首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Full-length infectious cDNA clones were constructed for two isolates (LMV-0 and LMV-E) of Lettuce mosaic virus (LMV), a member of the genus Potyvirus. These two isolates differ in pathogenicity in susceptible and tolerant-resistant lettuce cultivars. In susceptible plants, LMV-0 induces mild mosaic symptoms, whereas LMV-E induces severe stunting, leaf deformation, and a necrotic mosaic. In plants carrying either of the two probably allelic recessive resistance genes mol1 or mol2, LMV-0 is restricted partially to the inoculated leaves. When a systemic invasion does occur, however, symptoms fail to develop. LMV-E overcomes the protection afforded by the resistance genes, resulting in systemic mosaic symptoms. Analysis of the behavior of recombinants constructed between the two virus isolates determined that the HC-Pro protein of LMV-E causes the severe stunting and necrotic mosaic induced by this isolate in susceptible cultivars. In contrast, the ability to overcome mol resistance and induce symptoms in the resistant-tolerant cultivars was mapped to the 3' half of the LMV-E genome. These results indicate that the ability to induce severe symptoms and to overcome the protection afforded by the recessive genes mol1 or mol2 are independent phenomena.  相似文献   

2.
3.
In 1973 tobacco mosaic virus (TMV) strain M II-16 was successfully used by growers in the United Kingdom to protect commercial tomato crops against the severe effects of naturally occurring strains of TMV. However, plants in many crops had mosaic leaf symptoms which were occasionally severe, so possible reasons for symptom appearance were examined. The concentration of the mutant strain in commercially produced inocula (assessed by infectivity and spectrophotometry) ranged from 28 to 1220 μg virus/ml; nevertheless all samples contained sufficient virus to infect a high percentage of inoculated tomato seedlings. Increasing the distance between the plants and the spray gun used for inoculation from 5 to 15 cm resulted in a significant decrease in the number of tomato seedlings infected. When M II-16 infected tomato plants were subsequently inoculated with each of fifty-three different isolates of TMV, none showed severe symptoms of the challenging isolates within 4 wk, although some isolates of strain o induced atypically mild leaf symptoms. In a further experiment, M II-16 infected plants showed conspicuous leaf symptoms only 7 wk after inoculation with a virulent TMV isolate. M II-16 multiplied more slowly in tomato plants and had a lower specific infectivity than a naturally occurring strain of TMV. More than 50% of plants in crops inoculated with strain M II-16 which subsequently showed conspicuous leaf mosaic contained TMV strain 1 or a form intermediate between strains o and 1. It is suggested that the production of TMV symptoms in commercial crops previously inoculated with strain M II-16 may result from an initially low level of infection, due to inefficient inoculation, which allows subsequent infection of unprotected plants by virulent strains. Incomplete protection by strain M II-16 against all naturally occurring strains may also be an important factor.  相似文献   

4.
Pisum sativum plant introduction (PI) line 269818 is resistant to potyvirus pea seedborne mosaic virus (PSbMV) isolates, categorized as pathotype P1, and is susceptible to pathotype P4 isolates. This difference in infectivity is determined by the viral genome-linked protein (VPg) cistron. Mutational analysis of VPg of PSbMV isolates DPD1 and NY representing pathotypes P1 and P4 revealed that codon changes affecting amino acids 105 to 117 in the central region of VPg influenced virulence on PI 269818. In contrast, infectivity on pea cultivar Dark Skinned Perfection, which is susceptible to both pathotypes, was not affected by the mutations. Mutants overcoming resistance in PI 269818 were analyzed for changes in the VPg coding region upon passage through PI 269818 and Dark Skinned Perfection. Adaptive changes were observed only upon passage through PI 269818 and only at codons from amino acid 105 to 117. Expression of DPD1 VPg in PI 269818 did not affect infection by NY, which suggests that VPg from DPD1 is not an elicitor of a general resistance response. The results are compatible with the hypothesis that viral amplification depends upon the interaction between VPg and a host factor.  相似文献   

5.
A number of rice resistance genes, called Xa genes, have been identified that confer resistance against various strains of Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight. An understanding of pathotype diversity within the target pathogen population is required for identifying the Xa genes that are to be deployed for development of resistant rice cultivars. Among 1024 isolates of Xoo collected from 20 different states of India, 11 major pathotypes were distinguished based on their reaction towards ten Xa genes (Xa1, Xa3, Xa4, xa5, Xa7, xa8, Xa10, Xa11, xa13, Xa21). Isolates belonging to pathotype III showing incompatible interaction towards xa8, xa13 and Xa21 and compatible interaction towards the rest of Xa genes formed the most frequent (41%) and widely distributed pathotype. The vast majority of the assayed Xoo isolates were incompatible with one or more Xa genes. Exceptionally, the isolates of pathotype XI were virulent on all Xa genes, but have restricted distribution. Considering the individual R-genes, Xa21 appeared as the most broadly effective, conferring resistance against 88 % of the isolates, followed in decreasing order by xa13 (84 %), xa8 (64 %), xa5 (30 %), Xa7 (17 %) and Xa4 (14 %). Fifty isolates representing all the eleven pathotypes were analyzed by southern hybridization to determine their genetic relatedness using the IS1112 repeat element of Xoo. Isolates belonging to pathotype XI were the most divergent. The results suggest that one RFLP haplotype that is widely distributed all over India and is represented in strains from five different pathotypes might be an ancestral haplotype. A rice line with xa5, xa13 and Xa21 resistance genes is resistant to all strains, including those belonging to pathotype XI. This three gene combination appears to be the most suitable Xa gene combination to be deployed in Indian rice cultivars.  相似文献   

6.
In glasshouse tests, infective sap from plants infected with 17 different isolates of Tomato spotted wilt virus (TSWV) from four Australian states was inoculated to three Capsicum chinense accessions (PI 152225, PI 159236 and C00943) carrying single genes that confer hypersensitive resistance to TSWV. The normal response to inoculation was development of necrotic (hypersensitive) local lesions in inoculated leaves without systemic invasion, but 3/1386 infected plants also developed systemic susceptible reactions in addition to hypersensitive ones. Similarly when two isolates were inoculated to C. chinense backcross progeny plants, 1/72 developed systemic susceptible reactions in addition to localised hypersensitive ones. Using cultures from the four plants with susceptible reactions and following three to five further cycles of serial subculture in TSWV‐resistant C. chinense plants, four isolates were obtained that gave systemic susceptible type reactions in the three TSWV‐resistant accessions, and in TSWV‐resistant cultivated pepper (C. annuum). When three of these isolates were inoculated to tomato (Lycopersicon esculentum) breeding lines with single gene resistance to TSWV, resistance was not overcome. Similarly, none of the four isolates overcame partial resistance to TSWV in Lactuca virosa. When TSWV isolates were inoculated to tomato breeding lines carrying partial resistance from L. chilense, systemic infection developed which was sometimes followed by ‘recovery’. After four successive cycles of serial passage in susceptible cultivated pepper of a mixed culture of a resistance‐breaking isolate with the non resistance‐breaking isolate from which it came, the resistance‐breaking isolate remained competitive as both were still found. However, when the same resistance‐ breaking isolate was cultured alone, evidence of partial reversion to wild‐type behaviour was eventually obtained after five but not four cycles of long term serial subculture in susceptible pepper, as by then the culture had become a mixture of both types of strain. This work suggests that resistance‐breaking strains of TSWV that overcome single gene hypersensitive resistance in pepper are relatively stable. The findings have important implications for situations where resistant pepper cultivars are deployed widely in the field without taking other control measures as part of an integrated TSWV management strategy.  相似文献   

7.
Six blackberry or hybrid berry cultivars and 19 raspberry cultivars were assessed for their infectibility with, and sensitivity to, graft inoculation with 10 distinct viruses found infecting Rubus in the UK. Cultivars were grafted with each of, two isolates of the pollen borne raspberry bushy dwarf virus (RBDV), five aphid borne viruses: black raspberry necrosis, raspberry leaf mottle (RLMV), raspberry leaf spot (RLSV), rubus yellow net and raspberry vein chlorosis (RVCV); and isolates of the nematode transmitted nepoviruses, arabis mosaic, raspberry ringspot, strawberry latent ringspot and tomato black ring. All tested cultivars were infectible with a resistance breaking isolate of RBDV but only about half of that number with the Scottish type isolate of the virus. The raspberry cvs Autumn Bliss, and occasionally Glen Garry and Glen Prosen, developed leaf yellowing symptoms following infection with RBDV, but none of the other infected cultivars showed obvious leaf symptoms when kept in a heated glasshouse during the growing season. All tested cultivars were infectible with each of the four viruses transmitted in nature by the aphid, Amphorophora idaei. Most were infected symptomlessly, but seven cultivars developed severe leaf spotting symptoms due to infection with RLMV or RLSV. All but one of the raspberry cultivars were infectible with RVCV, which is transmitted in nature by the aphid Aphis idaei, and almost all infected plants developed leaf symptoms; only one of the hybrid berry or blackberry cultivars tested was infected with RVCV. In tests with the four nepoviruses, all tested cultivars, except Tummelberry, were infectible with at least one or more of these viruses. However, cultivars responded differently to challenge inoculation with different isolates of individual nepoviruses. Several cultivars developed chlorotic leaf mottling following infection with some nepovirus isolates. The implications of these results for virus control are discussed in the light of the changing pattern of virus and virus vector incidence in the UK.  相似文献   

8.
Colonies of Diplocarpon rosae derived from single conidia were isolated on malt extract agar, multiplied (at 23°C) and stored (at ?20°C) on surface‐sterilised leaf discs of a universally susceptible rose, ‘Frensham’. The resistance of 16 species and cultivars of Rosa to different isolates of D. rosae was assessed using surface‐sterilised leaf discs. Four pathotypes of D. rosae were distinguished on the basis of host range. One species and one hybrid were resistant to all pathotypes. Two species and two cultivars were susceptible to all pathotypes. Four species and six cultivars were interpreted as having vertical resistance because they were strongly resistant to some but not all pathotypes. Only species and hybrids of the section Cinnamomeae were resistant to the pathotype identified as CW1 whereas only roses of other origins were resistant to the pathotype DA2.  相似文献   

9.
为了比较Ⅰ型马立克氏病病毒(MDV)的致病型与pp24基因的关系,将Ⅰ型MDV弱毒(mMDV)、强毒(vMDV)、超强毒(vvMDV)、特超强毒(vv MDV)等不同致病型的CVI988、GA、648A、RB1B、Md5和Md11等6个国际参考株,从中国河北、北京、广东和广西等地分离的7个中国分离株和1个中国疫苗毒814株的pp24基因分别做PCR扩增,并将其克隆到pMD-18载体中测序,与国外已发表的BC-1株进行序列比较.结果表明:Ⅰ型MDV的pp24基因非常保守,15个毒株中只出现5个碱基的随机变化,并引起相应的4个氨基酸改变,但与致病型无明显相关;pp24基因ORF的第81碱基出现差异,所有中国株为G,所有不同致病型国外参考株为C,但并未引起氨基酸改变,显示这一碱基差异只是作为MDV地域性分布的遗传标志,而与病毒分离的年代及致病型等因素无关.  相似文献   

10.
Age-related Resistance in Bell Pepper to Cucumber mosaic virus   总被引:2,自引:0,他引:2  
We demonstrated the occurrence of mature plant resistance in Capsicum annuum‘Early Calwonder’ to Cucumber mosaic virus (CMV) under greenhouse conditions. When Early Calwonder plants were sown at 10 day intervals and transplanted to 10‐cm square pots, three distinct plant sizes were identified that were designated small, medium and large. Trials conducted during each season showed that CMV accumulated in inoculated leaves of all plants of each size category. All small plants (with the exception of the winter trial) developed a systemic infection that included accumulation of CMV in uninoculated leaves and severe systemic symptoms. Medium plants had a range of responses that included no systemic infection to detection of CMV in uninoculated leaves with the systemically infected plants being either symptomless or expressing only mild symptoms. None of the large plants contained detectable amounts of CMV in uninoculated leaves or developed symptoms. When plants were challenged by inoculation of leaves positioned at different locations along the stem or different numbers of leaves were inoculated, large plants continued to accumulate CMV in inoculated leaves but no systemic infection was observed. When systemic infection of large plants did occur, e.g. when CMV‐infected pepper was used as a source of inoculum, virus accumulation in uninoculated leaves was relatively low and plants remained symptomless. A time‐course study of CMV accumulation in inoculated leaves revealed no difference between small and large plants. Analyses to examine movement of CMV into the petiole of inoculated leaves and throughout the stem showed a range in the extent of infection. While all large plants contained CMV in inoculated leaves, some had no detectable amounts of virus beyond the leaf blade, whereas others contained virus throughout the length of the stem but with limited accumulation relative to controls.  相似文献   

11.
In glasshouse tests, sap from plants infected with 15 different isolates of tomato spotted wilt tospovirus (TSWV) from three Australian states was inoculated to nine genotypes of tomato carrying TSWV resistance gene Sw-5 or one of its alleles. A further two resistant tomato genotypes were inoculated with four isolates each. The normal response in resistant genotypes was development of necrotic local lesions in inoculated leaves without systemic invasion, but 22/752 plants also developed systemic reactions in addition to local hypersensitive ones. Using cultures from two of these systemically infected plants and following four cycles of subculture in TSWV resistant tomato plants, two isolates were obtained that gave susceptible type systemic reactions but no necrotic spots in inoculated leaves of resistant tomatoes. When these two isolates, DaWA-1d and ToTAS-1d, were maintained by repeated subculture for 10 successive cycles in Nicotiana glutinosa or a susceptible tomato genotype, they still induced susceptible type systemic reactions when inoculated to resistant tomato plants. They were therefore stable resistance breaking isolates as regards overcoming gene Sw-5. When resistance-breaking isolate DaWA-1ld multiplied together with original isolate DaWA-l in susceptible tomato, it was fully competitive with the original isolate. However, when DaWA-ld and ToTAS-ld were inoculated to TSWV resistant Lycopersicon peruvianum lines PI 128660R and PI 128660S and to TSWV resistant Capsicum chinense lines PI 152225, PI 159236 and AVRDC CO0943, they failed to overcome the resistance, producing only necrotic local lesions without systemic infection. Thus, although the ease of selection, stability and competitive ability of resistance breaking isolates of TSWV is cause for concern, L. peruvianum and C. chinense lines are available which are effective against them. The effectiveness of the resistance to TSWV in nine tomato genotypes was examined in a field experiment. Spread was substantial in the susceptible control genotype infecting 42% of plants. Resistance was ineffective in cv. Bronze Rebel, 26% of plants developing infection. In contrast, it held up well in the other eight resistant genotypes with only 1–3 or no plants of each becoming infected. Accumulated numbers of Thrips tabaci, Frankliniella occidentalis and F. schultzei were closely correlated with TSWV spread.  相似文献   

12.
Tobacco ( Nicotiana tabacum L. cv. Samsun) plants inoculated with different strains of tobacco mosaic virus (TMV) inducing mosaic symptoms of widely varying severity were studied with in vivo chlorophyll fluorescence. This method was used to deduce photosynthetic electron transport efficiency in relation to symptom expression. The quantum yields of photosystem II (PS II) electron transport rate were significantly diminished in virus strains inducing loss of chlorophyll. The reduction in young mosaic-diseased leaves appeared to be due in part to a reduction in the fraction of open reaction centers, whereas in older leaves exhibiting less pronounced symptoms the reduction was mainly caused by a reduced efficiency of capture of excitation energy of open PS II reaction centers. Upon infection with any of the five virus strains PS II seemed to be irreversibly damaged in the inoculated leaves and the ones directly above, indicative of a possible increased susceptibility to photoinhibition in these leaves (Somersalo and Krause 1989) even when no symptoms were apparent. Symptom expression did not appear to be related to the influence of the virus on PS II activity, because the severest effects occurred in the inoculated leaves, which either remained symptomless or developed slight yellowing only. This study demonstrates the usefulness or modulated chlorophyll fluorescence measurements for the investigation of plant-virus interactions. It is particularly important when visual symptoms are absent.  相似文献   

13.
The pathogenic variability was evaluated of 48 Pseudocercospora griseola isolates collected in the State of Minas Gerais, Brazil. Isolates were inoculated to a set of 12 international differential cultivars in a greenhouse. Ten pathotypes (55-15, 63-7, 63-15, 63-23, 63-25, 63-27, 63-31, 63-47, 63-55 and 63-63) were identified, showing the great pathogenic variability of this fungus in Minas Gerais State. Pathotypes 55-15, 63-15, 63-25 and 63-27 had not previously been reported in the State. Of the 48 isolates, all except pathotype 55-1547 induced a compatible reaction with all cultivars from the Andean group. Isolates were highly pathogenic in both Andean and Mesoamerican cultivars, thus being classified as Mesoamerican pathotypes. Pathotype 63-63 was the most widespread, and overcame the resistance genes present in all differential cultivars.  相似文献   

14.
Abstract

To select efficient antagonistic strain(s) of biocontrol agents against most of the existing pathotypes of Colletotrichum falcatum, an in vitro interaction study was carried out with 13 pathotypes, 12 isolates of Pseudomonas spp. and 6 isolates of Trichoderma spp. Antagonistic pseudomonad strains exhibited greater variation in their activity depending on the virulence of the pathotype. The lower the pathogen virulence, the higher was the antagonistic activity noticed. In general, sub-tropical pathotypes were suppressed at a comparatively higher level than the tropical pathotypes. Among the four efficient P. fluorescens strains selected based on their inhibitory effect against various pathotypes, ARR1G and VPT4 were effective against tropical pathotypes and FP7 showed moderate effect against all the pathotypes. The strain KKM2 was effective against sub-tropical and weaker tropical pathotypes. Strains of Trichoderma spp. did not show much variation in antagonism, but varied in their mode of action in suppressing the pathogen growth. However, based on higher rate of hyperparasitism, T. harzianum strains T5 and T62 were selected against all the pathotypes.  相似文献   

15.
16.
Xylella fastidiosa is a xylem-limited bacterium that causes various diseases, among them Pierce's disease of grapevine (PD) and almond leaf scorch (ALS). PD and ALS have long been considered to be caused by the same strain of this pathogen, but recent genetic studies have revealed differences among X. fastidiosa isolated from these host plants. We tested the hypothesis that ALS is caused by PD and ALS strains in the field and found that both groups of X. fastidiosa caused ALS and overwintered within almonds after mechanical inoculation. Under greenhouse conditions, all isolates caused ALS and all isolates from grapes caused PD. However, isolates belonging to almond genetic groupings did not cause PD in inoculated grapes but systemically infected grapes with lower frequency and populations than those belonging to grape strains. Isolates able to cause both PD and ALS developed 10-fold-higher concentrations of X. fastidiosa in grapes than in almonds. In the laboratory, isolates from grapes overwintered with higher efficiency in grapes than in almonds and isolates from almonds overwintered better in almonds than in grapes. We assigned strains from almonds into groups I and II on the basis of their genetic characteristics, growth on PD3 solid medium, and bacterial populations within inoculated grapevines. Our results show that genetically distinct strains from grapes and almonds differ in population behavior and pathogenicity in grapes and in the ability to grow on two different media.  相似文献   

17.
Some Malawian cultures of groundnut rosette virus (GRV) give rise to variants that, although still causing symptoms of the chlorotic type of rosette in groundnut, induce brilliant yellow blotch mosaic symptoms, instead of the usual veinal chlorosis and mild mottle, in Nicotiana benthamiana. One such isolate (YB) induced the formation in infected plants of a 0.9 kbp dsRNA having extensive sequence homology with molecules of similar size in other naturally occurring isolates of GRV. These dsRNA molecules were shown to be double-stranded forms of single-stranded satellite RNA molecules. Experiments in which the satellite was removed from and restored to isolate YB, or exchanged with those from other GRV isolates, showed that it carries the determinant for yellow blotch mosaic symptoms. Plants inoculated with the 0.9 kbp dsRNA (denatured or undenatured) developed yellow blotch mosaic even when the satellite-free GRV helper was not inoculated until 11 days later. The satellite RNA is therefore a very stable molecule. Prior infection of N. benthamiana with a GRV isolate containing a normal form of the satellite protected against expression of yellow blotch mosaic symptoms when the plants were later inoculated with isolate YB, whereas prior infection with satellite-free isolates did not. This provides a simple method of determining whether a GRV isolate has an associated satellite RNA. The YB satellite seems to be a newly recognised variant additional to those known to cause the chlorotic, green and other forms of groundnut rosette disease.  相似文献   

18.
The Phylloplane as a Source of Bacillus thuringiensis Variants   总被引:14,自引:4,他引:10       下载免费PDF全文
Novel variants of Bacillus thuringiensis were isolated from the phylloplane of deciduous and conifer trees as well as of other plants. These isolates displayed a range of toxicity towards Trichoplusia ni. Immunoblot and toxin protein analysis indicate that these strains included representatives of the three principal B. thuringiensis pathotypes active against larvae of the orders Lepidoptera, Diptera, and Coleoptera. We propose that B. thuringiensis be considered part of the common leaf microflora of many plants.  相似文献   

19.
One hundred and eighty-nine isolates of pea seedborne mosaic virus (PSbMV) were obtained from seedlings of 435 pea (Pisum sativum) germplasm introductions originally acquired from India, Turkey, Latin America and Europe. Fifty-eight per cent of the isolates were identified as belonging to pathotype P-1, 22% to pathotype P-4, and 7% to the mild form of the lentil pathotype L-1. Some isolates could not be classified into any known pathotype and need further study. No isolate appeared to present a threat to peas beyond that already known to exist with previously described forms of the virus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号