首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We tested the effects of solar radiation, and UV-B in particular, on the growth of Antarctic terrestrial fungi. The growth responses to solar radiation of five fungi, Geomyces pannorum, Phoma herbarum, Pythium sp., Verticillium sp., and Mortierella parvispora, each isolated from Antarctic terrestrial habitats, were examined on an agar medium in the natural Antarctic environment. A 3-h exposure to solar radiation of >287 nm reduced the hyphal extension rates of all species relative to controls kept in the dark. Pythium sp. cultures exposed to solar radiation for 1.5 h on five consecutive days were most sensitive to radiation of >287 nm, but radiation of >313 nm also inhibited growth to a lesser extent. Radiation of >400 nm had no effect on hyphal growth relative to controls kept in the dark. Short-wave solar UV-B radiation of between 287 and 305 nm inhibited the growth of Pythium sp. hyphae on and below the surface of the agar medium after 24 h, but radiation of ≥345 nm only reduced the growth of surface hyphae. Similar detrimental effects of UV-B on surface and, to a lesser extent, submerged hyphae of all five fungi were shown in the laboratory by using artificial UV-B from fluorescent lamps. A comparison of growth responses to solar radiation and temperature showed that the species that were most resistant to UV radiation grew fastest at higher temperatures. These data suggest that solar UV-B reduces the growth of fungi on the soil surface in the Antarctic terrestrial environment.  相似文献   

2.
Interactions of Pythium oligandrum and four plant‐pathogenic Pythium spp. (P. ultimum, P. vexans, P. graminicola and P. aphanidermatum,) were studied in vitro by (i) video microscopy of hyphal interactions on water agar films, (ii) counting of host and mycoparasite propagules in different regions of opposing colonies on sunflower‐seed extract agar films and (Hi) ability of P. oligandrum to overgrow plates of potato‐dextrose agar previously colonized by Pythium spp. Pythium oligandrum typically coiled round the hyphae of Pythium hosts and penetrated the host hyphae after approximately 50 min from the hyphal coils, causing disruption of host hyphal tips up to 1.2 mm ahead of contact points. The relative growth rates of mycoparasite and host hyphae, timing of penetration and distance (sub‐apical) at which penetration led to host tip disruption were used to assess the potential of mycoparasitism by P. oligandrum to prevent the growth of Pythium hosts. P. aphanidermatum was unique among the ‘host’ Pythium spp. in being largely unaffected by P. oligandrum and in antagonizing the mycoparasite by coiling and penetrating the mycoparasite hyphae. Other host Pythium spp. apparently differed in susceptibility, the most susceptible being P. vexans and P. ultimum, whereas P. graminicola was more resistant. The results are discussed in relation to the role of P. oligandrum as a biocontrol agent, especially for limiting the ability of other Pythium spp. to increase their propagule populations in crop residues.  相似文献   

3.
Summary Experiments were performed to determine the effects of UV-B (ultraviolet, 280–320 nm) radiation on motility and growth of phytoplankton from lakes and ponds in South Georgia. After 4 h of solar radiation and 4h artificial radiation (UV-BBE 11.6 kJ m-2 day-1, UV-B lamps) the swimming velocity of Cryptomonas sp. decreased. The growth rate of Botryococcus, Lyngbya sp. and Stauraslrum sp. did not show any significant variations between the different light conditions. The UV-B component was reduced by filtering solar radiation through glass bottles und cellulose acetate. Cloudy days had only 30% of the radiation of clear days in both the PAR (photosynthetic active radiation) and UV-B regions. The ponds contained large amounts of humic substances, which are responsible for the absorbance in the UV region.  相似文献   

4.
The terrestrial ecosystem of Antarctica are among the most extreme on earth, challenging the communities and making their existence difficult by rapidly increasing annual summer influx of solar ultraviolet radiations (UV-R), extremely cold conditions and lesser availability of nutrients. Spring time ozone depletion is due to release of chlorofluorocarbons in the earth atmosphere and is a serious cause of concern among environmentalists. Antarctic continent is mostly dominated by cryptogamic plants with limited distribution in different parts of the icy continent however; their distribution is mostly confined to Sub-Antarctic region. By the virtue of light requirement, cryptogams are exposed to extreme seasonal fluctuation in photosynthetically active radiation (PAR), and ultraviolet (UV) radiation which are closely associated with photosynthetic pigments in photoautotrophic organisms. Antarctic cryptogams cope up the stress imposed by UV radiation by the development of efficient systems for repairing damage by synthesis of screening compounds such as UV-B absorbing pigments and anthocyanin compounds. A major part of the UV absorbing compounds are appeared to be constitutive in lichens which are usnic acid, perlatolic acid and fumarphotocetraric acid which is particularly induced by UV-B. Secondary metabolites such as phenolics, atranorin, parietin and melanin also enhance the plant defense, by different molecular targets in specific solar irradiance and potential for increased antioxidative protection to UV induced vulnerability.  相似文献   

5.
The influence of near-ambient and reduced solar UV-B radiation on a peatland microfungal community was assessed by exposing experimental plots to UV-selective filtration. Replicate plots were covered with special plastic films to effect treatments of near-ambient and attenuated solar UV-B. The microfungal community from the top 1 cm of Sphagnum capitulum in a Tierra del Fuego peatland was censused throughout three growing seasons, between 1999 and 2002. Sphagnum capitula under near-ambient UV-B were more compressed and held more water than capitula under reduced UV-B. This water had a greater conductivity and was more acidic under near-ambient UV-B, as would be expected with increased leaching from the Sphagnum leaves. Nine regularly occurring hyphal fungi from the peatland were identified, at least to genus. Over three field seasons, no treatment effect on total fungal colony abundance was recorded, but individual species abundance was increased (Mortierella alpina), decreased (Penicillium frequentans), or was unaffected (P. thomii, Aureobasidium) by near-ambient UV-B. Species richness was also slightly lower under near-ambient UV-B. These treatment differences were smaller than seasonal or inter-annual fluctuations in abundance and species richness. In a growth chamber experiment, lamp UV-B treatments indicated that realistic fluxes of UV-B can inhibit fungal growth in some species. In addition to this direct UV-B effect, we suggest that changes in the peatland fungal community under near-ambient solar UV-B may also result from increased nutrient and moisture availability in the Sphagnum capitulum. The subtle nature of the responses of peatland fungi to solar UV-B suggests that most fungal species we encountered are well adapted to current solar UV-B fluxes in Tierra del Fuego.  相似文献   

6.
The production of antifungal volatiles by Bacillus subtilis   总被引:2,自引:3,他引:2  
A strain of Bacillus subtilis which produces an antibiotic metabolite was also found to produce a volatile compound(s) which was antifungal to Rhizoctonia solani and Pythium ultimum.
Growth of the fungi was severely impaired in the presence of the volatiles and physiological abnormalities of the hyphae were observed, including hyphal distortion and vacuolation. A range of media were tested for volatile production and potato dextrose agar (PDA) was found to be the most active. Temperature had a considerable effect on antifungal volatile activity with the greatest inhibition occurring at 30°C. Addition of iron (III) chloride to Sabouraud's glucose agar (SGA) also enhanced the antifungal effect. The volatiles were found to be water soluble and remained active when trapped in SGA.  相似文献   

7.
We examined the effect of ultraviolet-B radiation (UV-B, 290–320 nm) on the growth rate of the intertidal marine alga Ulva expansa (Setch.) S. & G. (Chlorophyta). Segments of thallus collected from a natural population were grown in outdoor seawater tanks. Combinations of UV-B-opaque screens, UV-B-transparent screens, and UV-B lamps were used to investigate the effects of solar UV-B and solar plus supplemental UV-B on the growth of these segments. Growth was measured by changes in segment surface area, damp weight, and dry weight. Growth rates of segments were inhibited under both solar UV-B and solar plus supplemental UV-B treatments. Growth rates were also inhibited by high levels of photosynthetically active radiation, independent of UV-B fluence. These results indicate that increases in UV-B resulting from further ozone depletion will have a negative impact on the growth of this alga.  相似文献   

8.
《Experimental mycology》1989,13(4):337-347
We devised a procedure to propagate selectively the vegetative and asexual-reproductive states ofHelminthosporium carbonum so that we could characterize morphological and subcellular events associated with the onset of conidiation. Solidified agar media were uniformly inoculated with an overlay of conidia suspended in molten agar. After the overlay solidified, it was covered with a sheet of Miracloth. When incubated in the dark, cultures produced abundant aerial hyphae that grew through the Miracloth layer and conidiation was suppressed for 48 to 50 h. Hyphae were easily harvested from the surface of the Miracloth with a spatula. When cultures were placed in the light after 38 h of growth in the dark, differentiation was detected in 90% of the hyphal tips within 8 to 10 h. The initial response of the hyphal tips, comprising early stages in conidiophore development, was rapid and highly synchronized. The behavior of nuclei during conidiogenous cell development and the initiation of conidia was similar to that reported for other fungi that form blastic conidia. One-dimensional gel electrophoresis ofin vitro translation products confirmed differences in poly(A) RNA populations from dark-grown and light-induced cultures.  相似文献   

9.
Hyphal interactions between two antagonistic binucleate Rhizoctonia isolates (BNR) and the seedling dampingoff pathogen, Pythium ultimum var. sporangiiferum, were observed by both light-and scanning electron microscopy (SEM), on agar media and on capsicum seeds in sterilized potting mix. Both BNR isolates displayed similar mycoparasitic behaviour towards P. u. sporangiiferum on agar media. This included parallel growth along the pathogen hyphae, formation of hook-shaped hyphal tips and coils on the surface of P. u. sporangiiferum hyphae and penetration and growth within pathogen structures. Disruption of cytoplasmic streaming and disorganisation of pathogen cytoplasm were also observed. SEM observations revealed alterations in P. u. sporangiiferum cell wall structure and the presence of penetration holes apparently due to digestion by the BNR. P. u. sporangiiferum was also parasitised by both BNR isolates on capsicum seed coats, with parallel growth, hook formation and coils commonly observed. The above observations indicated that mycoparasitism is a possible mode of action of BNR against P. u. sporangiiferum.  相似文献   

10.
In this review all recent field studies on the effects of UV-B radiation on bryophytes are discussed. In most of the studies fluorescent UV-B tubes are used to expose the vegetation to enhanced levels of UV-B radiation to simulate stratospheric ozone depletion. Other studies use screens to filter the UV-B part of the solar spectrum, thereby comparing ambient levels of UV-B with reduced UV-B levels, or analyse effects of natural variations in UV-B arising from stratospheric ozone depletion. Nearly all studies show that mosses are well adapted to ambient levels of UV-B radiation since UV-B hardly affects growth parameters. In contrast with outdoor studies on higher plants, soluble UV-B absorbing compounds in bryophytes are typically not induced by enhanced levels of UV-B radiation. A few studies have demonstrated that UV-B radiation can influence plant morphology, photosynthetic capacity, photosynthetic pigments or levels of DNA damage. However, there is only a limited number of outdoor studies presented in the literature. More additional, especially long-term, experiments are needed to provide better data for statistical meta-analyses. A mini UV-B supplementation system is described, especially designed to study effects of UV-B radiation at remote field locations under harsh conditions, and which is therefore suited to perform long-term studies in the Arctic or Antarctic. The first results are presented from a long-term UV-B supplementation experiment at Signy Island in the Maritime Antarctic.  相似文献   

11.
The effect of ultraviolet-B (UV-B) radiation on Antarctic phytoplankton has become an attractive ecological issue as a result of annual springtime ozone depletion. The effects of UV-B radiation on the growth and antioxidant enzymes were investigated using Antarctic sea ice microalgae Chlamydomonas sp. ICE-L as the material in this study. The results demonstrated that UV-B radiation could notably inhibit the growth, especially at high UV-B radiation intensity (70 μW cm−2). Malondialdehyde and O2 ·− content in ICE-L increased rapidly in early days (1–3 days) exposed to UV-B radiation enhancement, then decreased rapidly. In the stress of UV-B radiation enhancement, the superoxide dismutase, peroxidase and Catalase activities of 1–4 days in ICE-L were obviously higher than those in the control, and their activities became higher at high UV-B radiation intensity (70 μW cm−2). These enzymes activity of 7 days would kept stable at low UV-B radiation intensity (35 μW cm−2), but kept high level at high UV-B radiation intensity (70 μW cm−2). However, the ascorbate peroxidase activity in ICE-L kept stable under the stress of UV-B radiation enhancement. The above experimental results indicated that the antioxidant enzyme system played an important role in the adaptation of Antarctic ice microalgae under the UV-B radiation change of Antarctic ecosystems.  相似文献   

12.
As a result of stratospheric ozone depletion, more solar ultraviolet-B radiation (UV-B, 280–315 nm) is reaching the Earth's surface. Enhanced levels of UV-B may, in turn, alter ecosystem processes such as decomposition. Solar UV-B radiation could affect decomposition both indirectly, by changes in the chemical composition of leaves during growth, or directly by photochemical breakdown of litter and through changes in decomposer communities exposed to sunlight. In this experiment, we studied indirect and direct effects of solar UV-B radiation on decomposition of barley (Hordeum vulgare). We used barley straw and leaf litter grown under reduced UV-B (20% of ambient UV-B) or under near-ambient UV-B (90% of ambient UV-B) in Buenos Aires, Argentina, and decomposed the litter under reduced or near-ambient solar UV-B for 29 months in Tierra del Fuego, Argentina. We found that the UV-B treatment applied during growth decreased the decay rate. On the other hand, there was a marginally significant direct effect of elevated UV-B during the early stages of decomposition, suggesting increased mass loss. The effect of UV-B during growth on decomposition was likely the result of changes in plant litter chemical composition. Near-ambient UV-B received during plant growth decreased the concentrations of nitrogen, soluble carbohydrates, and N/P ratio, and increased the concentrations of phosphorus, cellulose, UV-B-absorbing compounds, and lignin/N ratio. Thus, solar UV-B radiation affects the decomposition of barley litter directly and indirectly, and indirect effects are persistent for the whole decomposition period.  相似文献   

13.
Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation.  相似文献   

14.
To date, among the zygomycete fungi that have been examined, a Spitzenk?rper has not been reported. In this paper, the cytoplasmic order of hyphal tip cells of Basidiobolus sp.,?a zygomycete genus of uncertain phylogeny, has been examined using light microscopy and transmission electron microscopy methods. With phase-contrast light optics, a phase-dark body was observed at the tips of growing hyphae of Basidiobolus sp. The hyphal apex also showed high affinity for FM4-64 labelling resulting in an intense fluorescence signal. The phase-dark inclusion exhibited independent motility within the hyphal apex and its presence and position were correlated to the rate and direction of hyphal growth. The hyphal apex of Basidiobolus sp. did not contain γ-tubulin. Ultrastructural observations revealed a dense cluster of vesicles at the hyphal apex. These results suggest that the growing hypha of Basidiobolus sp. contains a Spitzenk?rper, a character generally attributed to members of the ascomycete and basidiomycete fungi and not to zygomycete fungi.  相似文献   

15.
UV-B辐射对马尾松凋落叶分解和养分释放的影响   总被引:1,自引:0,他引:1  
由大气臭氧层减薄导致的UV-B辐射变化将直接影响到凋落物的分解。目前,有关UV-B辐射影响木本植物凋落物分解的研究还很少,在国内还没有开展。采用分解袋法开展了马尾松凋落叶在自然环境和UV-B辐射滤减两种辐射环境下的分解试验。结果表明:在UV-B辐射滤减环境下的马尾松凋落叶年分解速率比对照环境减慢了47.74%。UV-B辐射极显著(p<0.01)地加快了马尾松凋落叶的分解速率,促进了凋落叶中碳、磷、钾的释放和木质素的降解,对氮的释放无明显影响。研究结果意味着UV-B辐射将加快马尾松林的营养循环速度,降低马尾松林凋落物层的碳储量。  相似文献   

16.
Methanol extract, obtained from Tagetes patula plant, was assayed against three phytopathogenic fungi: Botrytis cinerea, Fusarium moniliforme and Pythium ultimum. The antifungal activity was tested both in the dark and in the light, using two different lighting systems. The data showed that the extract proved to have a dose-dependent activity on all the fungi with a marked difference between treatments in the light than in the dark. Good growth inhibition was observed in fungi only when these were treated with the highest dose of the extract and irradiated, whereas the same dose gave only a modest inhibition when the experiment was conducted in the dark. At 5 and 10 microg/ml in the dark, growth increased. The results indicated that the presence of a luminous source enhances the antifungal activity, with small differences between UV-A and solar spectrum light. SEM and TEM observations on Pythium ultimum revealed that the Tagetes patula extract induced alterations on cell fungal membranes with a photoactivation mechanism possibly involving the production of free radicals and leading to a premature aging of the mycelium.  相似文献   

17.
Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines (Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280–320 nm) can affect plant–disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280–400 nm), spectral UV-B and UV-A (320–400 nm), the biological effective UVBE, as well as the PAR (400–700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.  相似文献   

18.
Abstract The effects of artificial and solar UV-B radiation on the gravitactic (formerly called geotactic) orientation of the freshwater dinoflagellate Peridinium gatunense were measured under artificial UV-B radiation and in a temperature-controlled growth chamber under solar radiation in Portugal. Circular histograms of gravitaxis show the impairement of orientation after UV irradiation. The degree of orientation, quantified using the Rayleigh test and top quadrant summation, decreased as the exposure time to the radiation prolonged. The effects of artifical UV-B radiation on orientation are stronger than those of solar radiation, probably because the radiation source emits higher fluence rates below 300 nm than found in solar radiation. After UV radiation, the gravitactic orientation under artificially increased acceleration at 2 g was drastically affected.  相似文献   

19.
Solar UV-B (280–315 nm) induces the synthesis of phycoerythrin (PE) in a Nostoc species isolated from the Andean high altitude lake Yanaqocha. The outdoor experiments were carried out in a small lake in Erlangen, Germany, using natural conditions. After 2- and 4-h exposure to solar radiation, the immunodetection signal using monoclonal antibodies anti-PE was lower in control cells (exposed to PAR + UV-A) than in cells exposed to total solar radiation (PAR + UV-A + UV-B). Cells exposed at depths in which no UV-B penetrated showed no differences from control cells regarding PE content. When exposed to monochromatic radiation of 280, 300 or 360 nm, purified PE was photodegraded in a wavelength dependent manner resulting in different polypeptide fragments carrying chromophore groups. Immunodetection revealed active synthesis of PE in parallel to photodamage by solar UV-B indicating that PE is important for photoadaptation to shorter wavelengths in the cyanobacterium Nostoc sp.  相似文献   

20.
Marine Bacterial Isolates Display Diverse Responses to UV-B Radiation   总被引:13,自引:8,他引:5       下载免费PDF全文
The molecular and biological consequences of UV-B radiation were investigated by studying five species of marine bacteria and one enteric bacterium. Laboratory cultures were exposed to an artificial UV-B source and subjected to various post-UV irradiation treatments. Significant differences in survival subsequent to UV-B radiation were observed among the isolates, as measured by culturable counts. UV-B-induced DNA photodamage was investigated by using a highly specific radioimmunoassay to measure cyclobutane pyrimidine dimers (CPDs). The CPDs determined following UV-B exposure were comparable for all of the organisms except Sphingomonas sp. strain RB2256, a facultatively oligotrophic ultramicrobacterium. This organism exhibited little DNA damage and a high level of UV-B resistance. Physiological conditioning by growth phase and starvation did not change the UV-B sensitivity of marine bacteria. The rates of photoreactivation following exposure to UV-B were investigated by using different light sources (UV-A and cool white light). The rates of photoreactivation were greatest during UV-A exposure, although diverse responses were observed. The differences in sensitivity to UV-B radiation between strains were reduced after photoreactivation. The survival and CPD data obtained for Vibrio natriegens when we used two UV-B exposure periods interrupted by a repair period (photoreactivation plus dark repair) suggested that photoadaptation could occur. Our results revealed that there are wide variations in marine bacteria in their responses to UV radiation and subsequent repair strategies, suggesting that UV-B radiation may affect the microbial community structure in surface water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号