首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditional cell labeling, cell tracing, and genetic manipulation approaches are becoming increasingly important in developmental and regenerative biology. Such approaches in zebrafish research are hampered by the lack of an ubiquitous transgene driver element that is active at all developmental stages. Here, we report the isolation and characterization of the medaka fish (Oryzias latipes) β‐actin (Olactb) promoter, which drives constitutive transgene expression during all developmental stages, and the analysis of adult organs except blood cell types. Taking advantage of the compact medaka promoter, we succeeded in generating a zebrafish transgenic (Tg) line with unprecedentedly strong and widespread transgene expression from embryonic to adult stages. Moreover, the Tg carries a pair of loxP sites, which enables the reporter fluorophore to switch from DsRed2 to enhanced green fluorescent protein (EGFP). We induced Cre/loxP recombination with Tg(hsp70l: mCherry‐t2a‐CreERt2) in the double Tg embryo and generated a Tg line that constitutively expresses EGFP. We further demonstrate the powerful application of Olactb‐driven Tgs for cell lineage tracing using transplantation experiments with embryonic cells at the shield stage and adult cells of regenerating fin. Thus, the use of promoter elements from medaka is an alternative approach to generate Tgs with stronger and even novel expression patterns in zebrafish. The Olactb promoter and the Tg lines presented here represent an important advancement for the broader use of Cre/loxP‐based Tg applications in zebrafish.  相似文献   

2.
In this study, we verified nuclear transport activity of an artificial nuclear localization signal (aNLS) in medaka fish (Oryzias latipes). We generated a transgenic medaka strain expresses the aNLS tagged enhanced green fluorescent protein (EGFP) driven by a medaka beta‐actin promoter. The aNLS‐EGFP was accumulated in the nuclei of somatic tissues and yolk nuclei of oocytes, but undetectable in the spermatozoa. The fluorescent signal was observed from immediately after fertilization by a maternal contribution. Furthermore, male and female pronuclei were visualized in fertilized eggs, and nuclear dynamics of pronuclear fusion and subsequent cleavage were captured by time‐lapse imaging. In contrast, SV40NLS exhibited no activity of nuclear transport in early embryos. In conclusion, the aNLS possesses a strong nuclear localization activity and is a useful probe for fluorescent observation of the pronuclei and nuclei in early developmental stage of medaka.  相似文献   

3.
In this study, we demonstrated that human type-5 adenovirus infected the brain of the teleost fish, medaka (Oryzias latipes), in vivo. Injection of adenoviral vector into the mesencephalic ventricle of medaka larvae induced the expression of reporter genes in some parts of the telencephalon, the periventricular area of the mesencephalon and diencephalon, and the cerebellum. Additionally, the Cre-loxP system works in medaka brains using transgenic medaka carrying a vector containing DsRed2, flanked by loxP sites under control of the β-actin promoter and downstream promoterless enhanced green fluorescent protein (EGFP). We demonstrated that the presence of green fluorescence depended on injection of adenoviral vector expressing the Cre gene and confirmed that EGFP mRNA was transcribed in the virus-injected larvae.  相似文献   

4.
The lymphatic vascular system plays an active role in immune cell trafficking, inflammation and cancer spread. In order to provide an in vivo tool to improve our understanding of lymphatic vessel function in physiological and pathological conditions, we generated and characterized a tdTomato reporter mouse and crossed it with a mouse line expressing Cre recombinase under the control of the lymphatic specific promoter Prox1 in an inducible fashion. We found that the tdTomato fluorescent signal recapitulates the expression pattern of Prox1 in lymphatic vessels and other known Prox1-expressing organs. Importantly, tdTomato co-localized with the lymphatic markers Prox1, LYVE-1 and podoplanin as assessed by whole-mount immunofluorescence and FACS analysis. The tdTomato reporter was brighter than a previously established red fluorescent reporter line. We confirmed the applicability of this animal model to intravital microscopy of dendritic cell migration into and within lymphatic vessels, and to fluorescence-activated single cell analysis of lymphatic endothelial cells. Additionally, we were able to describe the early morphological changes of the lymphatic vasculature upon induction of skin inflammation. The Prox1-Cre-tdTomato reporter mouse thus shows great potential for lymphatic research.  相似文献   

5.
alpha-Internexin is a 66 kDa neuronal intermediate filament protein found most abundantly in the neurons of the nervous systems during early development. To characterize the function of mouse alpha-internexin promoter, we designed two different expression constructs driven by 0.7 kb or 1.3 kb of mouse alpha-internexin 5'-flanking sequences; one was the enhanced green fluorescent protein (EGFP) reporter for monitoring specific expression in vitro, and the other was the cre for studying the functional DNA recombinase in transgenic mice. After introducing DNA constructs into non-neuronal 3T3 fibroblasts and a neuronal Neuro2A cell line by lipofectamine transfection, we observed that the expression of EGFP with 1.3 kb mouse alpha-internexin promoter was in a neuron-dominant manner. To establish a tissue-specific pattern in the nervous system, we generated a transgenic mouse line expressing Cre DNA recombinase under the control of 1.3 kb alpha-Internexin promoter. The activity of the Cre recombinase at postnatal day 1 was examined by mating the cre transgenic mice to ROSA26 reporter (R26R) mice with knock-in Cre-mediated recombination. Analyses of postnatal day 1 (P1) newborns showed that beta-galactosidase activity was detected in the peripheral nervous system (PNS), such as cranial nerves innervating the tongue and the skin as well as spinal nerves to the body trunk. Furthermore, X-gal-labeled dorsal root ganglionic (DRG) neurons showed positive for alpha-Internexin in cell bodies but negative in their spinal nerves. The motor neurons in the spinal cord did not exhibit any beta-galactosidase activity. Therefore, the cre transgene driven by mouse alpha-internexin promoter, described here, provides a useful animal model to specifically manipulate genes in the developing nervous system.  相似文献   

6.
Several types of stem cells are characterized by the expression of oct4 in vertebrates. In transgenic medaka (Oryzias latipes) generated by Froschauer et al. (this issue), oct4‐ EGFP expression marks the stem cells in development and in adult testis, in which the spermatogonia are found at the distal ends of the testicular tubules (background, red). When the fluorescence of these EGFP‐positive cells is quantified by flow cytometry (foreground), the spermatogonia elicit the strongest fluorescence (horizontal axis).  相似文献   

7.
We used the 500-bp Xenopus ef1-alpha promoter and the 2-kb zebrafish histone 2A.F/Z promoter to generate several independent transgenic zebrafish lines expressing EGFP. While both promoters drive ubiquitous EGFP expression in early zebrafish development, they are systematically silenced in several adult tissues, including the retina and caudal fin. However, EGFP expression is temporarily renewed in the adult during either caudal fin or retinal regeneration. In the Tg(H2A.F/Z:EGFP)nt line, EGFP is moderately expressed in both the wound epithelium and blastema of the regenerating caudal fin. In the Tg(ef1-alpha:EGFP)nt line, EGFP expression is reinitiated and restricted to the blastema of the regenerating caudal fin and colabels with BrdU, PCNA, and msxc-positive cells. Thus, these two ubiquitous promoters drive EGFP transgene expression in different cell populations during caudal fin regeneration. We further analyzed the ability of the ef1-alpha:EGFP transgene to label nonterminally differentiated cells during adult tissue regeneration. First, we demonstrated that the transgene is highly methylated in adult zebrafish caudal fin tissue, but not during fin regeneration, implicating methylation as a potential means of transgene silencing in this line. Next, we determined that the ef1-alpha:EGFP transgene is also re-expressed during adult retinal regeneration. Specifically, the ef1-alpha:EGFP transgene colabels with PCNA in the Müller glia, a specialized cell that is the source of neuronal progenitors during zebrafish retinal regeneration. Thus, we concluded that Tg(ef1-alpha:EGFP)nt line visually marks nonterminally differentiated cells in multiple adult regeneration environments and may prove to be a useful marker in tissue regeneration studies in zebrafish.  相似文献   

8.
We have established an enhanced green fluorescent protein (EGFP) transgenic medaka line that mimics the expression of sox9b/sox9a2 to analyze the morphological reorganization of the gonads and characterize the sox9b-expressing cells during gonadal formation in this fish. After the germ cells have migrated into the gonadal areas, a cluster of EGFP-expressing cells in the single gonadal primordium was found to be separated by the somatic cells along the rostrocaudal axis and form the bilateral lobes. We observed in these transgenic fish that EGFP expression persists only in the somatic cells directly surrounding the germ cells. As sex differentiation proceeds, dmrt1 and foxl2 begin to be expressed in the EGFP-expressing cells in the XY and the XX gonads, respectively. This indicates that the sox9b-expressing cells reorganize into two lobes of the gonad and then differentiate into Sertoli or granulosa cells, as common precursors of the supporting cells. Hence, our sox9b-EGFP medaka system will be useful in future studies of gonadal development.  相似文献   

9.
To study the complex molecular mechanisms of mammalian spermatogenesis, it would be useful to be able to isolate cells at each stage of differentiation, especially at the stage in which the cells switch from mitosis to meiosis. Currently, no useful marker proteins or gene promoters specific to this important stage are known. We report here a transgenic mouse line that under the control of the promoter for a histone variant, H2A.X, expressed an enhanced green fluorescent protein (EGFP) in cells at the stage of the mitosis-meiosis switch. Endogenous H2A.X is expressed in type A spermatogonia through meiotic prophase spermatocytes in testis and in some somatic cells. However, despite the fact that its expression was driven by the H2A.X promoter, the EGFP expressed in the transgenic mice specifically labeled only the intermediate spermatogonia stage through the meiotic prophase spermatocyte stage in transgenic mice containing the -600-base pair H2A.X promoter/EGFP construct. Type A spermatogonia and somatic cells of other organs were not labeled. This expression pattern made it possible to isolate living cells from the testis of the transgenic mice at the stage of the mitosis-meiosis switch in spermatogenesis using EGFP fluorescence.  相似文献   

10.
滕路  成俊英  杨扬  张崇本 《遗传学报》2004,31(10):1061-1065
构建pRex-1-EGFP表达载体,电穿孔转染小鼠ES细胞,用增强绿色荧光蛋白对起源于3.5d胚泡内细胞团的小鼠胚胎干细胞进行特异性标记,用荧光显微观察EGFP的表达以及RT-PCR方法检测Rex-1基因在未分化和分化中ES细胞中的表达情况。结果显示,EGFP基因成功转入小鼠ES细胞,并在未分化的ES细胞中高效表达;细胞开始分化后,EGFP的表达开始下降。由Rex-1基因启动子控制下的EGFP稳定表达的小鼠ES细胞系,对哺乳动物早期发育过程的研究以及对筛选能够调节上述过程的小分子化合物具有重要意义。  相似文献   

11.
12.
为了建立一种用于研究肌肉和心脏发育及其相关疾病的绿色荧光蛋白(enhanced green fluorescent protein,EGFP)转基因斑马鱼品系,本研究使用斑马鱼ttn.2基因编码区上游启动子序列和绿色荧光蛋白基因编码序列构建了重组表达载体,并将该载体和Tol2转座酶的加帽mRNA显微共注射入斑马鱼1-细胞期胚胎,通过荧光检测、遗传杂交筛选和分子鉴定等方法,成功建立了能稳定遗传的Tg(ttn.2:EGFP)转基因斑马鱼品系。荧光表达分析及原位杂交分析结果表明,绿色荧光信号在斑马鱼肌肉和心脏组织中特异表达模式与ttn.2基因的mRNA表达一致。通过反向PCR鉴定转基因表达载体在F1代斑马鱼品系中的随机整合位点,结果表明:No.33转基因品系的EGFP基因整合在斑马鱼的4号和11号染色体上,No.34转基因品系则整合在1号染色体上。该荧光转基因斑马鱼品系Tg(ttn.2:EGFP)的成功构建为肌肉和心脏发育以及相关疾病研究提供了一个新的理想实验模型。此外,绿色荧光强烈表达的斑马鱼品系还可以作为一种新的观赏鱼。  相似文献   

13.
用增强绿色荧光蛋白特异性标记小鼠 3T3 L1前脂肪细胞系 .构建paP2 promoter EGFP载体 ,电穿孔转染小鼠 3T3 L1前脂肪细胞 ,显微荧光观察和RT PCR确认aP2基因的内源表达 .EGFP基因转入 3T3 L1前脂肪细胞 ,观察到细胞分化过程中EGFP表达和脂肪积累 .RT PCR分析表明 ,EGFP代表了稳定而真实的aP2基因的内源性表达 .建立了由脂肪组织特异表达基因aP2的表达控制的EGFP标记的小鼠 3T3 L1前脂肪细胞系 ,目前尚未见用同样方法对前脂肪细胞进行特异性标记 .该细胞系将为脂肪细胞分化机理研究以及为抗肥胖症和抗糖尿病药物筛选提供有力工具 .  相似文献   

14.
Laborious molecular genotyping and variegated gene expression are two widely encountered issues for transgenic mouse studies. To facilitate genotyping in the FVB/N albino background and to reduce variegated expression, we successfully generated double-tagged transgenic mice for direct visual genotyping with the coat color phenotype derived from tyrosinase cDNA driven by the tyrosinase promoter and with simultaneous high enhanced green fluorescent protein (EGFP) expression driven by the promoter of RNA polymerase II large subunit gene. Incorporation of insulator into a transgene construct achieved high efficiency of transgene expression in more than 90% of the founders. EGFP was detected as early as the one-cell fertilized egg and lasted for the whole embryo development, as well as in all of the adult tissues examined. The coat color-tagged green mice offer opportunities in applications such as tissue transplantation, lineage tracing, chimera biology, RNA interference, and other transgenic studies.  相似文献   

15.
16.
One of the two X chromosomes is inactivated in female eutherian mammals. MacroH2A, an unusual histone variant, is known to accumulate on the inactive X chromosome (Xi) during early embryo development, and can thus be used as a marker of the Xi. In this study, we produced a transgenic mouse line expressing the mouse MacroH2A1.2–enhanced green fluorescent protein (EGFP) fusion protein (MacroH2A–EGFP) under the control of a CAG promoter and verified whether MacroH2A–EGFP would be useful for tracing the process of X chromosome inactivation by visualizing Xi noninvasively in preimplantation embryos. In transgenic female mice, MacroH2A–EGFP formed a fluorescent focus in nuclei throughout the body. In female blastocysts, the MacroH2A–EGFP focus colocalized with Xist RNA, well known as a marker of Xi. Fluorescence marking of Xi was first observed in some embryonic cells between the 4‐ and 8‐cell stages. These results demonstrate that MacroH2A can bind to the Xi by around the 8‐cell stage in female mouse embryos. These MacroH2A–EGFP transgenic mice might be useful to elucidate the process of X chromosome inactivation during the mouse life cycle. genesis 51:259–267. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
The kidney, epididymis, and lungs are complex organs with considerable epithelial cell heterogeneity. This has limited the characterization of pathophysiological transport processes that are specific for each cell type in these epithelia. The purpose of the present study was to develop new tools to study cell-specific gene and protein expression in such complex tissues and organs. We report the production of a transgenic mouse that expresses enhanced green fluorescent protein (EGFP) in a subset of epithelial cells that express the B1 subunit of vacuolar H+-ATPase (V-ATPase) and are actively involved in proton transport. A 6.5-kb portion of the V-ATPase B1 promoter was used to drive expression of EGFP. In two founders, quantitative real-time RT-PCR demonstrated expression of EGFP in kidney, epididymis, and lung. Immunofluorescence labeling using antibodies against the B1 and E subunits of V-ATPase and against carbonic anhydrase type II (CAII) revealed specific EGFP expression in all renal type A and type B intercalated cells, some renal connecting tubule cells, all epididymal narrow and clear cells, and some nonciliated airway epithelial cells. No EGFP expression was detected in collecting duct principal cells (identified using an anti-AQP2 antibody) or epididymal principal cells (negative for V-ATPase or CAII). This EGFP-expressing mouse model should prove useful in future studies of gene and protein expression and their physiological and/or developmental regulation in distinct cell types that can now be separated using fluorescence-assisted microdissection, fluorescence-activated cell sorting, and laser capture microdissection. collecting duct; enhanced green fluorescent protein  相似文献   

18.
We have established a transgenic mouse line in which floxed neomycin resistant cassette was inserted between the CAG promoter and EGFP. When these transgenic mice were mated with Cre-expressing transgenic animals, the offspring obtained were fluorescent green. We then established a transgenic mouse line in which EGFP in the above construct was replaced by diphtheria toxin A chain (DT). When the latter transgenic mice were mated with mice expressing Cre restricted to germ cells, we obtained healthy but sterile offspring due to a disruption of germ line cells by DT expression. We predict that this strategy will be useful for the construction of new animal models for human diseases, featuring a variety of missing cell lineages produced by disruption with DT.  相似文献   

19.
Cell marking is a very important procedure for identifying donor cells after cell and/or organ transplantation in vivo. Transgenic animals expressing marker proteins such as enhanced green fluorescent protein (EGFP) in their tissues are a powerful tool for research in fields of tissue engineering and regenerative medicine. The purpose of this study was to establish transgenic rabbit lines that ubiquitously express EGFP under the control of the cytomegalovirus immediate early enhancer/beta-actin promoter (CAG) to provide a fluorescent transgenic animal as a bioresource. We microinjected the EGFP expression vector into 945 rabbit eggs and 4 independent transgenic candidate pups were obtained. Two of them died before sexual maturation and one was infertile. One transgenic male candidate founder rabbit was obtained and could be bred by artificial insemination. The rabbit transmitted the transgene in a Mendelian manner. Using fluorescence in situ hybridization analysis, we detected the transgene at 7q11 on chromosome 7 as a large centromeric region in two F1 offspring (one female and one male). Eventually, one transgenic line was established. Ubiquitous EGFP florescence was confirmed in all examined organs. There were no gender-related differences in fluorescence. The established CAG/EGFP transgenic rabbit will be an important bioresource and a useful tool for various studies in tissue engineering and regenerative medicine.  相似文献   

20.
小鼠3T3-L1前脂肪细胞系的增强绿色荧光蛋白标记   总被引:1,自引:0,他引:1  
细胞模型是研究细胞分化原理以及进行高通量筛选的有效工具。为了建立特异性标记的脂肪细胞分化模型,构建了包括脂肪细胞分化特异性表达基因PPARγ2的启动子在内的载体(pPPARγ2-promoter-EGFP),用电穿孔方法转染小鼠3T3L1 前脂肪细胞,用显微荧光观察和RT-PCR确认PPARγ2基因的内源表达。结果显示,EGFP基因成功转入3T3-L1前脂肪细胞,观察到细胞分化过程中EGFP表达和脂肪积累,RTPCR分析表明EGFP代表了稳定而真实的PPARγ2基因的内源性表达。建立了由脂肪组织特异表达基因PPARγ2的表达控制的EGFP标记的小鼠3T3-L1前脂肪细胞系,目前国内外尚未见用同样方法对前脂肪细胞进行特异性标记。该细胞系将为脂肪细胞分化机理研究以及为抗肥胖症和抗糖尿病药物筛选提供有力工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号