共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The calcium-activated cysteine protease m-calpain plays a pivotal role during the earlier stages of myogenesis, particularly during fusion. The enzyme is a heterodimer, encoded by the genes capn2, for the large subunit, and capn4, for the small subunit. To study the regulation of m-calpain, the DNA sequence upstream of capn2 was analyzed for promoter elements, revealing the existence of five consensus-binding sites (E-box) for several myogenic regulatory factors and one binding site for myocyte enhancer factor-2 (MEF-2). Transient transfections with reporter gene constructs containing the E-box revealed that MyoD presents a high level of transactivation of reporter constructs containing this region, in particular the sequences including the MEF-2/E4-box. In addition, over-expression of various myogenic factors demonstrated that MyoD and myogenin with much less efficiency, can up-regulate capn2, both singly and synergistically, while Myf5 has no effect on synthesis of the protease. Experiments with antisense oligonucleotides directed against each myogenic factor revealed that MyoD plays a specific and pivotal role during capn2 regulation, and cannot be replaced wholly by myogenin and Myf5. 相似文献
4.
The limb and axial skeletal muscles of mammals originate from somitic dermomyotome, which during early development separates to form two discrete structures, the dermatome and the myotome. The latter cell mass gives rise to the muscle-forming lineage while cells of the dermatome will form the skin dermal fibroblast population of the dorsal regions of the body. It has been generally accepted for some time that myotome-derived myoblasts were the sole source of muscle fibre nuclei, but evidence has recently been presented from several laboratories that fibroblasts can fuse with myoblasts to contribute active nuclei to the resulting myotubes. We report here an investigation into the myogenic capacity of fibroblasts. Confluent monocultures of mouse dermal fibroblasts, muscle fibroblasts, and C2C12 myoblasts each retain their individual phenotype when maintained for periods up to 7 days in culture. We also grew isolated colonies of fibroblasts and myoblasts in an arrangement which allowed free exchange of tissue culture medium between the 2 cell types. We found evidence of the conversion of dermal fibroblasts to a myogenic lineage as measured by the appearance of MyoD-positive cells expressing the muscle-specific intermediate filament desmin. In addition, dermal fibroblast cultures contained multinucleate syncytia positive for MyoD and containing sarcomeric myosin heavy chain. In contrast, muscle-derived fibroblasts showed no evidence of myogenic conversion when maintained in identical culture conditions. We prepared conditioned medium from confluent cultures of C2C12 myoblasts and added this material to confluent monocultures of either dermal or muscle fibroblasts. While muscle fibroblasts showed no phenotypic alterations, cultures of dermal fibroblasts responded to myoblast conditioned medium by converting to a myogenic lineage as judged by expression of MyoD and desmin. We conclude that a proportion of dermal fibroblasts retain a myogenic capacity into stages well beyond their early association with myoblasts in the dermomyotome. © 1996 Wiley-Liss, Inc. 相似文献
5.
The transcription factor Six1a plays an essential role in the craniofacial myogenesis of zebrafish 总被引:1,自引:0,他引:1
Cheng-Yung Lin 《Developmental biology》2009,331(2):152-2415
6.
7.
8.
It has been recently proposed that adhesion of polymorphonuclear cells (PMNs) to human umbilical vein endothelial cells leads to the disorganization of the vascular endothelial cadherin–dependent endothelial adherens junctions. Combined immunofluorescence and biochemical data suggested that after adhesion of PMNs to the endothelial cell surface, β-catenin, as well as plakoglobin was lost from the cadherin/catenin complex and from total cell lysates. In this study we present data that strongly suggest that the adhesion-dependent disappearance of endothelial catenins is not mediated by a leukocyte to endothelium signaling event, but is due to the activity of a neutrophil protease that is released upon detergent lysis of the cells. 相似文献
9.
Negishi M Saraya A Miyagi S Nagao K Inagaki Y Nishikawa M Tajima S Koseki H Tsuda H Takasaki Y Nakauchi H Iwama A 《Biochemical and biophysical research communications》2007,353(4):992-998
Polycomb group (PcG) proteins are involved in gene silencing through chromatin modifications. Among polycomb repressive complexes (PRCs), PRC1 exhibits H2A-K119 ubiquitin E3 ligase activity. However, the molecular mechanisms underlying PRC1-mediated gene silencing remain largely obscure. In this study, we found that Bmi1 directly interacts with Dnmt-associated protein 1 (Dmap1), which has been characterized to associate with the maintenance DNA methyltransferase, Dnmt1. Bmi1 was demonstrated to form a ternary complex with Dmap1 and Dnmt1 with Dmap1 in the central position. Chromatin immunoprecipitations confirmed the ternary complex formation within the context of the PRC1 at the Bmi1 target loci. Loss of Dmap1 binding to the Bmi1 target loci was tightly associated with derepressed gene expression in Bmi1-/- cells. Dmap1 knockdown exhibited the same impact as Bmi1 knockout did on the expression of Bmi1 targets, including Hox genes. Collectively, our findings suggest that Bmi1 incorporates Dmap1 in polycomb gene silencing. 相似文献
10.
11.
Yiwei Li Dejuan Kong Aamir Ahmad Bin Bao Gregory Dyson Fazlul H. Sarkar 《Epigenetics》2012,7(8):940-949
The epigenetic regulation of genes has long been recognized as one of the causes of prostate cancer (PCa) development and progression. Recent studies have shown that a number of microRNAs (miRNAs) are also epigenetically regulated in different types of cancers including PCa. In this study, we found that the DNA sequence of the promoters of miR-29a and miR-1256 are partly methylated in PCa cells, which leads to their lower expression both in PCa cells and in human tumor tissues compared with normal epithelial cells and normal human prostate tissues. By real-time PCR, Western Blot analysis and miRNA mimic and 3′-UTR-Luc transfection, we found that TRIM68 is a direct target of miR-29a and miR-1256 and that the downregulation of miR-29a and miR-1256 in PCa cells leads to increased expression of TRIM68 and PGK-1 in PCa cells and in human tumor tissue specimens. Interestingly, we found that a natural agent, isoflavone, could demethylate the methylation sites in the promoter sequence of miR-29a and miR-1256, leading to the upregulation of miR-29a and miR-1256 expression. The increased levels of miR-29a and miR-1256 by isoflavone treatment resulted in decreased expression of TRIM68 and PGK-1, which is mechanistically linked with inhibition of PCa cell growth and invasion. The selective demethylation activity of isoflavone on miR-29a and miR-1256 leading to the suppression of TRIM68 and PGK-1 expression is an important biological effect of isoflavone, suggesting that isoflavone could be a useful non-toxic demethylating agent for the prevention of PCa development and progression. 相似文献
12.
13.
《Epigenetics》2013,8(8):940-949
The epigenetic regulation of genes has long been recognized as one of the causes of prostate cancer (PCa) development and progression. Recent studies have shown that a number of microRNAs (miRNAs) are also epigenetically regulated in different types of cancers including PCa. In this study, we found that the DNA sequence of the promoters of miR-29a and miR-1256 are partly methylated in PCa cells, which leads to their lower expression both in PCa cells and in human tumor tissues compared with normal epithelial cells and normal human prostate tissues. By real-time PCR, Western Blot analysis and miRNA mimic and 3′-UTR-Luc transfection, we found that TRIM68 is a direct target of miR-29a and miR-1256 and that the downregulation of miR-29a and miR-1256 in PCa cells leads to increased expression of TRIM68 and PGK-1 in PCa cells and in human tumor tissue specimens. Interestingly, we found that a natural agent, isoflavone, could demethylate the methylation sites in the promoter sequence of miR-29a and miR-1256, leading to the upregulation of miR-29a and miR-1256 expression. The increased levels of miR-29a and miR-1256 by isoflavone treatment resulted in decreased expression of TRIM68 and PGK-1, which is mechanistically linked with inhibition of PCa cell growth and invasion. The selective demethylation activity of isoflavone on miR-29a and miR-1256 leading to the suppression of TRIM68 and PGK-1 expression is an important biological effect of isoflavone, suggesting that isoflavone could be a useful non-toxic demethylating agent for the prevention of PCa development and progression. 相似文献
14.
目的 研究miR-146a是否参与新生隐球菌感染免疫应答过程.方法 采用RT-PCR检测了6例新生隐球菌性脑膜炎患者和6名健康个体外周血单个核细胞(PBMC)中miR-146a的表达.以热灭活新生隐球菌刺激来自健康个体的PB-MC,并加入Dectin-1抑制剂昆布多糖,采用RT-PCR检测热灭活新生隐球菌和昆布多糖对PBMC中miR-146a表达的影响.结果 新生隐球菌性脑膜炎患者PBMC中miR-146a的表达较健康个体明显增高.热灭活新生隐球菌可以上调PBMC中miR-146a的表达,昆布多糖可以削弱其上调miR-146a表达的能力.结论 热灭活新生隐球菌可以通过Dectin-1受体上调miR-146a的表达.miR-146a参与了新生隐球菌感染免疫应答过程,值得进一步研究. 相似文献
15.
16.
17.
18.
19.
MicroRNAs (miRNAs) play key roles in cancer development and progression. In the present study, we investigated the role of miR-340 in the progression and metastasis of osteosarcoma (OS). Our results showed that miR-340 was frequently downregulated in OS tumors and cell lines. Overexpression of miR-340 in OS cell lines significantly inhibited cell proliferation, migration, and invasion in vitro, and tumor growth and metastasis in a xenograft mouse model. ROCK1 was identified as a target of miR-340, and ectopic expression of miR-340 downregulated ROCK1 by direct binding to its 3′ untranslated region. siRNA-mediated silencing of ROCK1 phenocopied the effects of miR-340 overexpression, whereas restoration of ROCK1 in miR-340-overexpressing OS cells reversed the suppressive effects of miR-340. Together, these findings indicate that miR-340 acts as a tumor suppressor and its downregulation in tumor tissues may contribute to the progression and metastasis of OS through a mechanism involving ROCK1, suggesting miR-340 as a potential new diagnostic and therapeutic target for the treatment of OS. 相似文献