首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Gene activation by steroid hormone receptors involves the recruitment of the steroid receptor coactivator (SRC)/p160 coactivator LXXLL motifs to activation function 2 (AF2) in the ligand binding domain. For the androgen receptor (AR), AF2 also serves as the interaction site for the AR NH(2)-terminal FXXLF motif in the androgen-dependent NH(2)-terminal and carboxyl-terminal (N/C) interaction. The relative importance of the AR AF2 site has been unclear, since the AR FXXLF motif interferes with coactivator recruitment by competitive inhibition of LXXLL motif binding. In this report, we identified the X chromosome-linked melanoma antigen gene product MAGE-11 as an AR coregulator that specifically binds the AR NH(2)-terminal FXXLF motif. Binding of MAGE-11 to the AR FXXLF alpha-helical region stabilizes the ligand-free AR and, in the presence of an agonist, increases exposure of AF2 to the recruitment and activation by the SRC/p160 coactivators. Intracellular association between AR and MAGE-11 is supported by their coimmunoprecipitation and colocalization in the absence and presence of hormone and by competitive inhibition of the N/C interaction. AR transactivation increases in response to MAGE-11 and the SRC/p160 coactivators through mechanisms that include but are not limited to the AF2 site. MAGE-11 is expressed in androgen-dependent tissues and in prostate cancer cell lines. The results suggest MAGE-11 is a unique AR coregulator that increases AR activity by modulating the AR interdomain interaction.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Here we report that mutations within the DNA-binding domain of AR, shown previously to inhibit nuclear export to the cytoplasm, cause an androgen-dependent defect in intranuclear trafficking of AR. Mutation of two conserved phenylalanines within the DNA recognition helix (F582, 583A) results in androgen-dependent arrest of AR in multiple subnuclear foci. A point mutation in one of the conserved phenylalanines (DeltaF582, F582Y) is known to cause androgen insensitivity syndrome (AIS). Both AIS mutants (DeltaF582, F582Y) and the export mutant (F582, 583A) displayed androgen-dependent arrest in foci, and all three mutants promoted androgen-dependent accumulation of the histone acetyl transferase CREB binding protein (CBP) in the foci. The foci correspond to a subnuclear compartment that is highly enriched for the steroid receptor coactivator glucocorticoid receptor-interacting protein (GRIP)-1. Agonist-bound wild-type AR induces the redistribution of GRIP-1 from foci to the nucleoplasm. This likely reflects a direct interaction between these proteins because mutation of a conserved residue within the major coactivator binding site on AR (K720A) inhibits AR-dependent dissociation of GRIP-1 from foci. GRIP-1 also remains foci-associated in the presence of agonist-bound F582, 583A, DeltaF582, or F582Y forms of AR. Two-dimensional phospho-peptide mapping and analysis with a phospho-specific antibody revealed that mutant forms of AR that arrest in the subnuclear foci are hypophosphorylated at Ser81, a site that normally undergoes androgen-dependent phosphorylation. Our working model is that the subnuclear foci are sites where AR undergoes ligand-dependent engagement with GRIP-1 and CBP, a recruitment step that occurs before Ser81 phosphorylation and association with promoters of target genes.  相似文献   

14.
We have compared the functional consequences of seven single-point mutations in the ligand-binding domain (LBD) of the androgen receptor (AR). The mutations span helices 3 to 11 and are present in patients suffering from androgen insensitivity syndromes (AIS) and other male-specific disorders. The mutants, except M742V, bound to androgen response elements in vivo and in vitro and showed a testosterone-dependent conformational change. With regard to functional activity, the mutant M742V had severely blunted ability to transactivate or exhibit the androgen-dependent amino/carboxyl-terminal (N/C) interaction; mutants F725L, G743V, and F754L showed reduced transactivation potential and attenuated N/C interaction; and mutants V715M, R726L, and M886V had minor functional impairments. The mutants belonging to the first two groups also displayed reduced response to coexpressed GRIP1. In addition, mutations of amino acids M894 and A896 in the putative core activation domain 2 (AF2) in helix 12 confirmed that this helix is important for N/C interactions. Thus, amino acids located between helices 3 and 4 (F725 and R726), in helix 5 (M742, G743, and F754), and in helix 12 (M894 and A896) play critical roles in mediating the N/C interaction of AR. The data also show that disrupted N/C interaction is a potential molecular abnormality in AIS cases in which LBD mutations have not resulted in markedly impaired ability to bind androgen.  相似文献   

15.
16.
17.
The influence of estrogen on the development of the male reproductive system may be interrupted in a subset of partial androgen insensitivity syndrome (PAIS) patients. PAIS describes a wide range of male undermasculinization resulting from mutations in the androgen receptor (AR) or steroid metabolism enzymes that perturb androgen-AR regulation of male sex organ development. In this study, we are interested in determining if PAIS-derived AR mutants that respond normally to androgen have altered responses to estrogen in the presence of ARA70, a coregulator previously shown to enhance 17beta-estradiol E2-induced AR transactivation. The wild-type AR (wtAR) and two PAIS AR mutants, AR(S703G) and AR(E709K), all bind to androgen and E2 and subsequently translocate to the nucleus. Whereas ARA70 functionally interacts with the wtAR and the PAIS AR mutants in response to androgen, E2 only promotes the functional interaction between ARA70 and the wtAR but not the PAIS AR mutants. ARA70 increases E2 competitive binding to the wtAR in the presence of low level androgen and also retards E2 dissociation from the wtAR. ARA70 is present in both the cytoplasm and the nucleus of various mouse testicular cells during early embryogenesis day 16, at postpartum day 0 during estradiol synthesis and in the Leydig cells at postpartum day 49. ARA70 may be unable to modulate the PAIS AR mutants-E2 binding, diminishing the effect of E2 via AR during male reproductive system development in patients with such mutations. Therefore, the presence of ARA70 in the testosterone and E2-producing Leydig cells may enhance the overall activity of AR during critical stages of male sex organ development.  相似文献   

18.
19.
We have characterized a novel mutation of the human AR, G577R, associated with partial androgen insensitivity syndrome. G577 is the first amino acid of the P box, a region crucial for the selectivity of receptor/DNA interaction. Although the equivalent amino acid in the GR (also Gly) is not involved in DNA interaction, the residue at the same position in the ER (Glu) interacts with the two central base pairs in the PuGGTCA motif. Using a panel of 16 palindromic probes that differ in these base pairs (PuGNNCA) in gel shift experiments with either the AR DNA-binding domain or the full length receptor, we observed that the G577R mutation does not induce binding to probes that are not recognized by the wild-type AR. However, binding to the four PuGNACA elements recognized by the wild-type AR was affected to different degrees, resulting in an altered selectivity of DNA response element recognition. In particular, AR-G577R did not interact with PuGGACA palindromes. Modeling of the complex between mutant AR and PuGNACA motifs indicates that the destabilizing effect of the mutation is attributable to a steric clash between the C beta of Arg at position 1 of the P box and the methyl group of the second thymine residue in the TGTTCPy arm of the palindrome. In addition, the Arg side chain can interact with G or T at the next position (PuGCACA and PuGAACA elements, respectively). The presence of C is not favorable, however, because of incompatible charges, abrogating binding to the PuGGACA element. Transactivation of several natural or synthetic promoters containing PuGGACA motifs was drastically reduced by the G577R mutation. These data suggest that androgen target genes may be differentially affected by the G577R mutation, the first natural mutation characterized that alters the selectivity of the AR/DNA interaction. This type of mutation may thus contribute to the diversity of phenotypes associated with partial androgen insensitivity syndrome.  相似文献   

20.
The ligand-bound androgen receptor (AR) regulates target genes via a mechanism involving coregulators such as androgen receptor-associated 54 (ARA54). We investigated whether the interruption of the AR coregulator function could lead to down-regulation of AR activity. Using in vitro mutagenesis and a yeast two-hybrid screening assay, we have isolated a mutant ARA54 (mt-ARA54) carrying a point mutation at amino acid 472 changing a glutamic acid to lysine, which acts as a dominant-negative inhibitor of AR transactivation. In transient transfection assays of prostate cancer cell lines, the mt-ARA54 suppressed endogenous mutated AR-mediated and exogenous wild-type AR-mediated transactivation in LNCaP and PC-3 cells, respectively. In DU145 cells, the mt-ARA54 suppressed exogenous ARA54 but not other coregulators, such as ARA55-enhanced or SRC-1-enhanced AR transactivation. In the LNCaP cells stably transfected with the plasmids encoding the mt-ARA54 under the doxycycline inducible system, the overexpression of the mt-ARA54 inhibited cell growth and endogenous expression of prostate-specific antigen. Mammalian two-hybrid assays further demonstrated that the mt-ARA54 can disrupt the interaction between wild-type ARA54 molecules, suggesting that ARA54 dimerization or oligomerization may play an essential role in the enhancement of AR transactivation. Together, our results demonstrate that a dominant-negative AR coregulator can suppress AR transactivation and cell proliferation in prostate cancer cells. Further studies may provide a new therapeutic approach for blocking AR-mediated prostate cancer growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号