共查询到20条相似文献,搜索用时 15 毫秒
1.
高温胁迫对新疆榛光合参数和叶绿素荧光特性的影响 总被引:2,自引:0,他引:2
在5个温度梯度处理下,研究高温胁迫对4种新疆榛光合参数和叶绿素荧光特性的影响.结果表明:随着温度从25℃持续升高至45℃,新疆榛叶片的净光合速率、气孔导度、胞间CO2浓度、水分利用效率和光能利用效率逐渐降低,且在35~ 45℃之间降幅最大;光系统Ⅱ的实际光化学效率、电子传递速率和光化学猝灭系数随温度的升高缓慢上升,至35℃后急速下降;蒸腾耗水和热耗散随温度的升高而增大.4种新疆榛品种中,新榛3号的光合作用对高温的耐受力较高,属耐热性品种. 相似文献
2.
It is a common knowledge that the photosynthesis efficiency drops rapidly under the long-wavelength light excitation above 680 nm. We discovered that in sunflower leaves attached to the plant the initial fall is replaced by an unexpected increase at much longer wavelengths, so that a detectable O(2) evolution is remained till 780 nm. The quantum yield of O(2) evolution at the local maximum at 745 nm reaches almost 20% of the yield at 650 nm. We conclude that extreme long-wavelength chlorophylls may be present in the intact photosystem II antenna system, similarly to photosystem I. 相似文献
3.
Exchange of CO2 and O2 and chlorophyll fluorescence were measured in the presence of 360 1 · 1–1 CO2 in nitrogen in Helianthus annuss L. leaves which had been preconditioned in the dark or at a photon flux density (PFD) of 24 mol · m–2 · s–1 either in 21 or 0% O2. An initial light-dependent O2 outburst of 6 mol · m–2 was measured after aerobic dark incubation. It was attributed to the reduction of electron carriers, predominantly plastoquinone. The maximum initial rate of O2 evolution at PFD 8000 mol · m–2 · s–1 was 170 mol · m–2 · s–2 or about four times the steady CO2-and light-saturated rate of photosynthesis. Fluorescence measurements showed that the rate was still acceptor-limited. Fast O2 evolution ceased after electron carriers were reduced in the dark-adapted leaf, but continued for a short time at the lower rate of 62 mol · m–2 · s–1 in the light-adapted leaf. The data are interpreted to show that enzymes involved in 3-phosphoglycerate reduction are dark-inhibited, but were fully active in low light. In a dark-adapted leaf, respiratory CO2 evolution continued under nitrogen; it was partially inhibited by illumination. Prolonged exposure of a leaf to anaerobic conditions caused reducing equivalents to accumulate. This was shown by a slowly increasing chlorophyll fluorescence yield which indicated the reduction of the PSII acceptor QA in the dark. When the leaf was illuminated, no O2 evolution was detected from short light pulses, although transient O2 production was appreciable during longer light pulses. This indicates that an electron donor (pool size about 2–3 e/PSII reaction center) became reduced in the dark and the first photons were used to oxidise this donor instead of water.Abbreviations Chl
chlorophyll
- CRC
carbon reduction cycle
- GAPDH
NADP-glyceraldehyde-phosphate dehydrogenase
- PFD
photon flux density
- PGA
3-phosphoglycerate
- RuBP
ribulose bisphosphate
- TCA
tricarboxylic acid cycle
To whom correspondence should be addressedThis work received support by the Estonian Academy of Sciences, the Gottfried-Wilhelm-Leibniz Program of the Deutsche For-schungsgemeinschaft and the Sonderforschungsbereich 251 of the University of Würzburg. 相似文献
4.
In this paper, we show the unique role of bicarbonate ion in stimulating the electron transfer of photosystem II (PS II) in formate-treated leaf discs from spinach. This is referred to as the bicarbonate effect and is independent of the role of CO2 in CO2 fixation. It is shown to have two sites of action:
The first site of inhibition by formate-treatment is detected by the decrease of the rate of oxygen evolution and the simultaneous quenching of the variable chlorophyll a (Chl a) fluorescence of leaf discs infiltrated with 100 mM formate for about 10 s followed by storage for 10 min in dark. This is referred to as short-term formate treatment. Addition of bicarbonate reverses this short-term formate effect and restores fully both Chl a fluorescence and oxygen evolution rate. Reversible quenching of variable Chl a fluorescence of heated and short-term formate treated leaf discs, in the presence of hydroxylamine as an artificial electron donor to PS II, is also observed. This suggests that the first site of action of the anion effect is indeed between the site of donation of hydroxylamine to PS II (i.e. Z or D) and QA. The second site of the effect, where bicarbonate depletion has its most dramatic effect, as well known in thylakoids, is shown by an increase of Chl a fluorescence of leaf discs infiltrated with 100 mM formate for about 10 min followed by storage for 10 min in dark. This is referred to as the long-term formate treatment. Addition of bicarbonate fully restores the variable Chl a fluorescence of these leaf discs. Chl a fluorescence transient of DCMU-infiltrated (10 min) leaf discs is similar to that of long-term formate-treated one suggesting that the absence of bicarbonate, like the presence of DCMU, inhibits the electron flow beyond QA. 相似文献
(1) | the first, described here for the first time, stimulates the electron flow between the hydroxylamine donation site (Z or D) and QA, the first plastoquinone electron acceptor and |
(2) | the other accelerates the electron flow beyond QA, perhaps at the QA QB complex, where QB is the second plastoquinone electron acceptor. |
5.
Characteristics of thermoluminescence glow curves were compared in three types of Euglena cells: (i) strictly autotrophic, Cramer and Myers cells; (ii) photoheterotrophic cells sampled from an exponentially growing culture containing lactate as substrate repressing the photosynthetic activity; (iii) semiautotrophic cells, sampled when the lactate being totally exhausted, the photosynthesis was enhanced.In autotrophic and semiautotrophic cells, composite curves were observed after series of two or more actinic flashes fired at –10°C, which can be deconvoluted into a large band peaking in the range 12–22°C and a smaller one near 40°C, This second band presents the characteristics of a typical B band (due to S2/3QB
- recombination), whereas the first one resembled the band, shifted by -15–20°C, which is observed in herbicide resistant plants. The amplitude of this major band, which was in all cases very low after one flash, exhibited oscillations of period four but rapidly damping, with maxima after two and six flashes. In contrast, photoheterotrophic Euglena displayed single, non-oscillating curves with maxima in the range 5–10°C.In autotrophic and semiautotrophic cells, oxidizing pretreatments by either a preillumination with one or more (up to twenty-five) flashes, or a far-red preillumination in the presence of methylviologen, followed by a short dark period, induced thermoluminescence bands almost single and shifted by +3–5°C, or +12°C, respectively. In autotrophic cells, far-red light plus methyl viologen treatment induced a band peaking at 31°C, as in isolated thylakoids from Euglena or higher plants, while it had barely any effect in photoheterotrophic cells.Due to metabolic activities in dark-adapted cells, a reduction of redox groups at the donor and acceptor sides of PS II dark-adapted cells is supposed to occur. Two different explanations can be proposed to explain such a shift in the position of the main band in dark-adapted autotrophic control. The first explanation would be that in these reducing conditions a decreasing value of the equilibrium constant for the reaction: SnQA
-QBSnQAQB
-, would determine the shift of the main TL band towards low temperatures, as observed in herbicide resistant material. The second explanation would be that the main band would correspond to peak III already observed in vivo and assigned to S2/3QB
2- recombinations.Abbreviations CM
Cramer and Myers
- D1
a 32 kDa protein component of the PS II reaction center, psbA.gene product
- D2
a 34 kDa protein component of the PS II reaction center, psbD gene product
- FR
lar-red illumination
- Lexpo and Lstat
cells from lactate culture samples at exponential and stationary phase of growth
- MV
methylviologen
- pBQ
parabenzoquinone
- PQ
plastoquinone
- PS II
photosystem II
- QA
primary quinone electron acceptor
- QB
secondary quinone electron acceptor
- TL
thermoluminescence 相似文献
6.
乙草胺对葡萄叶片光合和叶绿素荧光特性及叶绿体结构的影响 总被引:5,自引:0,他引:5
以沙培1年生巨峰葡萄为材料,研究土施乙草胺对葡萄叶片光合、叶绿素荧光特性和叶绿体结构的影响.结果表明:喷施初期(处理后第13天),上部叶片净光合速率和气孔导度显著下降,PSII最大光化学效率和实际光化学效率显著低于对照,快速叶绿素荧光诱导动力学曲线中J点和K点荧光显著上升,性能指数PIABS显著下降,其PSII反应中心和放氧复合体受损伤程度显著高于中部叶片,但随着处理时间的延长,受损伤的程度减轻.在喷施后期(处理后第60天),上部叶片与中部叶片各指标之间的差距变小;下部叶片对除草剂的响应滞后,PSII反应中心和放氧复合体受到较大损伤,J点和K点荧光上升及PIABS下降的幅度高于中、上部叶片.乙草胺处理后第60天,葡萄叶片可溶性糖和淀粉含量增加,中、上部叶片色素含量显著下降,叶绿体膜受损,叶绿体变小,片层结构模糊或间隙增大.表明土施乙草胺可传导至葡萄地上部,导致叶片光合机构损伤、PSII活性下降和光合速率降低. 相似文献
7.
Engelbert Weis 《Planta》1982,154(1):41-47
The heat-sensitivity of photosynthetic oxygen evolution of thylakoids isolated from spinach increases by increasing the pH above neutral value. The temperature for inactivation (transition temperature) is lowered from about 45° C (pH 6.0–7.4) to 33°C (pH 8.5). Similar results are obtained with intact chloroplasts. At pH 7.0 the transition temperature of washed thylakoids decreases by lowering the salt concentration below 20 mM with monovalent cations (Li+, Na+, K+) and below 3–4 mM with divalent cations (Mg2+, Ca2+, Sr2+). Illumination decreases the heat-sensitivity of oxygen evolution in intact chloroplasts, but even increases the heat-sensitivity in uncoupled chloroplasts. In intact chloroplasts the transition temperature of the heat-induced rise in chlorophyll fluorescence yield (Fo; see Schreiber and Armond 1978) decreases from 44° C to 38° C when the pH of the suspending medium is increased from 6.5 to 8.5. At 20° C, Fo is almost insensitive to pH (6.0–8.5). At 40° C, however, Fo is constant between 6.0 and 7.0, but strongly increases by increasing the pH above neutral value. The results are discussed in terms of a close relation between electrostatic forces at the thylakoid membrane and thermal sensitivity of photosynthetic apparatus. It is suggested that the heat-sensitivity of the photosystem II complex partially depends on the ionization state of fixed groups having alkaline pK. The packed volume of thylakoids suspended in a low salt medium increases when the temperature is increased above 30° C (pH 7.0) and above 20° C (pH 8.0), respectively. This result suggests a heat-induced increase in surface charge density of the thylakoid membrane.Abbreviations HEPES
N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid
- MES
morpholinoethane sulfonic acid
- MOPS
2-N-morpholinopropane sulfonic acid
- TRICIN
N-[tris(hydroxymethyl)-methyl] glycine 相似文献
8.
George C. Papageorgiou Aikaterini Alygizaki-Zorba Spyros Loukas Steven S. Brody 《Photosynthesis research》1996,48(1-2):221-226
We investigated the photodynamic action of hypericin, a natural naphthodianthrone, on photosynthetic electron transport and fluorescence of the cyanobacterium Anacystis nidulans (Synechococcus 6301). The most drastic effect was the inactivation of photosynthetic oxygen evolution in the presence of the electron acceptor phenyl-p-benzoquinone in aerobic cells which required 1 hypericin/5 chlorophyll a for half-maximal effect. Anaerobic A. nidulans was only partially inactivated and variable chlorophyll a fluorescence remained unperturbed suggesting that photoreaction center II was not a target. Further, hypericin, stimulated photoinduced oxygen uptake in the presence of methylviologen in aerobic cells. This action was less specific than the inactivation of oxygen evolution (1 hypericin/0.5–0.7 chlorophyll a for half-maximal effect). Results point to the involvement of molecular oxygen in two ways. Type I mechanism (Henderson BW and Dougherty TJ (1992) Photochem Photobiol 55: 145–157) in which ground state oxygen reacts with excited substrate triplets appears probable for the inactivation of oxygen evolution. On the other hand, Type II mechanism in which excited oxygen singlets react with ground state substrate molecules appears probable in the stimulation of methylviologen mediated oxygen uptake.Abbreviations Chl
chlorophyll
- DAD
diaminodurene
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethyl urea
- Hepes
N-[2-hydroxyethyl]-N-[ethanesulfonic acid]
- MV
methyl viologen
- PBQ
phenyl-p-benzoquinone
- PPFD
photosynthetic photon flux density
- PS I, PS II
Photosystems I and II
- RC I, RC II
reaction centers of PS I and PS II 相似文献
9.
Stefan Falk Jerry W. Leverenz Göran Samuelsson Gunnar Öquist 《Photosynthesis research》1992,31(1):31-40
The effects of a 60 min exposure to photosynthetic photon flux densities ranging from 300 to 2200 mol m–2s–1 on the photosynthetic light response curve and on PS II heterogeneity as reflected in chlorophyll a fluorescence were investigated using the unicellular green alga Chlamydomonas reinhardtii. It was established that exposure to high light acts at three different regulatory or inhibitory levels; 1) regulation occurs from 300 to 780 mol m–2s–1 where total amount of PS II centers and the shape of the light response curve is not significantly changed, 2) a first photoinhibitory range above 780 up to 1600 mol m–2s–1 where a progressive inhibition of the quantum yield and the rate of bending (convexity) of the light response curve can be related to the loss of QB-reducing centers and 3) a second photoinhibitory range above 1600 mol m–2s–1 where the rate of light saturated photosynthesis also decreases and convexity reaches zero. This was related to a particularly large decrease in PS II centers and a large increase in spill-over in energy to PS I.Abbreviations Chl
chlorophyll
- DCMU
3,(3,4-dichlorophenyl)-1,1-dimethylurea
- FM
maximal fluorescence yield
- Fpl
intermediate fluorescence yield plateau level
- F0
non-variable fluorescence yield
- Fv
total variable fluorescence yield (FM-F0)
-
initial slope to the light response curve, used as an estimate of initial quantum yield
-
convexity (rate of bending) of the light response curve of photosynthesis
- LHC
light-harvesting complex
- Pmax
maximum rate of photosynthesis
- PQ
plastoquinone
- Q
photosynthetically active photon flux density (400–700 nm, mol m–2s–1)
- PS
photosystem
- QA and QB
primary and secondary quinone electron acceptor of PS II 相似文献
10.
We tested the two empirical models of the relationship between chlorophyll fluorescence and photosynthesis, previously published by Weis E and Berry JA 1987 (Biochim Biophys Acta 894: 198–208) and Genty B et al. 1989 (Biochim Biophys Acta 990: 87–92). These were applied to data from different species representing different states of light acclimation, to species with C3 or C4 photosynthesis, and to wild-type and a chlorophyll b-less chlorina mutant of barley. Photosynthesis measured as CO2-saturated O2 evolution and modulated fluorescence were simultaneously monitored over a range of photon flux densities. The quantum yields of O2 evolution (ØO2) were based on absorbed photons, and the fluorescence parameters for photochemical (qp) and non-photochemical (qN) quenching, as well as the ratio of variable fluorescence to maximum fluorescence during steady-state illumination (F'v/F'm), were determined. In accordance with the Weis and Berry model, most plants studied exhibited an approximately linear relationship between ØO2/qp (i.e., the yield of O2 evolution by open Photosystem II reaction centres) and qN, except for wild-type barley that showed a non-linear relationship. In contrast to the linear relationship reported by Genty et al. for qp×F'v/F'm (i.e., the quantum yield of Photosystem II electron transport) and ØCO2, we found a non-linear relationship between qp×F'v/F'm and ØO2 for all plants, except for the chlorina mutant of barley, which showed a largely linear relationship. The curvilinearity of wild-type barley deviated somewhat from that of other species tested. The non-linear part of the relationship was confined to low, limiting photon flux densities, whereas at higher light levels the relationship was linear. Photoinhibition did not change the overall shape of the relationship between qp×F'v/F'm and ØO2 except that the maximum values of the quantum yields of Photosystem II electron transport and photosynthetic O2 evolution decreased in proportion to the degree of photoinhibition. This implies that the quantum yield of Photosystem II electron transport under high light conditions may be similar for photoinhibited and non-inhibited plants. Based on our experimental results and theoretical analyses of photochemical and non-photochemical fluoresce quenching processes, we conclude that both models, although not universal for all plants, provide useful means for the prediction of photosynthesis from fluorescence parameters. However, we also discuss that conditions which alter one or more of the rate constants that determine the various fluorescence parameters, as well as differential light penetration in assays for oxygen evolution and fluorescence emission, may have direct effect on the relationships of the two models.Abbreviations F0 and F'0
fluorescence when all Photosystem II reaction centres are open in dark- and light-acclimated leaves, respectively
- Fm and F'm
fluorescence when all Photosystem II reaction centres are closed in dark and light, respectively
- Fv
variable fluorescence equal to Fm-F0
- Fs
steady state level of fluorescence in light
- F'v and F'm
variable (F'm-F'0) and maximum fluorescence under steady state light conditions
- HEPES
N-2-hydroxyethylpiperazine-N-2-ethane-sulphonic acid
- QA
the primary, stabile quinone acceptor of Photosystem II
- qN
non-photochemical quenching of fluorescence
- qp
photochemical quenching of fluorescence
- ØO2
quantum yield of CO2-saturated O2 evolution based on absorbed photons 相似文献
11.
To understand the origins of the different lifetime components of photosystem 2 (PS2) chlorophyll (Chl) fluorescence we have studied their susceptibility to potassium iridic chloride (K2IrCl6) which has been shown to bleach antenna pigments of photosynthetic bacteria (Loach et al. 1963). The addition of K2IrCl6 to PS2 particles gives rise to a preferential quenching of the variable Chl fluorescence (Fv). At concentrations lower than 20 M, this is brought about mainly by a decrease in the yield, but not in the lifetime, of the slowest component when all the PS2 reaction centres are closed (FM). The yield of the middle and fast decays are not significantly altered. This type of quenching is not seen with DNB. The iridate-induced quenching of the initial fluorescence level (F0) is due to a proportional decrease in the yield and lifetime of the three components and correlates with the observed modification in the relative quantum yield of oxygen evolution. In this concentration range a bleaching of Chl a is seen. At higher iridate levels, greater than 20 M, a proportional decrease in the lifetimes and yields of the three kinetic components is seen at FM. These changes are associated with a carotenoid bleaching. In isolated light harvesting Chl a/b complexes of PS2 (LHC2), iridate addition converts a 4 ns decay into a 200 ps emission and both types of bleaching are observed. By also measuring the rate of PS2 trap closure versus iridate concentration, we have discussed the results in terms of excitation energy transfer.Abbreviations DNB
m-dinitrobenzene
- FM
maximum Chl fluorescence
- F0
initial fluorescence
- Fv
variable fluorescence
- I
pheophytin a primary electron acceptor of PS2
- P680
chlorophyll a of photochemical centre
- PS2
photosystem 2
- QA
primary stable electron acceptor of PS2
- Chl
chlorophyll
- LHC2
light harvesting Chl a/b complex of PS2
- MES
2(N-morpholino) ethanesulfonic acid
- DCMU
3-(3-4-dichlorophenyl) 1-1 dimethylurea
- PPBQ
phenyl-p-benzo-quinone
- BBY
PS2-enriched membranes prepared as in Berthold et al. (1981)
- Q400
PS2 electron acceptor with a midpoint potential of 400 mV 相似文献
12.
Reduction of QA in the dark: Another cause of fluorescence Fo increases by high temperatures in higher plants 总被引:2,自引:0,他引:2
Increases in the chlorophyll fluorescence Fo (dark level fluorescence) during heat treatments were studied in various higher plants. Besides the dissociation of light-harvesting chlorophyll a/b protein complexes from the reaction center complex of PS II and inactivation of PS II, dark reduction of QA via plastoquinone (PQ) seemed to be related to the Fo increase at high temperatures. In potato leaves or green tobacco cultured cells, a part of the Fo increase was quenched by light, reflecting light-induced oxidation of QA
- which had been reduced in the dark at high temperatures. Appearance of the Fo increase due to QA reduction depended on the plant species, and the mechanisms for this are proposed. The reductants seemed to be already present and formed by very brief illumination of the leaves at high temperatures. A ndhB-less mutant of tobacco showed that complex I type NAD(P)H dehydrogenase is not involved in the heat-induced reduction of QA. Quite strong inhibition of the QA reduction by diphenyleneiodonium suggests that a flavoenzyme is one of the electron mediator to PQ from the reductant in the stroma. Reversibility of the heat-induced QA reduction suggests that an enzyme(s) involved is activated at high temperatures and mostly returns to an inactive form at room temperature (25 °C).This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
13.
不同温度下CO2浓度增高对坛紫菜生长和叶绿素荧光特性的影响 总被引:2,自引:0,他引:2
大气CO2浓度升高对海藻的影响已有许多的研究报道,但鲜见有关温度与CO2相互作用的研究.在4种条件下对坛紫菜进行连续通气培养:(1)15℃+ 390tmol/mol CO2,(2) 15℃+700 μmol/mol CO2,(3) 25℃+390 μmol/mol CO2,(4) 25℃+ 700 μmol/mol CO2.从而探讨这种南方海域重要栽培海藻种类的生长和叶绿素荧光特性对温度和CO2相互作用的响应.结果表明:CO2对坛紫菜的生长的影响具有温度依赖性,在低温生长条件下提高CO2浓度更有利于坛紫菜的生长.CO2对坛紫菜叶绿素a(Chlorophyll a,Chl a)和类胡萝卜素(Carotenoid,Car)的促进作用远大于温度对其产生的影响.相对于25℃的生长温度而言,15℃生长温度下的坛紫菜表现出较高的最大相对电子传递速率(rETRmax),表明坛紫菜在低温环境下有较高的光合潜力;而CO2对坛紫菜的rETRmax没有明显影响.对于在不同测定温度下的光合荧光特性而言,在10-30℃测定温度范围内,在各生长条件下的海藻的rETRmax、光能利用效率(α)和最大光化学量子产量(Fv/Fm)随温度的升高变化不明显;但在较高测定温度下(≥30℃),上述荧光参数显著下降,说明高温易引发海藻光能利用效率和光合能力的下降,这可能与光系统(PS)Ⅱ反应中心活性下调有关.同时,当测定温度大于30℃时,15℃生长条件下的坛紫菜的rETRmax、α和F/Fm值下降趋势远大于25℃生长条件下的坛紫菜的值,表明在低温生长条件下的坛紫菜对短期高温胁迫的适应能力较弱;而在高CO2浓度生长条件下的坛紫菜的rETRmax总是低于正常CO2浓度生长下的值,说明CO2浓度升高会抑制坛紫菜在短期高温条件下的光合电子传递能力. 相似文献
14.
D. A. Walker 《Planta》1981,153(3):273-278
When spinach leaves are re-illuminated, after dark periods of 90 s or less, an initial fluorescence peak is observed which rapidly gives way to a much lower terminal value. After 2 min or more in the dark, however, there is a secondary rise, at about 50–70 s, which then gives way, more slowly, to approximately the same low terminal value as before. The secondary rise is eliminated or disguised by feeding D,L-glyceraldehyde (a specific inhibitor of photosynthetic carbon assimilation) and by manose, 2-deoxyglucose and glucosamine, all of which are believed to sequester cytoplasmic orthophosphate. This secondary rise in fluorescence is discussed in relation to photosynthetic induction and the manner in which these compounds may modulate fluorescence by their effect on the availability of orthophosphate and their consequent impact on the adenylate status of the stroma.Abbreviations DCMU
3(3,4-dichlorophenyl)-1,1-dimethylurea
- CCCP
carbonylcyanidchlorophenylhydrazon 相似文献
15.
盐胁迫下AM真菌对沙枣苗木光合与叶绿素荧光特性的影响 总被引:4,自引:0,他引:4
为了揭示盐胁迫下AM真菌对苗木光合生理特性的影响,试验采用盆栽法,对接种AM真菌根内球囊霉(Glomus intraradices,GI)与未接种AM真菌(CK)的沙枣幼苗进行浓度为0、100、200、300mmol/L Na Cl处理,测定不同处理沙枣苗木叶片的净光合速率Pn、气体交换参数(蒸腾速率Tr,气孔导度Gs,胞间二氧化碳Ci)、色素含量(叶绿素a、b,叶绿素,类胡萝卜素)、叶绿素荧光参数(最大荧光效率Fv/Fm,光系统Ⅱ效率ФPS Ⅱ,光化学淬灭系数q P,非光化学淬灭系数NPQ,表观电子传递速率ETR,光反应中心PSⅡ潜在活性Fv/Fo,热耗散速率HDR)等指标。结果表明:(1)随着盐浓度的增加,GI和CK处理对沙枣幼苗叶片Pn、Tr、Gs及Ci影响的变化趋势基本一致,均显著下降,但是在同一个盐浓度下,接种GI沙枣叶片的这些指标显著高于CK处理组(P0.05),并且与不加盐处理为对照,其各参数的变化幅度显著低于CK组。(2)接种GI组和CK组的沙枣幼苗叶片随着盐浓度的增加色素含量各参数变化趋势基本一致,均降低或升高,但是与不加盐处理相比,CK处理组的变化幅度显著高于GI处理。(3)随着各处理盐浓度增加,接种GI处理的Fv/Fm、ФPS Ⅱ、q P、ETR、Fv/Fo呈先升高后下降的趋势,NPQ、HDR呈先降低后升高的趋势,相对应的CK处理组各值呈显著下降的趋势,而NPQ和HDR则呈先降低后升高以及逐渐升高的趋势,与不加盐处理为对照,GI处理组的变化幅度显著低于CK组。研究结果进一步揭示了AM真菌在盐生境中通过提高植物的光合和叶绿素荧光特性发挥重要的作用,而盐胁迫强度也是AM真菌发挥这一作用的影响因素。盐生植物与AM真菌共生用于盐碱地的改良具有一定的应用前景。 相似文献
16.
A transient in chlorophyll fluorescence, which is associated with a transient in 9-aminoacridine fluorescence and a perturbation in the rate of oxygen evolution, has been observed in intact spinach chloroplasts. The results indicate that changes in the redox state of Q are, at least partially, responsible for the transient in chlorophyll fluorescence. The size of the transient is highly dependent upon the concentration of inorganic phosphate and upon the pH of the medium. The properties of the transient are consistent with the suggestion that it reflects changes in the levels of stromal intermediates during induction.Abbreviations BES
NN-Bis(2-hydroxyethyl)2-aminoethanesulphonic acid dihydroxyacetone-P(DHAP): dihydroxyacetone phosphate glycerate-3-P (PGA): glycerate-3-phosphate
- HEPES
N-2-Hydroxyethylpiperazine-N-2-ethanesulphonic acid
- MES
2-(N-Morpholino)ethanesulphonic acid
- Pi
inorganic phosphate
- qE
quenching of chlorophyll fluorescence by the energisation of the thylakoid membrane
- qQ
quenching of chlorophyll fluorescence by oxidised Q, the electron acceptor of photosystem 2
- ribose-5-P (R5P)
ribose-5-phosphate
- Rbu-5-P
ribulose-5-phosphate 相似文献
17.
Chlorella was used to study the effects of dehydration on photosynthetic activities. The use of unicellular green algae assured that the extent of dehydration was uniform throughout the whole cell population during the course of desiccation. Changes in the activities of the cells were monitored by measurements of fluorescence induction kinetics. It was found that inhibition of most of the photosynthetic activities started at a similar level of cellular water content. They included CO2 fixation, photochemical activity of Photosystem II and electron transport through Photosystem I. The blockage of electron flow through Photosystem I was complete and the whole transition occurred within a relative short time of dehydration. On the other hand, the suppression of Photosystem II activity was incomplete and the transition took a longer time of dehydration. Upon rehydration, the inhibition of Photosystem II activity was fully reversible when samples were in the middle of the transition, but was not thereafter. The electron transport through Photosystem I was also reversible during the transition, but was only partially afterward.Abbreviations DCMU
3-(3,4-dichlorophenyl)-1,1-dimethyl urea
- Fm
maximum fluorescence yield
- F0
non-variable fluorescence level emitted when all PS II centers are open
- Fv
variable part of fluorescence
- PS
photosystem
- QA
primary quinone acceptor of Photosystem II 相似文献
18.
The regulation of photosystem II (PSII) by light-, CO2-, and O2-dependent changes in the capacity for carbon metabolism was studied. Estimates of the rate of electron transport through PSII were made from gas-exchange data and from measurements of chlorophyll fluorescence. At subsaturating photon-flux density (PFD), the rate of electron transport was independent of O2 and CO2. Feedback on electron transport was observed under two conditions. At saturating PFD and low partial pressure of CO2, p(CO2), the rate of electron transport increased with p(CO2). However, at high p(CO2), switching from normal to low p(O2) did not affect the net rate of photosynthetic CO2 assimilation but the rate of electron-transport decreased by an amount related to the change in the rate of photorespiration. We interpret these effects as 1) regulation of ribulose-1,5-bisphosphatecarboxylase (RuBPCase, EC 4.1.1.39) activity to match the rate of electron transport at limiting PFD, 2) regulation of electron-transport rate to match the rate of RuBPCase at low p(CO2), and 3) regulation of the electron-transport rate to match the capacity for starch and sucrose synthesis at high p(CO2) and PFD. These studies provide evidence that PSII is regulated so that the capacity for electron transport is matched to the capacity for other processes required by photosynthesis, such as ribulose-bisphosphate carboxylation and starch and sucrose synthesis. We show that at least two mechanisms contribute to the regulation of PSII activity and that the relative engagement of these mechanisms varies with time following a step change in the capacity for ribulose-bisphosphate carboxylation and starch and sucrose synthesis. Finally, we take advantage of the relatively slow activation of deactivated RuBPCase in vivo to show that the activation level of this enzyme can limit the rate of electron transport as evidenced by increased feedback on PSII following a step change in p(CO2). As RuBPCase as activated, the feedback on PSII declined.Abbreviations and symbols JC
electron-transport rate calculated from CO2-assimilation measurements
- JF
electron-transport rate calculated from fluorescence parameters
- PFD
photon-flux density
- qE
energy-dependent quenching
- PSII
photosystem II
- qQ
Q-dependent quenching
- QY
quantum yield
- RuBPCase
ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39)
C.I.W. publication No. 1015 相似文献
19.
Computer-controlled pulse modulation system for analysis of photoacoustic signals in the time domain
A newly developed photoacoustic system for measurement of photosynthetic reactions in intact leaves is described. The system is based on pulsed light-emitting diodes, the pulse program and pulse response analysis being computer controlled. Separation of various components in the overall photoacoustic signal is achieved by curve fitting analysis of the responses following individual measuring light pulses in the millisecond time domain. This procedure is in distinction to the conventionally used analysis in the frequency domain, with the advantage that various signal components are obtained by on-line deconvolution, yielding simultaneous recordings of photothermal (complement of energy storage) and photobaric (evolution and uptake) signals. The basic components of the new system are described by block diagrams and the principal steps for deconvolution of the overall photoacoustic response are outlined. An example of application with simultaneous recording of chlorophyll fluorescence is given. It is apparent that the photobaric uptake component represents a significant part of the overall signal, particularly during induction of photosynthesis after dark-adaptation. This component probably contains not only O2-uptake but uptake of CO2 as well.Abbreviations PA
photoacoustic
- LED
light-emitting-diode
- RAM
random access memory 相似文献
20.
低温胁迫下丛枝菌根真菌对玉米光合特性的影响 总被引:8,自引:2,他引:8
利用盆栽试验,在15 ℃和5 ℃低温胁迫下研究了丛枝菌根(AM)真菌对玉米生长、叶绿素含量、叶绿素荧光和光合作用的影响.结果表明:低温胁迫抑制了AM真菌的侵染;接种AM真菌的玉米地上部和地下部干物质量、相对叶绿素含量高于不接种植株.与非菌根玉米相比,菌根玉米具有较高的最大荧光(Fm)、可变荧光(Fv)、最大光化学效率(Fv/Fm)和潜在光化学效率(Fv/Fo)及较低的初始荧光(Fo),并且在5 ℃处理中差异显著.接种AM真菌使玉米叶片的净光合速率(Pn)和蒸腾速率(Tr)显著增强;低温胁迫下,菌根植株的气孔导度(Gs)显著高于非菌根植株;而胞间CO2浓度(Ci)显著低于非菌根植株.表明AM真菌可通过提高叶绿素含量及改善叶片叶绿素荧光和光合作用来减轻低温胁迫对玉米植株造成的伤害,提高玉米耐受低温的能力,进而提高玉米的生物量,促进玉米生长. 相似文献