with increasing pH. The data are consistent with the proposal that the illumination of chloroplasts leads to a transient increase of free stromal Ca2+. In dark-kept chloroplasts the steady-state concentration of free stromal Ca2+ is 2.4 to 6.3 micromolar as determined by null point titration. These observations support our previous proposal that light-induced Ca2+ influx into chloroplasts does not only influence the cytosolic concentration of free Ca2+ but also regulates enzymatic processes inside the chloroplast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号