共查询到20条相似文献,搜索用时 0 毫秒
1.
Three alcohol dehydrogenase (ADH) isozymes from embryos of the durum wheat cultivar Bijaga Yellow having the variantAdh-Alb allele were purified using (NH4)2SO4 precipitation, gel filtration, and ion-exchange chromatography. ADH is a dimeric enzyme. The variant isozyme ADH-1-1, which is a homodimer composed of b monomers, was compared with ADH-1-5 (homodimer composed of a monomers), the product ofAdh-B1, and the ADH-1-3 isozyme (ba heterodimer) on a number of parameters includingK
m, substrate specificities, and molecular weights. No appreciable differences among the three isozymes were found, except for the faster electrophoretic mobility of bb dimers (ADH-1-1). The results indicate that the variant isozyme is the result of a mutation altering only the charge of the isozyme. 相似文献
2.
The alcohol dehydrogenase (ADH) system in cotton is characterized, with an emphasis on the cultivated allotetraploid speciesGossypium hirsutum cv. Siokra. A high level of ADH activity is present in seed of Siokra but quickly declines during germination. When exposed to anaerobic stress the level of ADH activity can be induced several fold in both roots and shoots of seedlings. Unlike maize andArabidopsis, ADH activity can be anaerobically induced in mature green leaves. Three major ADH isozymes were resolved in Siokra, and it is proposed that two genes,Adh1 andAdh2, are coding for these three isozymes. The genes are differentially expressed. ADH1 is predominant in seed and aerobically grown roots, while ADH2 is prominent in roots only after anaerobic stress. Biochemical analysis demonstrated that the ADH enzyme has a native molecular weight of approximately 81 kD and a subunit molecular weight of approximately 42 kD, thus establishing that ADH in cotton is able to form and is active as dimers. Comparisons of ADH activity levels and isozyme patterns between Siokra and other allotetraploid cottons showed that the ADH system is highly conserved among these varieties. In contrast, the diploid species of cotton all had unique isozyme patterns.This work was generously supported by an Australian Cotton Research Council Postgraduate Studentship. 相似文献
3.
Flora Banuett-Bourrillon 《Biochemical genetics》1982,20(3-4):359-367
Pearl millet produces three ADH isozymes, Sets I, II, and III. Naturally occurring ADH electrophoretic variants affecting Sets I and II isozymes but not III have been previously described. Analysis of such variants led to the identification of the Adh1 structural gene. The existence of a second Adh structural gene was inferred from dissociation-reassociation studies of Set II. In the present report, a naturally occurring variant affecting the electrophoretic mobility of Sets III and II but not Set I is described. Analysis of this variant confirms the existence of a second structural gene, Adh2. Crosses utilizing this Adh2 marker reveal a dissimilarity with maize and other plants such as sunflower and narrow-leafed lupins. Adh1 and Adh2 of pearl millet do not segregate independently; indeed, no recombinants have been observed. This is the first major difference encountered in an otherwise remarkably similar genetic and environmental control of the ADH isozymes in maize and millet. The organization of the Adh genes of pearl millet may reflect a more primitive arrangement than that of maize.This work was supported by a PHS National Research Service Award Training Grant in Genetics to the Biology Department of the University of Oregon. 相似文献
4.
Roger S. Holmes Roland A. H. van Oorschot John L. VandeBerg 《Biochemical genetics》1992,30(5-6):215-231
Polyacrylamide gel-isoelectric focusing (PAGE-IEF) methods were used to examine the multiplicity, tissue distribution, and
biochemical genetics of alcohol dehydrogenase (ADH) isozymes among gray short-tailed opossums (Monodelphis domestica). Seven ADH isozymes were resolved and distinguished on the basis of their isoelectric points, tissue distributions, and
substrate and inhibitor specificities. ADH1 and ADH2 exhibited Class I properties and were observed in liver (and intestine)
extracts. ADH3, ADH4, and ADH5 showed “high-K
m
” (possibly Class IV) properties, with ADH3 and ADH4 exhibiting high activity in cornea, ear, stomach, and esophagus extracts.
ADH6 and ADH7 exhibited Class III properties, including activities as formaldehyde dehydrogenases, with each showing different
tissue distribution characteristics; ADH6 was widely distributed, and ADH7 was restricted to prostate extracts. An additional
form of formaldehyde dehydrogenase (FDH) was observed, which was inactive with hexenol and ethanol as substrates. Isoelectric
point variants were observed for ADH3 (three forms) and for ADH4 (two forms), and the inheritance of ADH3 was studied in 15
families ofM. domestica. The data were consistent with codominant inheritance of two alleles (ADH3*A andADH3*B) at a single autosomal locus (designatedADH3) and with a model involving a dimeric ADH isozyme: ADH3 (γ2 isozyme, forming three dimers designated γ
2
1
, γ1 γ2, and γ
2
2
in heterozygous individuals). 相似文献
5.
The alcohol dehydrogenase (ADH) isozymes induced in flooded roots of the diploid plant Stephanomeria exigua are specified by tightly linked genes comprising a complex locus, Adh1. Individuals homozygous for a complex with two active genes which specify electrophoretically different subunits have three ADH-I isozymes, two intragenic homodimers and an intergenic heterodimer. Individual isozymes were partially purified from plants homozygous for several different Adh1 complexes and apparent K
m
values for acetaldehyde, ethanol, NAD, and NADH and responses to temperature, pH, and two different alcohols were determined. The two homodimeric enzymes specified by a particular Adh1 complex generally differed in one or more of the properties studied, and in three of four cases, intergenic heterodimers differed significantly from intermediacy, often having lower K
m
values than either homodimer. None of the isozymes studied could be considered greatly divergent or defective. Constraints on evolution of duplicate genes which form intergenic heterodimers are considered. 相似文献
6.
Distorted segregation and linkage of alcohol dehydrogenase genes in Camellia japonica L. (Theacease)
Alcohol dehydrogenase isozymes in Camellia japonica are encoded by two genes, Adh-1 and Adh-2. Both loci are expressed in seeds, and their products randomly associate into intragenic and intergenic dimers. Electrophoresis of leaf extracts reveals only the products of Adh-2. Formal genetic analysis indicated that the two Adh loci are tightly linked (combined estimate of r=0.004). Most segregations fit expected Mendelian ratios, but in some families distorted segregation was observed at Adh-1, Adh-2, or both loci. The deficient progeny class varied across families, and in two apparent backcrosses three rather than two phenotypic classes were recovered. The mechanism underlying these distortions is not known, but evidence is presented that suggests that the phenomenon is genic or segmental in nature. Plausible hypotheses include linkage of the Adh structural genes with a gametophytic self-incompatibility locus, translocation heterozygosity involving the segment bearing Adh-1 and Adh-2, or a combination of these two mechanisms. 相似文献
7.
The genetic variability of one of the liver isozymes of aldehyde oxidase (AOX-B2 or AOX-2) and the stomach isozyme of alcohol dehydrogenase (ADH-C2 ) has been examined among strains of mice. Evidence is presented for a fourth allele of Aox-2 and a third allele of Adh-3 . The hybrid allozyme pattern for mouse liver AOX was consistent with a dimeric subunit structure for this enzyme. 相似文献
8.
The alcohol dehydrogenase genes of cotton 总被引:2,自引:0,他引:2
9.
Shih-Jiun Yin Chin-Shya Liao Chun-Mei Chen Fa-Ti Fan Shih-Chun Lee 《Biochemical genetics》1992,30(3-4):203-215
Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) exhibit genetic polymorphism and tissue specificity. ADH and ALDH isozyme phenotypes from 39 surgical Chinese lung specimens were identified by agarose isoelectric focusing. The identity of the lung β-ADHs was further demonstrated by their characteristic pH-activity profiles for ethanol oxidation,K m values for NAD and ethanol, and inhibition by 4-methylpyrazole or 1,10-phenanthroline. The β2 allele, coding for β2 polypeptide, was found to be predominant in the lung specimens studied. The ADH activities in the lungs with the homozygous phenotype ADH2 2-2 (exhibiting β2β2) and ADH2 1-1 (exhibiting β1β1) and the heterozygous phenotype ADH2 2-1 (exhibiting β2β2, β2β1, and β1β1) were determined to be 999±77, 48±17, and 494±61 nmol/min/g tissue, respectively. Fifty-one percent of the specimens studied lacked the ALDH2 activity band on the isoelectric focusing gels. The activities in the lung tissues with the ALDH2-active phenotype and the inactive phenotype were determined to be 30±3 and 17±1 nmol/min/g tissue, respectively. These findings indicate that human pulmonary ethanol-metabolizing activities differ significantly with respect to genetic polymorphism at both theADH 2 and theALDH 2 loci. The results suggest that individuals with highV max β2-ADH and deficient in low-K m mitochondrial ALDH2, accounting for approximately 45% of the Chinese population, may end up with acetaldehyde accumulation during alcohol consumption, rendering them vulnerable to tissue injury caused by this highly reactive and toxic metabolite. This work was supported by Grants NSC 77-0412-B016-58 and NSC 80-0412-B016-21 from the National Science Council, Republic of China. 相似文献
10.
(14C-Carbinol)benzyl alcohol taken up through the roots of greenbug (Schizaphis graminum) resistant barley is metabolized into a large number of radioactive compounds which have been separated by ion exchange chromatography. Two of these acidic metabolites have been identified as O-benzoyl-l-malic acid and N-benzoylaspartic acid; these identifications were confirmed by synthesis. 相似文献
11.
Andrew M. Torres 《Biochemical genetics》1976,14(1-2):87-98
Two unlinked genes, Adh1 and Adh2, control the production of alcohol dehydrogenase (ADH) in seeds of the annual sunflower (Helianthus annuus). Each gene is polymorphic, having F and S alleles. Starch gel electrophoretic zymograms of the four possible double homozygotes have three bands, representing two homodimers and an intermediately migrating intergenic isozyme. Zymograms of double heterozygotes consist of nine bands produced by ten isozymes: six intragenics and four intergenics, two of which are coincident. Results of dissociation-recombination (D-R) experiments are reported which demonstrate the subunit composition of the intergenic isozymes, thus supporting the relationships suggested by genetic studies. Densitometric tracings of the zymogram of a cleared gel and measurements of activities of homodimer isozymes eluted from gels following D-R of an intergenic isozyme showed that the Adh2 isozymes were more than twice as active as those of Adh1. Measurements of activities of crude extracts from the four possible double homozygous genotypes indicated that the seeds of the genotype Adh1F/Adh1F, Adh2S/Adh2S produced more activity than the other three. This genotype is the most common one found in wild and cultivated stocks. Isozymes eluted following electrophoresis of the same extracts had averages of 19%, 70%, and 11% of total activity contributed by the Adh1, Adh2, and intergenic isozymes, respectively. A simple but efficient method of isozyme elution from starch gels is described which resulted in nearly full expected recovery (approximately 46%) of the ADH activity in the applied sample.Supported by Graduate School and BioMed grants and by NSF Grant GB35853. 相似文献
12.
13.
Characterization of human alcohol dehydrogenase isoenzymes by high-performance liquid chromatographic peptide mapping 总被引:5,自引:0,他引:5
Human liver alcohol dehydrogenase (ADH, EC 1.1.1.1) is a large and heterogeneous family of isoenzymes and the high-performance liquid chromatographic peptide mapping technique which was developed here recognizes differences and similarities between them. Isoenzymes were S-carboxymethylated, digested with trypsin, and the mixtures of tryptic peptides fractionated by reverse-phase gradient chromatography on octadecylsilane columns, using perchlorate-phosphate buffer and acetonitrile as eluants. The resultant peptide maps were reproducible, showing great similarities between the αβγ-ADH isoenzymes (now called Class I) on the one hand and remarkable differences between these and both the π- and χ-ADH isoenzymes (now called Class II and III, respectively) on the other. This implies that these three isoenzyme groups have characteristic primary structures which correspond to their typical substrate specificities and kinetics. 相似文献
14.
The tissue specificity of a proposed cis-acting temporal locus (Adh-3t), which regulates alcohol dehydrogenase C2 (ADH-C2) activity in mouse reproductive tissue extracts, has been examined in C5 7BL/6J, SM/J, F1 (SM/J × C5 7BL/6J) mice as well as in progeny of an (F1 [SM/J × C5 7BL/6J] × C5 7BL/6J) back-cross. Electrophoretic variants for ADH-C2, previously used to localize the gene (Adh-3) encoding this enzyme on chromosome 3, enabled the relative parental contributions to ADH-C2 phenotype in F1 and backcross mouse tissues to be determined. These analyses demonstrated that (1) stomach, kidney, lung, adrenals, seminal vesicles, epididymis, uterus, and ovary ADH-C2 is encoded by a single locus (Adh-3); Adh-3t is differentially active in various tissues, eg, lung exhibits no apparent activity whereas the temporal locus is fully active in seminal vesicles; (3) Adh-3t is probably differentically active in different cells of some tissues, eg, adrenals. Specific activity profiles of stomach and epididymal ADH-C2 during the neonatal development of C5 7BL/6J, SM/J, and F1 (SM/J × C5 7BL/6J) male mice supported the proposal for a cis-acting temporal locus for this enzyme. Genetic analyses examining segregation of Adh-3 and Adh-3t among backcross progeny suggested that these are distinct but closely linked loci, since one recombinant among 256 progeny was observed. Linkage data of Adh-3 with Va (varitint-waddler) and de (droopy ear) was also obtained, which suggested that Adh-3 is localized on chromosome 3 between Va and de. 相似文献
15.
Abstract A soluble NADP-dependent alcohol dehydrogenase activity (EC 1.1.1.2) was found in all five strains of Acinetobacter calcoaceticus tested. In A. calcoaceticus NCIB8250, this dehydrogenase was not induced by growth on ethanol, but was present at approximately the same specific activity when this strain was grown on a variety of carbon sources. The specific activity of the NADP-dependent alcohol dehydrogenase is about 10% of the activity of the NAD-dependent alcohol dehydrogenase found in bacteria grown on ethanol. The distinct biochemical properties of the NADP-dependent dehydrogenase showed that this activity was not due to lack of nucleotide specificity of the NAD-dependent dehydrogenase. 相似文献
16.
Expression of alcohol dehydrogenase in rice embryos under anoxia 总被引:2,自引:0,他引:2
Bérénice Ricard Bernard Mocquot Alain Fournier Michel Delseny Alain Pradet 《Plant molecular biology》1986,7(5):321-329
Summary Alcohol dehydrogenase (ADH) activity was present in roots and shoots of 48-h rice embryos and rose in response to anoxia. The increase was accompanied by changes in the ADH isozyme pattern. Translatable levels of mRNA for two ADH peptides increases as early as 1 h after the beginning of anoxic treatment. Adh mRNA was detected in aerobically grown rice embryos by hybridization to maize Adh1 cDNA: its level increased significantly after 3 h of anoxia. 相似文献
17.
为解决结合在细胞上的可溶性蛋白聚乙烯醇脱氢酶(PVADH)的检测困难问题,从提取及检测两方面对该酶进行研究,并对检测方法进行改进。结果表明,非离子型表面活性剂Triton X-100对可溶性蛋白PVADH的提取效果优于离子型表面活性剂炕基苯磺酸钠(LAS)和溴化十六烷基吡啶(CPB),酶活力比LAS和CPB提取后所得酶活力分别提高246.5%和831.3%。而非离子型表面活性剂中,Triton X-100与Tween80相比,所得最高酶活提高了101.4%。Triton X—100浓度和提取时间对测定有明显影响,以1%Triton X-100提取18h为宜,最高比酶活达14.9U/g。在PVADH检测体系中,加入电子受体启动反应比加入酶液与底物启动反应可使酶活性分别提高60.6%和126.5%;酶液与吡咯喹啉醌(PQQ)预先保温对检测该酶活性是十分重要的,可使酶活性提高59.1%.在检测系统中加入的KCN、CaCl2和PQQ的适宜浓度分别为1.ommol/L、0.5mmol/L和2μmol/L,可使测定酶活分别提高37.1%、38.7%和214.0%. 相似文献
18.
A novel aromatic alcohol dehydrogenase in higher plants: molecular cloning and expression 总被引:8,自引:0,他引:8
Goffner Deborah Van Doorsselaere Jan Yahiaoui Nabila Samaj Josef Grima-Pettenati Jacqueline Boudet Alain M. 《Plant molecular biology》1998,36(5):755-765
Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.195) catalyses the conversion of p-hydroxy-cinnamaldehydes to the corresponding alcohols and is considered a key enzyme in lignin biosynthesis. In a previous study, an atypical form of CAD (CAD 1) was identified in Eucalyptus gunnii [12]. We report here the molecular cloning and characterization of the corresponding cDNA, CAD 1-5, which encodes this novel aromatic alcohol dehydrogenase. The identity of CAD 1-5 was unambiguously confirmed by sequence comparison of the cDNA with peptide sequences derived from purified CAD 1 protein and by functional expression of CAD 1 recombinant protein in Escherichia coli. Both native and recombinant CAD 1 exhibit high affinity towards lignin precursors including 4-coumaraldehyde and coniferaldehyde, but they do not accept sinapaldehyde. Moreover, recombinant CAD 1 can also utilize a wide range of aromatic substrates including unsubstituted and substituted benzaldehydes. The open reading frame of CAD 1-5 encodes a protein with a calculated molecular mass of 35790 Da and an isoelectric point of 8.1. Although sequence comparisons with proteins in databases revealed significant similarities with dihydroflavonol-4-reductases (DFR; EC 1.1.1.219) from a wide range of plant species, the most striking similarity was found with cinnamoyl-CoA reductase (CCR; EC 1.2.1.44), the enzyme which directly precedes CAD in the lignin biosynthetic pathway. RNA blot analysis and immunolocalization experiments indicated that CAD 1 is expressed in both lignified and unlignified tissues/cells. Based on the catalytic activity of CAD 1 in vitro and its localization in planta, CAD 1 may function as an alternative enzyme in the lignin biosynthetic pathway. However, additional roles in phenolic metabolism are not excluded. 相似文献
19.
Alcohol dehydrogenase was purified in 14 h from male Fischer-344 rat livers by differential centrifugation, (NH4)2SO4 precipitation, and chromatography over DEAE-Affi-Gel Blue, Affi-Gel Blue, and AMP-agarose. Following HPLC more than 240-fold purification was obtained. Under denaturing conditions, the enzyme migrated as a single protein band (Mr congruent to 40,000) on 10% sodium dodecyl sulfate-polyacrylamide gels. Under nondenaturing conditions, the protein eluted from an HPLC I-125 column as a symmetrical peak with a constant enzyme specific activity. When examined by analytical isoelectric focusing, two protein and two enzyme activity bands comigrated closely together (broad band) between pH 8.8 and 8.9. The pure enzyme showed pH optima for activity between 8.3 and 8.8 in buffers of 0.5 M Tris-HCl, 50 mM 2-(N-cyclohexylamino)ethanesulfonic acid (CHES), and 50 mM 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS), and above pH 9.0 in 50 mM glycyl-glycine. Kinetic studies with the pure enzyme, in 0.5 M Tris-HCl under varying pH conditions, revealed three characteristic ionization constants for activity: 7.4 (pK1); 8.0-8.1 (pK2), and 9.1 (pK3). The latter two probably represent functional groups in the free enzyme; pK1 may represent a functional group in the enzyme-NAD+ complex. Pure enzyme also was used to determine kinetic constants at 37 degrees C in 0.5 M Tris-HCl buffer, pH 7.4 (I = 0.2). The values obtained were Vmax = 2.21 microM/min/mg enzyme, Km for ethanol = 0.156 mM, Km for NAD+ = 0.176 mM, and a dissociation constant for NAD+ = 0.306 mM. These values were used to extrapolate the forward rate of ethanol oxidation by alcohol dehydrogenase in vivo. At pH 7.4 and 10 mM ethanol, the rate was calculated to be 2.4 microM/min/g liver. 相似文献
20.
G. E. Nilsson 《Journal of fish biology》1990,36(2):175-179
The tissue distribution of aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH) in summer-acclimatized crucian carp showed almost the same exceptional pattern as previously found in winter-acclimatized specimens. There was a nearly complete spatial separation of ALDH and ADH; in other vertebrates these enzymes occur together. This exceptional enzyme distribution is probably an adaptation to the extraordinary ability of Carassius to produce ethanol as the major metabolic end product during anoxia. Since the crucian carp is less likely to encounter anoxia during the summer, the present results suggest that the crucian carp is unable to switch over to a 'normal' ALDH and ADH distribution in the summer. However, it is also possible that there is an advantage for the summer-acclimatized crucian carp in keeping ALDH and ADH separate, because of occasional anoxic periods. 相似文献