首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lee KW  Briggs JM 《Proteins》2004,54(4):693-704
Aminoacyl-tRNA synthetases (aaRSs) strictly discriminate their cognate amino acids. Some aaRSs accomplish this via proofreading and editing mechanisms. Mursinna and coworkers recently reported that substituting a highly conserved threonine (T252) with an alanine within the editing domain of Escherichia coli leucyl-tRNA synthetase (LeuRS) caused LeuRS to cleave its cognate aminoacylated leucine from tRNA(Leu) (Mursinna et al., Biochemistry 2001;40:5376-5381). To achieve atomic level insight into the role of T252 in LeuRS and the editing reaction of aaRSs, a series of molecular modeling studies including homology modeling and automated docking simulations were carried out. A 3D structure of E. coli LeuRS was constructed via homology modeling using the X-ray structure of Thermus thermophilus LeuRS as a template because the E. coli LeuRS structure is not available from X-ray or NMR studies. However, both the X-ray T. thermophilus and homology-modeled E. coli structures were used in our studies. Amino acid binding sites in the proposed editing domain, which is also called the connective polypeptide 1 (CP1) domain, were investigated by automated docking studies. The root mean square deviation (RMSD) for backbone atoms between the X-ray and homology-modeled structures was 1.18 A overall and 0.60 A for the editing (CP1) domain. Automated docking studies of a leucine ligand into the editing domain were performed for both structures: homology structure of E. coli LeuRS and X-ray structure of T. thermophilus LeuRS for comparison. The results of the docking studies suggested that there are two possible amino acid binding sites in the CP1 domain for both proteins. The first site lies near a threonine-rich region that includes the highly conserved T252 residue, which is important for amino acid discrimination. The second site is located in a flexible loop region surrounded by residues E292, A293, M295, A296, and M298. The important T252 residue is at the bottom of the first binding pocket.  相似文献   

2.
Leucyl-tRNA synthetase (LeuRS) is responsible for the Leu-tRNALeu synthesis. The connective peptide 1 (CP1) domain inserted into the Rossmann nucleotide binding fold possesses editing active site to hydrolyze the mischarged tRNALeu with noncognate amino acid, then to ensure high fidelity of protein synthesis. A few co-crystal structures of LeuRS with tRNALeu in different conformations revealed that tRNALeu 3′ end shuttled between synthetic and editing active sites dynamically with direct and specific interaction with the CP1 domain. Here, we reported that Y515 and Y520 outside the editing active site of CP1 domain of Giardia lamblia LeuRS (GlLeuRS) are crucial for post-transfer editing by influencing the binding affinity with mischarged tRNALeu. Mutations on Y515 and Y520 also decreased tRNALeu charging activity to various extents but had no effect on leucine activation. Our results gave some biochemical knowledge about interaction of tRNALeu 3′ end with the CP1 domain in archaeal/eukaryotic LeuRS.  相似文献   

3.
The aminoacyl-tRNA synthetases covalently link transfer RNAs to their cognate amino acids. Some of the tRNA synthetases have evolved editing mechanisms to ensure fidelity in this first step of protein synthesis. The amino acid editing site for leucyl- (LeuRS) and isoleucyl- (IleRS) tRNA synthetases reside within homologous CP1 domains. In each case, a threonine-rich peptide and a second conserved GTG region that are separated by about 100 amino acids comprise parts of the hydrolytic editing site. While a number of sites are conserved between these two enzymes and likely confer a commonality to the mechanisms, some positions are idiosyncratic to LeuRS or IleRS. Herein, we provide evidence that a conserved arginine and threonine at respective sites in LeuRS and IleRS diverged to confer amino acid substrate recognition. This site complements other sites in the amino acid binding pocket of the editing active site of Escherichia coli LeuRS, including Thr252 and Val338, which collectively fine-tune amino acid specificity to confer fidelity.  相似文献   

4.
Comprehensive steady-state and transient kinetic studies of the synthetic and editing activities of Escherichia coli leucyl-tRNA synthetase (LeuRS) demonstrate that the enzyme depends almost entirely on post-transfer editing to endow the cell with specificity against incorporation of norvaline into protein. Among the three class I tRNA synthetases possessing a dedicated post-transfer editing domain (connective peptide 1; CP1 domain), LeuRS resembles valyl-tRNA synthetase in its reliance on post-transfer editing, whereas isoleucyl-tRNA synthetase differs in retaining a distinct tRNA-dependent synthetic site pre-transfer editing activity to clear noncognate amino acids before misacylation. Further characterization of the post-transfer editing activity in LeuRS by single-turnover kinetics demonstrates that the rate-limiting step is dissociation of deacylated tRNA and/or amino acid product and highlights the critical role of a conserved aspartate residue in mediating the first-order hydrolytic steps on the enzyme. Parallel analyses of adenylate and aminoacyl-tRNA formation reactions by wild-type and mutant LeuRS demonstrate that the efficiency of post-transfer editing is controlled by kinetic partitioning between hydrolysis and dissociation of misacylated tRNA and shows that trans editing after rebinding is a competent kinetic pathway. Together with prior analyses of isoleucyl-tRNA synthetase and valyl-tRNA synthetase, these experiments provide the basis for a comprehensive model of editing by class I tRNA synthetases, in which kinetic partitioning plays an essential role at both pre-transfer and post-transfer steps.  相似文献   

5.
aaRSs (aminoacyl-tRNA synthetases) establish the rules of the genetic code by catalysing the formation of aminoacyl-tRNA. The quality control for aminoacylation is achieved by editing activity, which is usually carried out by a discrete editing domain. For LeuRS (leucyl-tRNA synthetase), the CP1 (connective peptide 1) domain is the editing domain responsible for hydrolysing mischarged tRNA. The CP1 domain is universally present in LeuRSs, except MmLeuRS (Mycoplasma mobile LeuRS). The substitute of CP1 in MmLeuRS is a nonapeptide (MmLinker). In the present study, we show that the MmLinker, which is critical for the aminoacylation activity of MmLeuRS, could confer remarkable tRNA-charging activity on the inactive CP1-deleted LeuRS from Escherichia coli (EcLeuRS) and Aquifex aeolicus (AaLeuRS). Furthermore, CP1 from EcLeuRS could functionally compensate for the MmLinker and endow MmLeuRS with post-transfer editing capability. These investigations provide a mechanistic framework for the modular construction of aaRSs and their co-ordination to achieve catalytic efficiency and fidelity. These results also show that the pre-transfer editing function of LeuRS originates from its conserved synthetic domain and shed light on future study of the mechanism.  相似文献   

6.
Some aminoacyl-tRNA synthetases (AARSs) employ an editing mechanism to ensure the fidelity of protein synthesis. Leucyl-tRNA synthetase (LeuRS), isoleucyl-tRNA synthetase (IleRS), and valyl-tRNA synthetase (ValRS) share a common insertion, called the CP1 domain, which is responsible for clearing misformed products. This discrete domain is connected to the main body of the enzyme via two beta-strand tethers. The CP1 hydrolytic editing active site is located approximately 30 A from the aminoacylation active site in the canonical core of the enzyme, requiring translocation of mischarged amino acids for editing. An ensemble of crystal and cocrystal structures for LeuRS, IleRS, and ValRS suggests that the CP1 domain rotates via its flexible beta-strand linkers relative to the main body along various steps in the enzyme's reaction pathway. Computational analysis suggested that the end of the N-terminal beta-strand acted as a hinge. We hypothesized that a molecular hinge could specifically direct movement of the CP1 domain relative to the main body. We introduced a series of mutations into both beta-strands in attempts to hinder movement and alter fidelity of LeuRS. Our results have identified specific residues within the beta-strand tethers that selectively impact enzyme activity, supporting the idea that beta-strand orientation is crucial for LeuRS canonical core and CP1 domain functions.  相似文献   

7.
Lue SW  Kelley SO 《Biochemistry》2005,44(8):3010-3016
Many aminoacyl-tRNA synthetases (aaRSs) contain two active sites, a synthetic site catalyzing aminoacyl-adenylate formation and tRNA aminoacylation and a second editing or proofreading site that hydrolyzes misactivated adenylates or mischarged tRNAs. The combined activities of these two sites lead to rigorous accuracy in tRNA aminoacylation, and both activities are essential to LeuRS and other aaRSs. Here, we describe studies of the human mitochondrial (hs mt) LeuRS indicating that the two active sites of this enzyme have undergone functional changes that impact how accurate aminoacylation is achieved. The sequence of the hs mt LeuRS closely resembles a bacterial LeuRS overall but displays significant variability in regions of the editing site. Studies comparing Escherichia coli and hs mt LeuRS reveal that the proofreading activity of the mt enzyme is disrupted by these sequence changes, as significant levels of Ile-tRNA(Leu) are formed in the presence of high concentrations of the noncognate amino acid. Experiments monitoring deacylation of Ile-tRNA(Leu) and misactivated adenylate turnover revealed that the editing active site is not operational. However, hs mt LeuRS has weaker binding affinities for both cognate and noncognate amino acids relative to the E. coli enzyme and an elevated discrimination ratio. Therefore, the enzyme achieves fidelity using a more specific synthetic active site that is not prone to errors under physiological conditions. This enhanced specificity must compensate for the presence of a defunct editing site and ensures translational accuracy.  相似文献   

8.
Betha AK  Williams AM  Martinis SA 《Biochemistry》2007,46(21):6258-6267
Protein synthesis and its fidelity rely upon the aminoacyl-tRNA synthetases. Leucyl-tRNA synthetase (LeuRS), isoleucyl-tRNA synthetase (IleRS), and valyl-tRNA synthetase (ValRS) have evolved a discrete editing domain called CP1 that hydrolyzes the respective incorrectly misaminoacylated noncognate amino acids. Although active CP1 domain fragments have been isolated for IleRS and ValRS, previous reports suggested that the LeuRS CP1 domain required idiosyncratic adaptations to confer editing activity independent of the full-length enzyme. Herein, characterization of a series of rationally designed Escherichia coli LeuRS fragments showed that the beta-strands, which link the CP1 domain to the aminoacylation core of LeuRS, are required for editing of mischarged tRNALeu. Hydrolytic activity was also enhanced by inclusion of short flexible peptides that have been called "hinges" at the end of both LeuRS beta-strands. We propose that these long beta-strand extensions of the LeuRS CP1 domain interact specifically with the tRNA for post-transfer editing of misaminoacylated amino acids.  相似文献   

9.
Quality control mechanisms during protein synthesis are essential to fidelity and cell survival. Leucyl-tRNA synthetase (LeuRS) misactivates non-leucine amino acids including isoleucine, methionine, and norvaline. To prevent translational errors, mischarged tRNA products are translocated 30Å from the canonical aminoacylation core to a hydrolytic editing-active site within a completely separate domain. Because it is transient, the tRNA translocation mechanism has been difficult to isolate. We have identified a “translocation peptide” within Escherichia coli LeuRS. Mutations in the translocation peptide cause tRNA to selectively bypass the editing-active site, resulting in mischarging that is lethal to the cell. This bypass mechanism also rescues aminoacylation of an editing site mutation that hydrolyzes correctly charged Leu-tRNALeu. Thus, these LeuRS mutants charge tRNALeu but fail to translocate these products to the hydrolytic site, where they are cleared to guard against genetic code ambiguities.Quality control during translation depends on the family of aminoacyl-tRNA synthetases (aaRSs),2 which is responsible for the first step of protein synthesis. Each aaRS selectively aminoacylates just one of the 20 standard amino acids to its cognate tRNA (1). About half of this family of enzymes ensures fidelity by employing a “double sieve model” that relies on two active sites (2, 3). One sieve is synthetic and produces charged tRNA. The other is a hydrolytic editing-active site that clears mistakes. Defects in the editing mechanism cause cell death (4, 5) and also neurological disease in mammals (6).The aminoacylation site in the ancient canonical core of the aaRS activates its cognate amino acid but can also misactivate structurally similar amino acids (1). The editing-active site blocks the correctly charged amino acid (7, 8) and hydrolyzes mischarged amino acids from the tRNA. Amino acid editing destroys mistakes before they can be incorporated by the ribosome, which would result in the production of statistical proteins (1).Amino acid proofreading requires that the charged tRNA transiently migrates between two enzyme domains that are responsible for aminoacylation and editing. For leucyl-tRNA synthetase (LeuRS) and the homologous isoleucyl-(IleRS) and valyl-tRNA synthetases (ValRS), the editing domain resides in a structural insertion called CP1 (9) that splits the Rossmann ATP binding fold. The insert folds independent of the canonical core (1012). The isolated CP1 domains from LeuRS, ValRS, and IleRS can independently and specifically hydrolyze mischarged amino acid from its cognate tRNA (1315).The aminoacylation and editing-active sites of LeuRS are separated by about 30 Å. Thus, the charged 3′ end of the tRNA must be faithfully translocated a significant distance for proofreading and then hydrolysis if it is mischarged (16). It has also been suggested that the tRNA 3′ end binds initially near the editing-active site and requires translocation to the aminoacylation site (17).We hypothesized that flexible molecular hinges might facilitate conformational changes between the aminoacylation and the editing complexes (18). Two putative hinge sites were predicted by computational analysis of Thermus thermophilus LeuRS. One hinge at Ser-227 was located in the N-terminal β-strand that links the aminoacylation and CP1 editing domains (18). Mutations at the predicted hinge site in the β-strand linker of Escherichia coli LeuRS abolished aminoacylation activity and significantly decreased amino acid editing activity (18).A second hinge site at Glu-393 was identified in a flexible peptide within the CP1 domain of T. thermophilus LeuRS (18). Here, we describe results at a homologous Asp-391 site in E. coli LeuRS that demonstrate that this hinge comprises a portion of a translocation peptide. Unlike the predicted β-strand hinge mutation, the aminoacylation and editing activities of the CP1 domain-based hinge mutants in LeuRS were intact. Surprisingly however, mutations within the translocation peptide yield mischarged tRNA despite a robust deacylation activity. We hypothesize that impairing the LeuRS translocation peptide causes the charged tRNA 3′ end to bypass the editing sieve prior to product release. Defects in the translocation peptide and its mechanism result in amino acid toxicities that are lethal to the cell.  相似文献   

10.
Aminoacylation and editing by leucyl-tRNA synthetases (LeuRS) require migration of the tRNA acceptor stem end between the canonical aminoacylation core and a separate domain called CP1 that is responsible for amino acid editing. The LeuRS CP1 domain can also support group I intron RNA splicing in the yeast mitochondria, although splicing-sensitive sites have been identified on the main body. The RDW peptide, a highly conserved peptide within an RDW-containing motif, resides near one of the beta-strand linkers that connects the main body to the CP1 domain. We hypothesized that the RDW peptide was important for interactions of one or more of the LeuRS-RNA complexes. An assortment of X-ray crystallography structures suggests that the RDW peptide is dynamic and forms unique sets of interactions with the aminoacylation and editing complexes. Mutational analysis identified specific sites within the RDW peptide that failed to support protein synthesis activity in complementation experiments. In vitro enzymatic investigations of mutations at Trp445, Arg449, and Arg451 in yeast mitochondrial LeuRS suggested that these sites within the RDW peptide are critical to the aminoacylation complex, but impacted amino acid editing activity to a much less extent. We propose that these highly conserved sites primarily influence productive tRNA interactions in the aminoacylation complex.  相似文献   

11.
Tang Y  Tirrell DA 《Biochemistry》2002,41(34):10635-10645
The fidelity of translation is dependent on the specificity of the aminoacyl-tRNA synthetases (aaRSs). The aaRSs that activate the hydrophobic amino acids leucine, isoleucine, and valine employ a proofreading mechanism that hydrolyzes noncognate aminoacyl adenylates and misaminoacylated tRNAs. Discrimination between structurally similar amino acids by these AARSs is believed to operate by a double-sieve principle, wherein a separate editing domain governs hydrolysis on the basis of the size and hydrophilicity of the amino acid side chain. Leucyl-tRNA synthetase (LeuRS) relies on its editing function to correct misaminoacylation of tRNA(Leu) by isoleucine and methionine. Thr252 of Escherichia coli LeuRS has been shown previously to be important in defining the size of the editing cavity. Here we report the isolation and characterization of three LeuRS mutants with point mutations at this position (T252Y, T252L, and T252F). The proofreading activity of the synthetase is significantly impaired when an amino acid bulkier than threonine is introduced. The rate of misaminoacylation of tRNA(Leu) by isoleucine and valine increases with the increasing size of the amino acid substituent at position 252, and the noncognate amino acids norvaline and norleucine are inserted efficiently at the leucine sites of recombinant proteins under conditions of constitutive overexpression of the T252Y mutant in E. coli. In addition, the unsaturated amino acids allylglycine, homoallylglycine, homopropargylglycine, and 2-butynylalanine all support protein synthesis in E. coli hosts harboring the mutant synthetase. These results demonstrate that programmed manipulation of the editing cavity can allow in vivo incorporation of novel protein building blocks.  相似文献   

12.
Vu MT  Martinis SA 《Biochemistry》2007,46(17):5170-5176
Leucyl-tRNA synthetase (LeuRS) is a class I enzyme, which houses its aminoacylation active site in a canonical core that is defined by a Rossmann nucleotide binding fold. In addition, many LeuRSs bear a unique polypeptide insert comprised of about 50 amino acids located just upstream of the conserved KMSKS sequence. The role of this leucine-specific domain (LS-domain) remains undefined. We hypothesized that this domain may be important for substrate recognition in aminoacylation and/or amino acid editing. We carried out a series of deletion mutations and chimeric swaps within the leucine-specific domain of Escherichia coli. Our results support that the leucine-specific domain is critical for aminoacylation but not required for editing activity. Kinetic analysis determined that deletion of the LS-domain primarily impacts kcat. Because of its proximity to the aminoacylation active site, we propose that this domain interacts with the tRNA during amino acid activation and/or tRNA aminoacylation. Although the leucine-specific domain does not appear to be important to the editing complex, it remains possible that it aids the dynamic translocation process that moves tRNA from the aminoacylation to the editing complex.  相似文献   

13.
A large insertion domain called CP1 (connective peptide 1) present in class Ia aminoacyl-tRNA synthetases is responsible for post-transfer editing. LeuRS (leucyl-tRNA synthetase) from Aquifex aeolicus and Giardia lamblia possess unique 20 and 59 amino acid insertions respectively within the CP1 that are crucial for editing activity. Crystal structures of AaLeuRS-CP1 [2.4 ? (1 ?=0.1 nm)], GlLeuRS-CP1 (2.6 ?) and the insertion deletion mutant AaLeuRS-CP1Δ20 (2.5 ?) were solved to understand the role of these insertions in editing. Both insertions are folded as peripheral motifs located on the opposite side of the proteins from the active-site entrance in the CP1 domain. Docking modelling and site-directed mutagenesis showed that the insertions do not interact with the substrates. Results of molecular dynamics simulations show that the intact CP1 is more dynamic than its mutant devoid of the insertion motif. Taken together, the data show that a peripheral insertion without a substrate-binding site or major structural role in the active site may modulate catalytic function of a protein, probably from protein dynamics regulation in two respective LeuRS CP1s. Further results from proline and glycine mutational analyses intended to reduce or increase protein flexibility are consistent with this hypothesis.  相似文献   

14.
Zhao MW  Zhu B  Hao R  Xu MG  Eriani G  Wang ED 《The EMBO journal》2005,24(7):1430-1439
The editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for the faithful protein synthesis by correcting misactivated amino acids and misaminoacylated tRNAs. We report that the isolated editing domain of leucyl-tRNA synthetase from the deep-rooted bacterium Aquifex aeolicus (alphabeta-LeuRS) catalyzes the hydrolytic editing of both mischarged tRNA(Leu) and minihelix(Leu). Within the domain, we have identified a crucial 20-amino-acid peptide that confers editing capacity when transplanted into the inactive Escherichia coli LeuRS editing domain. Likewise, fusion of the beta-subunit of alphabeta-LeuRS to the E. coli editing domain activates its editing function. These results suggest that alphabeta-LeuRS still carries the basic features from a primitive synthetase molecule. It has a remarkable capacity to transfer autonomous active modules, which is consistent with the idea that modern synthetases arose after exchange of small idiosyncratic domains. It also has a unique alphabeta-heterodimeric structure with separated catalytic and tRNA-binding sites. Such an organization supports the tRNA/synthetase coevolution theory that predicts sequential addition of tRNA and synthetase domains.  相似文献   

15.
Leucyl-tRNA synthetases (LeuRSs) catalyze the linkage of leucine with tRNALeu. LeuRS contains a catalysis domain (aminoacylation) and a CP1 domain (editing). CP1 is inserted 35 Å from the aminoacylation domain. Aminoacylation and editing require CP1 to swing to the coordinated conformation. The neck between the CP1 domain and the aminoacylation domain is defined as the CP1 hairpin. The location of the CP1 hairpin suggests a crucial role in the CP1 swing and domain–domain interaction. Here, the CP1 hairpin of Homo sapiens cytoplasmic LeuRS (hcLeuRS) was deleted or substituted by those from other representative species. Lack of a CP1 hairpin led to complete loss of aminoacylation, amino acid activation, and tRNA binding; however, the mutants retained post-transfer editing. Only the CP1 hairpin from Saccharomyces cerevisiae LeuRS (ScLeuRS) could partly rescue the hcLeuRS functions. Further site-directed mutagenesis indicated that the flexibility of small residues and the charge of polar residues in the CP1 hairpin are crucial for the function of LeuRS.  相似文献   

16.
Aminoacyl-tRNA synthetases are a family of enzymes that are responsible for translating the genetic code in the first step of protein synthesis. Some aminoacyl-tRNA synthetases have editing activities to clear their mistakes and enhance fidelity. Leucyl-tRNA synthetases have a hydrolytic active site that resides in a discrete amino acid editing domain called CP1. Mutational analysis within yeast mitochondrial leucyl-tRNA synthetase showed that the enzyme has maintained an editing active site that is competent for post-transfer editing of mischarged tRNA similar to other leucyl-tRNA synthetases. These mutations that altered or abolished leucyl-tRNA synthetase editing were introduced into complementation assays. Cell viability and mitochondrial function were largely unaffected in the presence of high levels of non-leucine amino acids. In contrast, these editing-defective mutations limited cell viability in Escherichia coli. It is possible that the yeast mitochondria have evolved to tolerate lower levels of fidelity in protein synthesis or have developed alternate mechanisms to enhance discrimination of leucine from non-cognate amino acids that can be misactivated by leucyl-tRNA synthetase.  相似文献   

17.
Hausmann CD  Ibba M 《FEBS letters》2008,582(15):2178-2182
Methanothermobacter thermautotrophicus contains a multi-aminoacyl-tRNA synthetase complex (MSC) of LysRS, LeuRS and ProRS. Elongation factor (EF) 1A also associates to the MSC, with LeuRS possibly acting as a core protein. Analysis of the MSC revealed that LysRS and ProRS specifically interact with the idiosyncratic N- and C- termini of LeuRS, respectively. EF-1A instead interacts with the inserted CP1 proofreading domain, consistent with models for post-transfer editing by class I synthetases such as LeuRS. Together with previous genetic data, these findings show that LeuRS plays a central role in mediating interactions within the archaeal MSC by acting as a core scaffolding protein.  相似文献   

18.
Aminoacyl-tRNA synthetases often rely on a proofreading mechanism to clear mischarging errors before they can be incorporated into newly synthesized proteins. Leucyl-tRNA synthetase (LeuRS) houses a hydrolytic editing pocket in a domain that is distinct from its aminoacylation domain. Mischarged amino acids are transiently translocated ∼30 Å between active sites for editing by an unknown tRNA-dependent mechanism. A glycine within a flexible β-strand that links the aminoacylation and editing domains of LeuRS was determined to be important to tRNA translocation. The translocation-defective mutation also demonstrated that the editing site screens both correctly and incorrectly charged tRNAs prior to product release.  相似文献   

19.
The connective polypeptide 1 (CP1) editing domain of leucyl-tRNA synthetase (LeuRS) from various species either harbors a conserved active site to exclude tRNA mis-charging with noncognate amino acids or is evolutionarily truncated or lost because there is no requirement for high translational fidelity. However, human mitochondrial LeuRS (hmtLeuRS) contains a full-length but degenerate CP1 domain that has mutations in some residues important for post-transfer editing. The significance of such an inactive CP1 domain and a translational accuracy mechanism with different noncognate amino acids are not completely understood. Here, we identified the essential role of the evolutionarily divergent CP1 domain in facilitating hmtLeuRS''s catalytic efficiency and endowing enzyme with resistance to AN2690, a broad-spectrum drug acting on LeuRSs. In addition, the canonical core of hmtLeuRS is not stringent for noncognate norvaline (Nva) and valine (Val). hmtLeuRS has a very weak tRNA-independent pre-transfer editing activity for Nva, which is insufficient to remove mis-activated Nva. Moreover, hmtLeuRS chimeras fused with a functional CP1 domain from LeuRSs of other species, regardless of origin, showed restored post-transfer editing activity and acquired fidelity during aminoacylation. This work offers a novel perspective on the role of the CP1 domain in optimizing aminoacylation efficiency.  相似文献   

20.
Sarkar J  Mao W  Lincecum TL  Alley MR  Martinis SA 《FEBS letters》2011,585(19):2986-2991
The broad-spectrum benzoxaborole antifungal AN2690 blocks protein synthesis by inhibiting leucyl-tRNA synthetase (LeuRS) via a novel oxaborole tRNA trapping mechanism in the editing site. Herein, one set of resistance mutations is at Asp487 outside the LeuRS hydrolytic editing pocket, in a region of unknown function. It is located within a eukaryote/archaea specific insert I4, which forms part of a cap over a benzoxaborole-AMP that is bound in the LeuRS CP1 domain editing active site. Mutational and biochemical analysis at Asp487 identified a salt bridge between Asp487 and Arg316 in the hinge region of the I4 cap of yeast LeuRS that is critical for tRNA deacylation. We hypothesize that this electrostatic interaction stabilizes the cap during binding of the editing substrate for hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号