首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on the preparation of a new type of Prussian Blue/polyaniline (PB/PANI)-modified electrode as oxygen reduction cathode, and its availability in microbial fuel cell (MFC) for biological power generation. The PB/PANI-modified electrode was prepared by electrochemical and chemical methods, both of which exhibited good electrocatalytical reactivity for oxygen reduction in acidic electrolyte. The MFC with PB/PANI-modified cathode aerated by either oxygen or air was shown to yield a maximum power density being the same with that of the MFC with liquid-state ferricyanide cathode, and have an excellent duration as indicated by stable cathode potential for more than eight operating circles. This study suggests a promising potential to utilize this novel electrode as an effective alternative to platinum for oxygen reduction in MFC system without losing sustainability.  相似文献   

2.
Long-term performance of a plant microbial fuel cell with Spartina anglica   总被引:2,自引:0,他引:2  
The plant microbial fuel cell is a sustainable and renewable way of electricity production. The plant is integrated in the anode of the microbial fuel cell which consists of a bed of graphite granules. In the anode, organic compounds deposited by plant roots are oxidized by electrochemically active bacteria. In this research, salt marsh species Spartina anglica generated current for up to 119 days in a plant microbial fuel cell. Maximum power production was 100 mW m−2 geometric anode area, highest reported power output for a plant microbial fuel cell. Cathode overpotential was the main potential loss in the period of oxygen reduction due to slow oxygen reduction kinetics at the cathode. Ferricyanide reduction improved the kinetics at the cathode and increased current generation with a maximum of 254%. In the period of ferricyanide reduction, the main potential loss was transport loss. This research shows potential application of microbial fuel cell technology in salt marshes for bio-energy production with the plant microbial fuel cell.  相似文献   

3.
Microbial fuel cells represent a new method for producing electricity from the oxidation of organic matter. A mediatorless microbial fuel cell was developed using Escherichia coli as the active bacterial component with synthetic wastewater of potato extract as the energy source. The two-chamber fuel cell, with a relation of volume between anode and cathode chamber of 8:1, was operated in batch mode. The response was similar to that obtained when glucose was used as the carbon source. The performance characteristics of the fuel cell were evaluated with two different anode and cathode shapes, platinised titanium strip or mesh; the highest maximum power density (502mWm(-2)) was achieved in the microbial fuel cell with mesh electrodes. In addition to electricity generation, the MFC exhibited efficient treatment of wastewater so that significant reduction of initial oxygen demand of wastewater by 61% was observed. These results demonstrate that potato starch can be used for power generation in a mediatorless microbial fuel cell with high removal efficiency of chemical oxygen demand.  相似文献   

4.
To enhance the oxygen reduction reaction (ORR) activity and power generation capacity of a microbial fuel cell (MFC), MIL-53(Fe) (Fe-based Materials of Institute Lavoisier) as the electrochemical catalyst was synthesized using the hydrothermal method. The catalytic structure and morphology of all materials were comprehensively characterized by Fourier Transform infrared spectrometer (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results show that there were many nanopores on MIL-53(Fe), which improved the electrocatalytic activity. The MIL-53(Fe)-modified air cathode MFC had a voltage output of approximately 0.37 V and maintained that output for one week. The maximum power density was 397 ± 6.3 mW/m2. MIL-53(Fe) was an excellent electrochemical catalyst, significantly enhancing the catalytic oxygen reduction ability and promoting the power output of the MFC. This study provides a method to apply MIL-53(Fe) materials in microbial fuel cells.  相似文献   

5.
Construction of efficient performance of microbial fuel cells (MFCs) requires certain practical considerations. In the single chamber microbial fuel cell, there is no border between the anode and the cathode, thus the diffusion of the dissolved oxygen has a contrary effect on the anodic respiration and this leads to the inhibition of the direct electron transfer from the biofilm to the anodic surface. Here, a fed-batch single chambered microbial fuel cells are constructed with different distances 3 and 6?cm (anode- cathode spacing), while keeping the working volume is constant. The performance of each MFC is individually evaluated under the effects of vitamins & minerals with acetate as a fed load. The maximum open circuit potential during testing the 3 and 6?cm microbial fuel cells is about 946 and 791?mV respectively. By decreasing the distance between the anode and the cathode from 6 to 3?cm, the power density is decreased from 108.3?mW?m?2 to 24.5?mW?m?2. Thus, the short distance in membrane-less MFC weakened the cathode and inhibited the anodic respiration which affects the overall performance of the MFC efficiency. The system is displayed a maximum potential of 564 and 791?mV in absence & presence of vitamins respectively. Eventually, the overall functions of the acetate single chamber microbial fuel cell can be improved by the addition of vitamins & minerals and increasing the distance between the cathode and the anode.  相似文献   

6.
Activated carbon (AC) air-cathodes are inexpensive and useful alternatives to Pt-catalyzed electrodes in microbial fuel cells (MFCs), but information is needed on their long-term stability for oxygen reduction. AC cathodes were constructed with diffusion layers (DLs) with two different porosities (30% and 70%) to evaluate the effects of increased oxygen transfer on power. The 70% DL cathode initially produced a maximum power density of 1214±123 mW/m(2) (cathode projected surface area; 35±4 W/m(3) based on liquid volume), but it decreased by 40% after 1 year to 734±18 mW/m(2). The 30% DL cathode initially produced less power than the 70% DL cathode, but it only decreased by 22% after 1 year (from 1014±2 mW/m(2) to 789±68 mW/m(2)). Electrochemical tests were used to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power densities. These results suggest that the degradation in cathode performance was due to clogging of the AC micropores. These findings show that AC is a cost-effective material for oxygen reduction that can still produce ~750 mW/m(2) after 1 year.  相似文献   

7.
A low-cost and effective iron-chelated catalyst was developed as an electrocatalyst for the oxygen reduction reaction (ORR) in microbial fuel cells (MFCs). The catalyst was prepared by pyrolyzing carbon mixed iron-chelated ethylenediaminetetraacetic acid (PFeEDTA/C) in an argon atmosphere. Cyclic voltammetry measurements showed that PFeEDTA/C had a high catalytic activity for ORR. The MFC with a PFeEDTA/C cathode produced a maximum power density of 1122 mW/m2, which was close to that with a Pt/C cathode (1166 mW/m2). The PFeEDTA/C was stable during an operation period of 31 days. Based on X-ray diffraction and X-ray photoelectron spectroscopy measurements, quaternary-N modified with iron might be the active site for the oxygen reduction reaction. The total cost of a PFeEDTA/C catalyst was much lower than that of a Pt catalyst. Thus, PFeEDTA/C can be a good alternative to Pt in MFC practical applications.  相似文献   

8.
【目的】水溶性的Cr(Ⅵ)对环境及人类造成的危害是社会亟待解决的问题。Cr(Ⅵ)还原菌株的分离筛选、还原特性的分析和在微生物燃料电池中的应用为六价铬污染水体的微生物修复提供科学依据和新的方法。【方法】从黄河兰州段排污口采集样本,用平板法分离筛选获得具有Cr(Ⅵ)还原能力的菌株,并将Cr(Ⅵ)还原能力最强的LZU-26菌株应用到微生物燃料电池中,检测其产电能力和Cr(Ⅵ)还原特性。【结果】共分离得到21株具有Cr(Ⅵ)还原能力的菌株,其中LZU-26菌株Cr(Ⅵ)还原能力最强,属于Cellulosimicrobium cellilans。0.4 mmol/L初始Cr(Ⅵ)在LZU-26的作用下24 h铬还原率可达到95.89%,在48 h后达99.97%。将LZU-26运用在微生物燃料电池生物阴极,所获得的最大电压和最大功率密度分别为68 mV和6.8 W/cm~2。生物阴极Cr(Ⅵ)还原率(68.9%)也远高于化学阴极(14.7%)和对照组(2.7%)。【结论】利用Cr(Ⅵ)还原菌作为微生物燃料电池生物阴极处理含铬废水,将会是一种高效、节能和环境友好的方法。  相似文献   

9.
Autotrophic nitrite removal in the cathode of microbial fuel cells   总被引:3,自引:0,他引:3  
Nitrification to nitrite (nitritation process) followed by reduction to dinitrogen gas decreases the energy demand and the carbon requirements of the overall process of nitrogen removal. This work studies autotrophic nitrite removal in the cathode of microbial fuel cells (MFCs). Special attention was paid to determining whether nitrite is used as the electron acceptor by exoelectrogenic bacteria (biologic reaction) or by graphite electrodes (abiotic reaction). The results demonstrated that, after a nitrate pulse at the cathode, nitrite was initially accumulated; subsequently, nitrite was removed. Nitrite and nitrate can be used interchangeably as an electron acceptor by exoelectrogenic bacteria for nitrogen reduction from wastewater while producing bioelectricity. However, if oxygen is present in the cathode chamber, nitrite is oxidised via biological or electrochemical processes. The identification of a dominant bacterial member similar to Oligotropha carboxidovorans confirms that autotrophic denitrification is the main metabolism mechanism in the cathode of an MFC.  相似文献   

10.
Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for modification is easy to control and can be optimized and implemented for many carbon materials currently used in microbial fuel cells and other bioelectrochemical systems.  相似文献   

11.
The application of a rotating cathode in a river sediment microbial fuel cell increased the oxygen availability to the cathode, and therefore improved the cathode reaction rate, resulting in a higher power production (49 mW/m2) compared to a nonrotating cathode system (29 mW/m2). The increased dissolved oxygen in the water of our lab-scale sediment MFC, however, resulted in a less negative anode potential and a higher anodic charge transfer resistance, which constrained the maximum power density. Thus, an optimum balance between the superior cathode reaction rates and the inferior anode reaction rates due to higher dissolved oxygen levels must be ascertained.  相似文献   

12.
It is urgently required to develop highly efficient and stable bifunctional non‐noble metal electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for water splitting. In this study, a facile electrospinning followed by a post‐carbonization treatment to synthesize nitrogen‐doped carbon nanofibers (NCNFs) integrated with Ni and Mo2C nanoparticles (Ni/Mo2C‐NCNFs) as water splitting electrocatalysts is developed. Owing to the strong hydrogen binding energy on Mo2C and high electrical conductivity of Ni, synergetic effect between Ni and Mo2C nanoparticles significantly promote both HER and OER activities. The optimized hybrid (Ni/Mo2C(1:2)‐NCNFs) delivers low overpotentials of 143 mV for HER and 288 mV for OER at a current density of 10 mA cm?2. An alkaline electrolyzer with Ni/Mo2C(1:2)‐NCNFs as catalysts for both anode and cathode exhibits a current density of 10 mA cm?2 at a voltage of 1.64 V, which is only 0.07 V larger than the benchmark of Pt/C‐RuO2 electrodes. In addition, an outstanding long‐term durability during 100 h testing without obvious degradation is achieved, which is superior to most of the noble‐metal‐free electrocatalysts reported to date. This work provides a simple and effective approach for the preparation of low‐cost and high‐performance bifunctional electrocatalysts for efficient overall water splitting.  相似文献   

13.
It has been previously noted that mixed communities typically produce more power in microbial fuel cells than pure cultures. If true, this has important implications for the design of microbial fuel cells and for studying the process of electron transfer on anode biofilms. To further evaluate this, Geobacter sulfurreducens was grown with acetate as fuel in a continuous flow 'ministack' system in which the carbon cloth anode and cathode were positioned in close proximity, and the cation-selective membrane surface area was maximized in order to overcome some of the electrochemical limitations that were inherent in fuel cells previously employed for the study of pure cultures. Reducing the size of the anode in order to eliminate cathode limitation resulted in maximum current and power densities per m(2) of anode surface of 4.56 A m(-2) and 1.88 W m(-2) respectively. Electron recovery as current from acetate oxidation was c. 100% when oxygen diffusion into the system was minimized. This performance is comparable to the highest levels previously reported for mixed communities in similar microbial fuel cells and slightly higher than the power output of an anaerobic sludge inoculum in the same ministack system. Minimizing the volume of the anode chamber yielded a volumetric power density of 2.15 kW m(-3), which is the highest power density per volume yet reported for a microbial fuel cell. Geobacter sulfurreducens formed relatively uniform biofilms 3-18 mum thick on the carbon cloth anodes. When graphite sticks served as the anode, the current density (3.10 A m(-2)) was somewhat less than with the carbon cloth anodes, but the biofilms were thicker (c. 50 mum) with a more complex pillar and channel structure. These results suggest that the previously observed disparity in power production in pure and mixed culture microbial fuel cell systems can be attributed more to differences in the fuel cell designs than to any inherent superior capability of mixed cultures to produce more power than pure cultures.  相似文献   

14.
Co-naphthalocyanine (CoNPc) was prepared by heat treatment for cathode catalysts to be used in microbial fuel cells (MFCs). Four different catalysts (Carbon black, NPc/C, CoNPc/C, Pt/C) were compared and characterized using XPS, EDAX and TEM. The electrochemical characteristics of oxygen reduction reaction (ORR) were compared by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The Co-macrocyclic complex improves the catalyst dispersion and oxygen reduction reaction of CoNPc/C. The maximum power of CoNPc/C was 64.7 mW/m2 at 0.25 mA as compared with 81.3 mW/m2 of Pt/C, 29.7 mW/m2 of NPc/C and 9.3 mW/m2 of carbon black when the cathodes were implemented in H-type MFCs. The steady state cell, cathode and anode potential of MFC with using CoNPc/C were comparable to those of Pt/C.  相似文献   

15.
Yuan Y  Zhao B  Jeon Y  Zhong S  Zhou S  Kim S 《Bioresource technology》2011,102(10):5849-5854
Amino-functionalized multi-walled carbon nanotube (a-MWCNT)-supported iron phthalocyanine (FePc) (a-MWCNT/FePc) has been investigated as a catalyst for the oxygen reduction reaction (ORR) in an air-cathode single-chambered microbial fuel cell (MFC). Cyclic and linear sweep voltammogram are employed to investigate the electrocatalytic activity of the a-MWCNT/FePc for ORR. The maximum power density of 601 mW m−2 is achieved from a MFC with the a-MWCNT/FePc cathode, which is the highest energy output compared to those MFCs with other materials supported FePc, such as carbon black, pristine MWCNT (p-MWCNT), carboxylic acid functionalized MWCNT (c-MWCNT), and even with a Pt/C cathode. Furthermore, cyclic voltammetry performed on the a-MWCNT/FePc electrode suggests that the a-MWCNT/FePc has an electrochemical activity for ORR via a four-electron pathway in a neutral pH solution. This work provides a potential alternative to Pt in MFCs for sustainable energy generation.  相似文献   

16.
This work introduces a novel silver composite cathode with a surface coating of scandia‐stabilized zirconia (ScSZ) nanoparticles for application in intermediate temperature solid oxide fuel cells (IT‐SOFCs). The ScSZ coating is expected to maximize the triple boundary area of the Ag electrode, ScSZ electrolyte, and oxygen gas, where the oxygen reduction reaction occurs. The coating also protects the porous Ag against thermal agglomeration during fuel cell operation. The ScSZ nanoparticles are prepared by sputtering scandium‐zirconium alloy followed by thermal oxidation on Ag mesh. The performance of the solid oxide fuel cells with a gadolinia‐doped ceria electrolyte support is evaluated. At temperatures <500 °C, our optimized Ag‐ScSZ cathode outperforms the bare Ag cathode and even the platinum cathode, which has been believed to be the best material for this purpose. The highest cell peak power with the Ag‐ScSZ cathode is close to 60 mW cm?2 at 450 °C, while bare Ag and optimized Pt cathodes produce 38.3 and 49.4 mW cm?2, respectively. Long‐term current measurement also confirms that the Ag‐ScSZ cathode is thermally stable, with less degradation than bare Ag or Pt.  相似文献   

17.
We have developed an implantable fuel cell that generates power through glucose oxidation, producing 3.4 μW cm(-2) steady-state power and up to 180 μW cm(-2) peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain-machine interfaces can thus potentially benefit from having their implanted units powered or recharged by glucose fuel cells.  相似文献   

18.
This study reports the fabrication of a new membrane electrode assembly by using stainless steel mesh (SSM) as raw material and its effectiveness as gas diffusion electrode (GDE) for electrochemical oxygen reduction in microbial fuel cell (MFC). Based on feeding glucose (0.5 g L(-1)) substrate to a single-chambered MFC, power generation using SSM-based GDE was increased with the decrease of polytetrafluoroethylene (PTFE) content applied during fabrication, reaching the optimum power density of 951.6 mW m(-2) at 20% PTFE. Repeatable cell voltage of 0.51 V (external resistance of 400 Ω) and maximum power density of 951.6 mW m(-2) produced for the MFC with SSM-based GDE are comparable to that of 0.52 V and 972.6 mW m(-2), respectively obtained for the MFC containing typical carbon cloth (CC)-made GDE. Besides, Coulombic efficiency (CE) is found higher for GDE (SSM or CC) with membrane assembly than without, which results preliminarily from the mitigation of Coulombic loss being associated with oxygen diffusion and substrate crossover. This study demonstrates that with its good electrical conductivity and much lower cost, the SSM-made GDE suggests a promising alternative as efficient and more economically viable material to conventional typical carbon for power production from biomass in MFC.  相似文献   

19.
The interplay between electrochemically active microorganisms (EAMs) and adjacent minerals universally occurs in natural environments, in which soil is an extremely typical and active one. We stimulated the extracellular electron transfer (EET) process between the bacterial community and birnessite in red soil (collected from Hainan, China) by constructing a microbial fuel cell equipped with synthetic birnessite cathode. Compared to graphite-cathode, the cell voltage of birnessite-cathode was increased by 22% when loading a 1000 Ω-resistance, indicating the EET between microbes and birnessite. Eleven genera of EAMs in red soil were confirmed through 16S rRNA analysis. Neither palpable novel mineral formation nor change of birnessite crystallinity was observed after reaction by Raman and SEM. As oxygen pumped into cathode chamber was the terminal electron acceptor, birnessite principally performed as an intermediate of holistic electron transfer process to favor the cathodic oxygen reduction.  相似文献   

20.
A mediator-less microbial fuel cell was optimized in terms of various operating conditions. Current generation was dependent on several factors such as pH, resistance, electrolyte used, and dissolved oxygen concentration in the cathode compartment. The highest current was generated at pH 7. Under the operating conditions, the resistance was the rate-determining factor at over 500 omega. With resistance lower than 500 omega, proton transfer and dissolved oxygen (DO) supply limited the cathode reaction. A high strength buffer reduced the proton limitation to some extent. The DO concentration was around 6 mg l(-1) at the DO limited condition. The fact that oxygen limitation was observed at high DO concentration is believed to be due to the poor oxygen reducing activity of the electrode used, graphite. The current showed linear relationship with the fuel added at low concentration, and the electronic charge was well correlated with substrate concentration from up to 400 mg l(-1) of COD(cr). The microbial fuel cell might be used as a biochemical oxygen demand (BOD) sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号