首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccharomyces cerevisiae was transformed with the Pichia stipitis CBS 6054 XYL1 and XYL2 genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) respectively. The XYL1 and XYL2 genes were placed under the control of the alcohol dehydrogenase 1 (ADH1) and phosphoglycerate kinase (PGK1) promoters in the yeast vector YEp24. Different vector constructions were made resulting in different specific activities of XR and XDH. The XR:XDH ratio (ratio of specific enzyme activities) of the transformed S. cerevisiae strains varied from 17.5 to 0.06. In order to enhance xylose utilisation in the XYL1-, XYL2-containing S. cerevisiae strains, the native genes encoding transketolase and transaldolase were also overexpressed. A strain with an XR:XDH ratio of 17.5 formed 0.82 g xylitol/g consumed xylose, whereas a strain with an XR:XDH ratio of 5.0 formed 0.58 g xylitol/g xylose. The strain with an XR:XDH ratio of 0.06, on the other hand, formed no xylitol and less glycerol and acetic acid compared with strains with the higher XR:XDH ratios. In addition, the strain with an XR:XDH ratio of 0.06 produced more ethanol than the other strains. Received: 12 March 1997 / Received revision: 17 April 1997 / Accepted: 27 April 1997  相似文献   

2.
The inability oft Saccharomyces cerevisiae to utilize xylose is attributed to its inability to convert xylose to xylulose. Low xylose reductase (XR) and xylitol dehydrogenase (XDH) activities in S. cerevisiae are regarded as the reason of blocking the pathway from xylose to xylulose. We had found that Candida shehatae could also be another source for XR gene except Pichia stipitis in the previous study. In this study, we tried to investigate if the expressed XR from C. shehatae could work with the over-expressed endogenous XDH together to achieve the same goal of converting xylose to ethanol in S. cerevisiae. The XR gene (XYL1) from C. shehatae and endogenous XDH gene (XYL2) were both cloned and over-expressed in host S. cerevisiae cell. The specific enzyme activities of XR and XDH were measured and the result of fermentation revealed that the new combination of two enzymes from different sources other than P. stipitis could also coordinate and work with each other and confer xylose utilization ability to S. cerevisiae.  相似文献   

3.
The present work evaluated the key enzymes involved in xylitol production (xylose reductase [XR] and xylitol dehydrogenase [XDH]) and their correlation with xylose, arabinose, and acetic acid assimilation during cultivation of Candida guilliermondii FTI 20037 cells in sugarcane bagasse hemicellulosic hydrolysate. For this purpose, inocula previously grown either in sugarcane bagasse hemicellulosic hydrolysate (SBHH) or in semidefined medium (xylose as a substrate) were used. The highest xylose/acetic acid consumption ratio (1.78) and the lowest arabinose consumption (13%) were attained in the fermentation using inoculum previously grown in semidefined medium (without acetic acid and arabinose). In this case, the highest values of XR (1.37 U mg prot−1) and XDH (0.91 U mg prot−1) activities were observed. The highest xylitol yield (∼0.55 g g−1) and byproducts (ethanol and glycerol) formation were not influenced by inoculum procedure. However, the cell previously grown in the hydrolysate was effective in enhancing xylitol production by keeping the XR enzyme activity at high levels (around 0.99 U·mgprot−1), reducing the XDH activity (34.0%) and increasing xylitol volumetric productivity (26.5%) with respect to the inoculum cultivated in semidefined medium. Therefore, inoculum adaptation to SBHH was shown to be an important strategy to improve xylitol productivity.  相似文献   

4.
A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD+-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP+. In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP+-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP+-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain.  相似文献   

5.
A cost-effective conversion of lignocellulosic biomass into bioethanol requires that the xylose released from the hemicellulose fraction (20–40% of biomass) can be fermented. Baker’s yeast, Saccharomyces cerevisiae, efficiently ferments glucose but it lacks the ability to ferment xylose. Xylose-fermenting yeast such as Pichia stipitis requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, it is demonstrated that under anaerobic conditions Spathaspora passalidarum showed high ethanol production yield, fast cell growth, and rapid sugar consumption with xylose being consumed after glucose depletion, while P. stipitis was almost unable to utilize xylose under these conditions. It is further demonstrated that for S. passalidarum, the xylose conversion takes place by means of NADH-preferred xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to the balance between the cofactor’s supply and demand through this XR–XDH pathway. Only few XRs with NADH preference have been reported so far. 2-Deoxy glucose completely inhibited the conversion of xylose by S. passalidarum under anaerobic conditions, but only partially did that under aerobic conditions. Thus, xylose uptake by S. passalidarum may be carried out by different xylose transport systems under anaerobic and aerobic conditions. The presence of glucose also repressed the enzymatic activity of XR and XDH from S. passalidarum as well as the activities of those enzymes from P. stipitis.  相似文献   

6.
Metabolic engineering of Saccharomyces cerevisiae for xylose fermentation has often relied on insertion of a heterologous pathway consisting of nicotinamide adenine dinucleotide (phosphate) NAD(P)H-dependent xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Low ethanol yield, formation of xylitol and other fermentation by-products are seen for many of the S. cerevisiae strains constructed in this way. This has been ascribed to incomplete coenzyme recycling in the steps catalyzed by XR and XDH. Despite various protein-engineering efforts to alter the coenzyme specificity of XR and XDH individually, a pair of enzymes displaying matched utilization of NAD(H) and NADP(H) was not previously reported. We have introduced multiple site-directed mutations in the coenzyme-binding pocket of Galactocandida mastotermitis XDH to enable activity with NADP+, which is lacking in the wild-type enzyme. We describe four enzyme variants showing activity for xylitol oxidation by NADP+ and NAD+. One of the XDH variants utilized NADP+ about 4 times more efficiently than NAD+. This is close to the preference for NADPH compared with NADH in mutants of Candida tenuis XR. Compared to an S. cerevisiae-reference strain expressing the genes for the wild-type enzymes, the strains comprising the gene encoding the mutated XDH in combination a matched XR mutant gene showed up to 50% decreased glycerol yield without increase in ethanol during xylose fermentation.  相似文献   

7.
An NAD+-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M r 48 000, and pI 3.6. It was optimally active at 45 °C and pH 9–10. It was fully stable at pH 6–7 for 24 h and 30 °C. K m values for d-xylitol and NAD+ were 94 mM and 0.14 mM, respectively. Mn2+ at 10 mM increased XDH activity 2-fold and Cu2+ at 10 mM inhibited activity completely.  相似文献   

8.
Aspergillus carbonarius accumulates xylitol when it grows on d-xylose. In fungi, d-xylose is reduced to xylitol by the NAD(P)H-dependent xylose reductase (XR). Xylitol is then further oxidized by the NAD+-dependent xylitol dehydrogenase (XDH). The cofactor impairment between the XR and XDH can lead to the accumulation of xylitol under oxygen-limiting conditions. Most of the XRs are NADPH dependent and contain a conserved Ile-Pro-Lys-Ser motif. The only known naturally occurring NADH-dependent XR (from Candida parapsilosis) carries an arginine residue instead of the lysine in this motif. In order to overcome xylitol accumulation in A. carbonarius a Lys-274 to Arg point mutation was introduced into the XR with the aim of changing the specificity toward NADH. The effect of the genetic engineering was examined in fermentation for citric acid production and xylitol accumulation by using d-xylose as the sole carbon source. Fermentation with the mutant strain showed a 2.8-fold reduction in xylitol accumulation and 4.5-fold increase in citric acid production compared to the wild-type strain. The fact that the mutant strain shows decreased xylitol levels is assumed to be associated with the capability of the mutated XR to use the NADH generated by the XDH, thus preventing the inhibition of XDH by the high levels of NADH and ensuring the flux of xylose through the pathway. This work shows that enhanced production of citric acid can be achieved using xylose as the sole carbon source by reducing accumulation of other by-products, such as xylitol.  相似文献   

9.

Background  

Metabolic engineering of Saccharomyces cerevisiae for xylose fermentation into fuel ethanol has oftentimes relied on insertion of a heterologous pathway that consists of xylose reductase (XR) and xylitol dehydrogenase (XDH) and brings about isomerization of xylose into xylulose via xylitol. Incomplete recycling of redox cosubstrates in the catalytic steps of the NADPH-preferring XR and the NAD+-dependent XDH results in formation of xylitol by-product and hence in lowering of the overall yield of ethanol on xylose. Structure-guided site-directed mutagenesis was previously employed to change the coenzyme preference of Candida tenuis XR about 170-fold from NADPH in the wild-type to NADH in a Lys274→Arg Asn276→Asp double mutant which in spite of the structural modifications introduced had retained the original catalytic efficiency for reduction of xylose by NADH. This work was carried out to assess physiological consequences in xylose-fermenting S. cerevisiae resulting from a well defined alteration of XR cosubstrate specificity.  相似文献   

10.
Xylose reductase (XR) and xylitol dehydrogenase (XDH) are the key enzymes for xylose fermentation and have been widely used for construction of a recombinant xylose fermenting yeast. The effective recycling of cofactors between XR and XDH has been thought to be important to achieve effective xylose fermentation. Efforts to alter the coenzyme specificity of XR and HDX by site-directed mutagenesis have been widely made for improvement of efficiency of xylose fermentation. We previously succeeded by protein engineering to improve ethanol production by reversing XDH dependency from NAD+ to NADP+. In this study, we applied protein engineering to construct a novel strictly NADPH-dependent XR from Pichia stipitis by site-directed mutagenesis, in order to recycle NADPH between XR and XDH effectively. One double mutant, E223A/S271A showing strict NADPH dependency with 106% activity of wild-type was generated. A second double mutant, E223D/S271A, showed a 1.27-fold increased activity compared to the wild-type XR with NADPH and almost negligible activity with NADH.  相似文献   

11.
AIMS: To determine the effects on xylitol accumulation and ethanol yield of expression of mutated Pichia stipitis xylitol dehydrogenase (XDH) with reversal of coenzyme specificity in recombinant Saccharomyces cerevisiae. METHODS AND RESULTS: The genes XYL2 (D207A/I208R/F209S) and XYL2 (S96C/S99C/Y102C/D207A/I208R/F209S) were introduced into S. cerevisiae, which already contained the P. stipitis XYL1 gene (encoding xylose reductase, XR) and the endogenously overexpressed XKS1 gene (encoding xylulokinase, XK). The specific activities of mutated XDH in both strains showed a distinct increase in NADP(+)-dependent activity in both strains with mutated XDH, reaching 0.782 and 0.698 U mg(-1). In xylose fermentation, the strain with XDH (D207A/I208R/F209S) had a large decrease in xylitol and glycerol yield, while the xylose consumption and ethanol yield were decreased. In the strain with XDH (S96C/S99C/Y102C/D207A/I208R/F209S), the xylose consumption and ethanol yield were also decreased, and the xylitol yield was increased, because of low XDH activity. CONCLUSIONS: Changing XDH coenzyme specificity was a sufficient method for reducing the production of xylitol, but high activity of XDH was also required for improved ethanol formation. SIGNIFICANCE AND IMPACT OF THE STUDY: The difference in coenzyme specificity was a vital parameter controlling ethanolic xylose fermentation but the XDH/XR ratio was also important.  相似文献   

12.
Summary A locally isolated strain of Aspergillus foetidus MTCC 4898 was studied for xylanase (EC 3.2.1.8) production using lignocellulosic substrates under solid state fermentation. Corncobs were found as the best substrates for high yield of xylanases with poor cellulase production. The influence of various parameters such as temperature, pH, moistening agents, moisture level, nitrogen sources and pretreatment of substrates were evaluated with respect to xylanase yield, specific activity and cellulase production. Influence of nitrogen sources on protease secretion was also examined. Maximum xylanase production (3065 U/g) was obtained on untreated corncobs moistened with modified Mandels and Strenberg medium, pH 5.0 at 1 5 moisture levels at 30 °C in 4 days of cultivation. Submerged fermentation under the same conditions gave higher yield (3300 U/g) in 5 days of cultivation, but productivity was less. Ammonium sulphate fractionation yielded 3.56-fold purified xylanase with 76% recovery. Optimum pH and temperature for xylanase activity were found to be 5.3 and 50 °C respectively. Kinetic parameters like Km and Vmax were found to be 3.58 mg/ml and 570 μmol/mg/min. Activity of the enzyme was found to be enhanced by cystiene hydrochloride, CoCl2, xylose and Tween 80, while significantly inhibited by Hg++, Cu++ and glucose. The enzyme was found to be stable at 40 °C. The half life at 50 °C was 57.53 min. However thermostability was enhanced by glycerol, trehalose and Ca++. The crude enzyme was stable during lyophilization and could be stored at less than 0 °C.  相似文献   

13.
Summary Highest production of xylose Isomerase by Neurospora crassa grown with different carbon sources was at 0.014 U mg-1 with D-xylose. The enzyme exhibited maximum activity at pH 8.0 and 70°C and retained 100% activity at 45°C for 30 min at pH 8.0. It was activated by 8 mM Mg2+ whereas 2 mM Co2+ afforded protection against inactivation by heat. The K m for xylose was 10 mM and 22 mM for xylose Isomerase and xylose reductase respectively at 28°C and pH 7.0. This is the first report on the presence of xylose isomerase in N. crassa and the existence of two different pathways for the utilization of D-xylose.  相似文献   

14.
Kluyveromyces marxianus is thermotolerant yeast that is able to utilize a wider range of substrates and has greater thermal tolerance than most other yeast species. K. marxianus can assimilate xylose, but its ability to produce ethanol from xylose in oxygen-limited environments is poor. In the present study, the K. marxianus xylose reductase (KmXR) gene (Kmxyl1) was cloned and the recombinant enzyme was characterized to clarify the factors that limit xylose fermentation in K. marxianus NBRC1777. KmXR is a key enzyme in the xylose metabolism of K. marxianus, which was verified by disruption of the Kmxyl1 gene. The Km of the recombinant KmXR for NADPH is 65.67 μM and KmXR activity is 1.295 U/mg, which is lower than those of most reported yeast XRs, and the enzyme has no activity with coenzyme NADH. This result demonstrates that the XR from K. marxianus is highly coenzyme specific; combined with the extremely low XDH activity of K. marxianus with NADP+, the limitation of xylose fermentation is due to a redox imbalance under anaerobic conditions and low KmXR activity.  相似文献   

15.

Background  

Xylose reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis are the two enzymes most commonly used in recombinant Saccharomyces cerevisiae strains engineered for xylose utilization. The availability of NAD+ for XDH is limited during anaerobic xylose fermentation because of the preference of XR for NADPH. This in turn results in xylitol formation and reduced ethanol yield. The coenzyme preference of P. stipitis XR was changed by site-directed mutagenesis with the aim to engineer it towards NADH-preference.  相似文献   

16.
Accumulation of xylitol in xylose fermentation with engineered Saccharomyces cerevisiae presents a major problem that hampers economically feasible production of biofuels from cellulosic plant biomass. In particular, substantial production of xylitol due to unbalanced redox cofactor usage by xylose reductase (XR) and xylitol dehydrogenase (XDH) leads to low yields of ethanol. While previous research focused on manipulating intracellular enzymatic reactions to improve xylose metabolism, this study demonstrated a new strategy to reduce xylitol formation and increase carbon flux toward target products by controlling the process of xylitol secretion. Using xylitol-producing S. cerevisiae strains expressing XR only, we determined the role of aquaglyceroporin Fps1p in xylitol export by characterizing extracellular and intracellular xylitol. In addition, when FPS1 was deleted in a poorly xylose-fermenting strain with unbalanced XR and XDH activities, the xylitol yield was decreased by 71% and the ethanol yield was substantially increased by nearly four times. Experiments with our optimized xylose-fermenting strain also showed that FPS1 deletion reduced xylitol production by 21% to 30% and increased ethanol yields by 3% to 10% under various fermentation conditions. Deletion of FPS1 decreased the xylose consumption rate under anaerobic conditions, but the effect was not significant in fermentation at high cell density. Deletion of FPS1 resulted in higher intracellular xylitol concentrations but did not significantly change the intracellular NAD+/NADH ratio in xylose-fermenting strains. The results demonstrate that Fps1p is involved in xylitol export in S. cerevisiae and present a new gene deletion target, FPS1, and a mechanism different from those previously reported to engineer yeast for improved xylose fermentation.  相似文献   

17.
To enhance metabolite transfer in the two initial sequential steps of xylose metabolism in yeast, two structural genes of Pichia stipitis, XYL1 and XYL2 encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, were fused in frame. Four chimeric genes were constructed, encoding fusion proteins with different orders of the enzymes and different linker lengths. These genes were expressed in Saccharomyces cerevisiae. The fusion proteins exhibited both XR and XDH activity when XYL1 was fused downstream of XYL2. The specific activity of the XDH part of the complexes increased when longer peptide linkers were used. Bifunctional enzyme complexes, analyzed by gel filtration, were found to be tetramers, hexamers, and octamers. No degradation products were detected by Western blot analysis. S. cerevisiae strains harboring the bifunctional enzymes grew on minimal-medium xylose plates, and oxygen-limited xylose fermentation resulted in xylose consumption and ethanol formation. When a fusion protein, containing a linker of three amino acids, was coexpressed with native XR and XDH monomers in S. cerevisiae, enzyme complexes consisting of chimerical and native subunits were formed. The total activity of these complexes showed XR and XDH activities similar to the activities obtained when the monomers were expressed individually. Strains which coexpressed chimerical subunits together with native XR and XDH monomers consumed less xylose and produced less xylitol. However, the xylitol yield was lower in these strains than in strains expressing only native XR and XDH monomers, 0.55 and 0.62, respectively, and the ethanol yield was higher. The reduced xylitol yield was accompanied by reduced glycerol and acetate formation suggesting enhanced utilization of NADH in the XR reaction.  相似文献   

18.
Wang X  Fang B  Luo J  Li W  Zhang L 《Biotechnology letters》2007,29(9):1409-1412
The xylose reductase (XR) gene (xyl1) from Candida shehatae was cloned and expressed in Escherichia coli, and purified as a His6-tagged fusion protein. The recombinant XR had Km values for NADH than NADPH of 150 μM and 20 μM, respectively. The optimal reaction was at pH 6.5 and 35°C. The enzyme was specific for d-xylese.  相似文献   

19.
The first two steps in xylose metabolism are catalyzed by NAD(P)H-dependent xylose reductase (XR) (EC 1.1.1.21) and NAD(P)-dependent xylitol dehydrogenase (XDH) (EC 1.1.1.9), which lead to xylosexylitolxylulose conversion. Xylitol has high commercial value, due to its sweetening and anticariogenic properties, as well as several clinical applications. The acid hydrolysis of sugarcane bagasse allows the separation of a xylose-rich hemicellulosic fraction that can be used as a substrate for Candida guilliermondii to produce xylitol. However, the hydrolysate contains acetic acid, an inhibitor of microbial metabolism. In this study, the effect of acetic acid on the activities of XR and XDH and on xylitol formation by C. guilliermondii were studied. For this purpose, fermentations were carried out in bagasse hydrolysate and in synthetic medium. The activities of XR and XDH were higher in the medium containing acetic acid than in control medium. Moreover, none of the fermentative parameters were significantly altered during cell culture. It was concluded that acetic acid does not interfere with xylitol formation since the increase in XR activity is proportional to XDH activity, leading to a greater production of xylitol and its subsequent conversion to xylulose.  相似文献   

20.
Xylose fermentation performance was studied of a previously developed Saccharomyces cerevisiae strain TMB 3057, carrying high xylose reductase (XR) and xylitol dehydrogenase (XDH) activity, overexpressed non-oxidative pentose phosphate pathway (PPP) and deletion of the aldose reductase gene GRE3. The fermentation performance of TMB 3057 was significantly improved by increased ethanol production and reduced xylitol formation compared with the reference strain TMB 3001. The effects of the individual genetic modifications on xylose fermentation were investigated by comparing five isogenic strains with single or combined modifications. All strains with high activity of both XR and XDH had increased ethanol yields and significantly decreased xylitol yields. The presence of glucose further reduced xylitol formation in all studied strains. High activity of the non-oxidative PPP improved the xylose consumption rate. The results indicate that ethanolic xylose fermentation by recombinant S. cerevisiae expressing XR and XDH is governed by the efficiency by which xylose is introduced in the central metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号