首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: Integrase defective lentiviral vectors (IDLV) represent a promising delivery system for immunization purposes. Human dendritic cells (DC) are the main cell types mediating the immune response and are readily transduced by IDLV, allowing effective triggering of in vitro expansion of antigen-specific primed CD8+ T cells. However, IDLV expression in transduced DC is at lower levels than those of the integrase (IN) competent counterpart, thus requiring further improvement of IDLV for future use in the clinic. RESULTS: In this paper we show that the addition of simian immunodeficiency (SIV)-Vpx protein in the vector preparation greatly improves transduction of human and simian DC, but not of murine DC, thus increasing the ability of transduced DC to act as functional antigen presenting cells, in the absence of integrated vector sequences. Importantly, the presence of SIV-Vpx allows for using lower dose of input IDLV during in vitro transduction, thus further improving the IDLV safety profile. CONCLUSIONS: These results have significant implications for the development of IDLV-based vaccines.  相似文献   

2.
Creating designed zinc-finger nucleases with minimal cytotoxicity   总被引:1,自引:0,他引:1  
Zinc-finger nucleases (ZFNs) have emerged as powerful tools for delivering a targeted genomic double-strand break (DSB) to either stimulate local homologous recombination with investigator-provided donor DNA or induce gene mutations at the site of cleavage in the absence of a donor by nonhomologous end joining both in plant cells and in mammalian cells, including human cells. ZFNs are formed by fusing zinc-finger proteins to the nonspecific cleavage domain of the FokI restriction enzyme. ZFN-mediated gene targeting yields high gene modification efficiencies (> 10%) in a variety of cells and cell types by delivering a recombinogenic DSB to the targeted chromosomal locus, using two designed ZFNs. The mechanism of DSB by ZFNs requires (1) two ZFN monomers to bind to their adjacent cognate sites on DNA and (2) the FokI nuclease domains to dimerize to form the active catalytic center for the induction of the DSB. In the case of ZFNs fused to wild-type FokI cleavage domains, homodimers may also form; this could limit the efficacy and safety of ZFNs by inducing off-target cleavage. In this article, we report further refinements to obligate heterodimer variants of the FokI cleavage domain for the creation of custom ZFNs with minimal cellular toxicity. The efficacy and efficiency of the reengineered obligate heterodimer variants of the FokI cleavage domain were tested using the green fluorescent protein gene targeting reporter system. The three-finger and four-finger zinc-finger protein fusions to the REL_DKK pair among the newly generated FokI nuclease domain variants appear to eliminate or greatly reduce the toxicity of designer ZFNs to human cells.  相似文献   

3.
Single-stranded oligonucleotides (ssODNs) and zinc-finger nucleases (ZFNs) are two approaches that are being pursued to achieve sequence specific genome modification. ZFNs induce high rates of homologous recombination (HR) between the target sequence and a given donor by introducing site-specific genomic double-strand breaks (DSBs). The mode of action that is used by ssODNs remains largely unknown, but may involve genomic integration of the ssODNs. In this work, cellular responses following ssODN and ZFN mediated correction of a genomic reporter gene have been investigated in human cells. Comparison of the cell cycle distribution of corrected cells following ssODN or ZFN exposure, established that ssODN corrected cells were arrested in the late S and G2/M cell cycle phases, while ZFN corrected cells displayed normal cell cycle profiles. We demonstrate that after ssODN mediated gene correction, phosphorylation of the damage sensor protein H2AX could be observed in 5.8% and 29% of the corrected cells, using a single copy and a multi copy reporter, respectively. When using the ZFN strategy in a single copy reporter only 1.5% of the corrected cells were positive for γ-H2AX staining. By direct detection of genomic DSBs we establish that the observed cell cycle arrest following ssODN mediated gene correction could be associated with the presence of unrepaired genomic DSBs. Lastly, we establish that although a mutant cellular mismatch repair (MMR) system as expected enhanced ssODN mediated gene correction, the capacity of the ssODN corrected cells to proliferate was not influenced by the MMR system. In conclusion gene correction by means of the ssODN strategy leads to activation of DNA damage signalling and cell cycle arrest due to formation of unrepaired genomic DSBs in a high proportion of the corrected cells. On the contrary, cells corrected using ZFNs displayed normal cell cycle distribution and lower rates of DNA damage.  相似文献   

4.
Engineered zinc finger nucleases (ZFNs) induce DNA double-strand breaks at specific recognition sequences and can promote efficient introduction of desired insertions, deletions or substitutions at or near the cut site via homology-directed repair (HDR) with a double- and/or single-stranded donor DNA template. However, mutagenic events caused by error-prone non-homologous end-joining (NHEJ)-mediated repair are introduced with equal or higher frequency at the nuclease cleavage site. Furthermore, unintended mutations can also result from NHEJ-mediated repair of off-target nuclease cleavage sites. Here, we describe a simple and general method for converting engineered ZFNs into zinc finger nickases (ZFNickases) by inactivating the catalytic activity of one monomer in a ZFN dimer. ZFNickases show robust strand-specific nicking activity in vitro. In addition, we demonstrate that ZFNickases can stimulate HDR at their nicking site in human cells, albeit at a lower frequency than by the ZFNs from which they were derived. Finally, we find that ZFNickases appear to induce greatly reduced levels of mutagenic NHEJ at their target nicking site. ZFNickases thus provide a promising means for inducing HDR-mediated gene modifications while reducing unwanted mutagenesis caused by error-prone NHEJ.  相似文献   

5.
Targeted transgene integration in plants remains a significant technical challenge for both basic and applied research. Here it is reported that designed zinc finger nucleases (ZFNs) can drive site-directed DNA integration into transgenic and native gene loci. A dimer of designed 4-finger ZFNs enabled intra-chromosomal reconstitution of a disabled gfp reporter gene and site-specific transgene integration into chromosomal reporter loci following co-transformation of tobacco cell cultures with a donor construct comprised of sequences necessary to complement a non-functional pat herbicide resistance gene. In addition, a yeast-based assay was used to identify ZFNs capable of cleaving a native endochitinase gene. Agrobacterium delivery of a Ti plasmid harboring both the ZFNs and a donor DNA construct comprising a pat herbicide resistance gene cassette flanked by short stretches of homology to the endochitinase locus yielded up to 10% targeted, homology-directed transgene integration precisely into the ZFN cleavage site. Given that ZFNs can be designed to recognize a wide range of target sequences, these data point toward a novel approach for targeted gene addition, replacement and trait stacking in plants.  相似文献   

6.
Gaj T  Guo J  Kato Y  Sirk SJ  Barbas CF 《Nature methods》2012,9(8):805-807
Zinc-finger nucleases (ZFNs) are versatile reagents that have redefined genome engineering. Realizing the full potential of this technology requires the development of safe and effective methods for delivering ZFNs into cells. We demonstrate the intrinsic cell-penetrating capabilities of the standard ZFN architecture and show that direct delivery of ZFNs as proteins leads to efficient endogenous gene disruption in various mammalian cell types with minimal off-target effects.  相似文献   

7.
Although targeted gene addition could be stimulated strikingly by a DNA double strand break (DSB) created by either zinc finger nucleases (ZFNs) or TALE nucleases (TALENs), the DSBs are really mutagenic and toxic to human cells. As a compromised solution, DNA single-strand break (SSB) or nick has been reported to mediate high efficient gene addition but with marked reduction of random mutagenesis. We previously demonstrated effective targeted gene addition at the human multicopy ribosomal DNA (rDNA) locus, a genomic safe harbor for the transgene with therapeutic potential. To improve the transgene integration efficiency by using TALENs while lowering the cytotoxicity of DSBs, we created both TALENs and TALE nickases (TALENickases) targeting this multicopy locus. A targeting vector which could integrate a GFP cassette at the rDNA locus was constructed and co-transfected with TALENs or TALENickases. Although the fraction of GFP positive cells using TALENs was greater than that using TALENickases during the first few days after transfection, it reduced to a level less than that using TALENickases after continuous culture. Our findings showed that the TALENickases were more effective than their TALEN counterparts at the multi-copy rDNA locus, though earlier studies using ZFNs and ZFNickases targeting the single-copy loci showed the reverse. Besides, TALENickases mediated the targeted integration of a 5.4 kb fragment at a frequency of up to 0.62% in HT1080 cells after drug selection, suggesting their potential application in targeted gene modification not being limited at the rDNA locus.  相似文献   

8.
The unicellular green alga Chlamydomonas reinhardtii is a versatile model for fundamental and biotechnological research. A wide range of tools for genetic manipulation have been developed for this alga, but specific modification of nuclear genes is still not routinely possible. Here, we present a nuclear gene targeting strategy for Chlamydomonas that is based on the application of zinc‐finger nucleases (ZFNs). Our approach includes (i) design of gene‐specific ZFNs using available online tools, (ii) evaluation of the designed ZFNs in a Chlamydomonas in situ model system, (iii) optimization of ZFN activity by modification of the nuclease domain, and (iv) application of the most suitable enzymes for mutagenesis of an endogenous gene. Initially, we designed a set of ZFNs to target the COP3 gene that encodes the light‐activated ion channel channelrhodopsin‐1. To evaluate the designed ZFNs, we constructed a model strain by inserting a non‐functional aminoglycoside 3′‐phosphotransferase VIII (aphVIII) selection marker interspaced with a short COP3 target sequence into the nuclear genome. Upon co‐transformation of this recipient strain with the engineered ZFNs and an aphVIII DNA template, we were able to restore marker activity and select paromomycin‐resistant (Pm‐R) clones with expressing nucleases. Of these Pm‐R clones, 1% also contained a modified COP3 locus. In cases where cells were co‐transformed with a modified COP3 template, the COP3 locus was specifically modified by homologous recombination between COP3 and the supplied template DNA. We anticipate that this ZFN technology will be useful for studying the functions of individual genes in Chlamydomonas.  相似文献   

9.
Zinc-finger nucleases (ZFNs) are designer nucleases capable of cleaving a prespecified target DNA within complex genomes. ZFNs consist of a non-specific endonuclease domain fused to an engineered DNA-binding domain that tethers the nuclease activity to the chosen chromosomal site. The endonuclease-induced DNA double strand break triggers a cellular DNA damage response, resulting in double strand break repair by either accurate homologous recombination (HR) or error-prone non-homologous end-joining (NHEJ). Thus, ZFNs are powerful tools for targeted genome engineering in a variety of mammalian cell types, including embryonic (ESCs) and induced pluripotent stem cells (iPSCs). As a paradigm for genome editing in pluripotent stem cells, we describe the use of ZFNs in murine ESCs for generating knockout alleles by NHEJ without selection or by HR employing different selection schemes.  相似文献   

10.
Targeted gene addition to mammalian genomes is central to biotechnology, basic research and gene therapy. For example, gene targeting to the ROSA26 locus by homologous recombination in embryonic stem cells is commonly used for mouse transgenesis to achieve ubiquitous and persistent transgene expression. However, conventional methods are not readily adaptable to gene targeting in other cell types. The emerging zinc finger nuclease (ZFN) technology facilitates gene targeting in diverse species and cell types, but an optimal strategy for engineering highly active ZFNs is still unclear. We used a modular assembly approach to build ZFNs that target the ROSA26 locus. ZFN activity was dependent on the number of modules in each zinc finger array. The ZFNs were active in a variety of cell types in a time- and dose-dependent manner. The ZFNs directed gene addition to the ROSA26 locus, which enhanced the level of sustained gene expression, the uniformity of gene expression within clonal cell populations and the reproducibility of gene expression between clones. These ZFNs are a promising resource for cell engineering, mouse transgenesis and pre-clinical gene therapy studies. Furthermore, this characterization of the modular assembly method provides general insights into the implementation of the ZFN technology.  相似文献   

11.
Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.  相似文献   

12.
Engineered zinc-finger nucleases (ZFNs) are promising tools for genome manipulation, and determining off-target cleavage sites of these enzymes is of great interest. We developed an in vitro selection method that interrogates 10(11) DNA sequences for cleavage by active, dimeric ZFNs. The method revealed hundreds of thousands of DNA sequences, some present in the human genome, that can be cleaved in vitro by two ZFNs: CCR5-224 and VF2468, which target the endogenous human CCR5 and VEGFA genes, respectively. Analysis of identified sites in one cultured human cell line revealed CCR5-224-induced changes at nine off-target loci, though this remains to be tested in other relevant cell types. Similarly, we observed 31 off-target sites cleaved by VF2468 in cultured human cells. Our findings establish an energy compensation model of ZFN specificity in which excess binding energy contributes to off-target ZFN cleavage and suggest strategies for the improvement of future ZFN design.  相似文献   

13.
Custom-designed zinc finger nucleases (ZFNs), proteins designed to cut at specific DNA sequences, are becoming powerful tools in gene targeting—the process of replacing a gene within a genome by homologous recombination (HR). ZFNs that combine the non-specific cleavage domain (N) of FokI endonuclease with zinc finger proteins (ZFPs) offer a general way to deliver a site-specific double-strand break (DSB) to the genome. The development of ZFN-mediated gene targeting provides molecular biologists with the ability to site-specifically and permanently modify plant and mammalian genomes including the human genome via homology-directed repair of a targeted genomic DSB. The creation of designer ZFNs that cleave DNA at a pre-determined site depends on the reliable creation of ZFPs that can specifically recognize the chosen target site within a genome. The (Cys2His2) ZFPs offer the best framework for developing custom ZFN molecules with new sequence-specificities. Here, we explore the different approaches for generating the desired custom ZFNs with high sequence-specificity and affinity. We also discuss the potential of ZFN-mediated gene targeting for ‘directed mutagenesis’ and targeted ‘gene editing’ of the plant and mammalian genome as well as the potential of ZFN-based strategies as a form of gene therapy for human therapeutics in the future.  相似文献   

14.
The tumor suppressor gene p53 is mutated or deleted in over 50% of human tumors. As functional p53 plays a pivotal role in protecting against cancer development, several strategies for restoring wild-type (wt) p53 function have been investigated. In this study, we applied an approach using gene repair with zinc finger nucleases (ZFNs). We adapted a commercially-available yeast one-hybrid (Y1H) selection kit to allow rapid building and optimization of 4-finger constructs from randomized PCR libraries. We thus generated novel functional zinc finger nucleases against two DNA sites in the human p53 gene, near cancer mutation 'hotspots'. The ZFNs were first validated using in vitro cleavage assays and in vivo episomal gene repair assays in HEK293T cells. Subsequently, the ZFNs were used to restore wt-p53 status in the SF268 human cancer cell line, via ZFN-induced homologous recombination. The frequency of gene repair and mutation by non-homologous end-joining was then ascertained in several cancer cell lines, using a deep sequencing strategy. Our Y1H system facilitates the generation and optimisation of novel, sequence-specific four- to six-finger peptides, and the p53-specific ZFN described here can be used to mutate or repair p53 in genomic loci.  相似文献   

15.
16.
17.
Induced pluripotent stem cells derived from normal somatic cells could be utilized to study tumorigenesis through overexpression of specific oncogenes, downregulation of tumor suppressors and dysregulation of other factors thought to promote tumorigenesis. Therefore, effective approaches that provide direct modifications of induced pluripotent stem cell genome are extremely needed. Emerging strategies are expected to provide the ability to more effectively introduce diverse genetic alterations, from as small as single-nucleotide modifications to whole gene amplification or deletion, all with a high degree of target specificity. To date, several techniques have been applied in stem cell studies to directly edit cell genome (ZFNs, TALENs or CRISPR/Cas9). In this review, we summarize specific gene delivery strategies that were applied to stem cell studies together with genome editing techniques, which enable a direct modification of endogenous DNA sequences in the context of cancer studies.  相似文献   

18.
Genome editing driven by zinc-finger nucleases (ZFNs) yields high gene-modification efficiencies (>10%) by introducing a recombinogenic double-strand break into the targeted gene. The cleavage event is induced using two custom-designed ZFNs that heterodimerize upon binding DNA to form a catalytically active nuclease complex. Using the current ZFN architecture, however, cleavage-competent homodimers may also form that can limit safety or efficacy via off-target cleavage. Here we develop an improved ZFN architecture that eliminates this problem. Using structure-based design, we engineer two variant ZFNs that efficiently cleave DNA only when paired as a heterodimer. These ZFNs modify a native endogenous locus as efficiently as the parental architecture, but with a >40-fold reduction in homodimer function and much lower levels of genome-wide cleavage. This architecture provides a general means for improving the specificity of ZFNs as gene modification reagents.  相似文献   

19.
Gene targeting using zinc finger nucleases   总被引:1,自引:0,他引:1  
The ability to achieve site-specific manipulation of the mammalian genome has widespread implications for basic and applied research. Gene targeting is a process in which a DNA molecule introduced into a cell replaces the corresponding chromosomal segment by homologous recombination, and thus presents a precise way to manipulate the genome. In the past, the application of gene targeting to mammalian cells has been limited by its low efficiency. Zinc finger nucleases (ZFNs) show promise in improving the efficiency of gene targeting by introducing DNA double-strand breaks in target genes, which then stimulate the cell's endogenous homologous recombination machinery. Recent results have shown that ZFNs can be used to create targeting frequencies of up to 20% in a human disease-causing gene. Future work will be needed to translate these in vitro findings to in vivo applications and to determine whether zinc finger nucleases create undesired genomic instability.  相似文献   

20.
Development of recombinant DNA technologies has allowed us to create new delivery systems that target specific cell types and that can be used in gene therapy. One of these targets is vascular endothelium because of its important role in tumor angiogenesis. For tumor endothelium-specific targeting, we prepared plasmid DNA encoding green fluorescent protein under the control of human endothelin-1 promoter (pENDO-EGFP), which is specific for endothelial cells. First we determined gene electrotransfer parameters for improved transfection of endothelial cells evaluating different osmolarity of electroporation buffer, voltages of applied electric pulses, and addition of fetal bovine serum immediately after electroporation to the cells for improved transfection and survival. Transfection efficacy of pENDO-EGFP in different endothelial and nonendothelial cell lines was determined next. Gene electrotransfer efficacy was evaluated using three different methods: fluorescence microscopy, fluorescence microplate reader, and flow cytometry. Our results showed that transfection efficacy was higher when cells were prepared in hypoosmolar compared to isoosmolar electroporation buffer. Furthermore, immediate addition of fetal bovine serum to the cells after pulsing also improved gene electrotransfer into target cells. We proved expression of EGFP under the control of human endothelin-1 promoter in endothelial cells, which was also significantly higher compared to nonendothelial cells. Taken together, we successfully constructed pENDO-EGFP, which was specifically expressed in endothelial cells using improved gene electrotransfer parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号