首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Fluctuations in ciliated protozoan concentrations were monitored in 40 individually fed crossbred heifers that were stepped up to an 85% concentrate diet either slowly (12 days) or rapidly (3 days), with or without monensin (30 ppm). Ruminal fluid was withdrawn from all animals by stomach tube at the start of the study, after each group reached full feed, and at 14-day intervals thereafter throughout the finishing period until termination (day 119). Neither monensin nor speed of step-up affected (P greater than 0.10) total protozoan concentrations, ruminal pH, or lactic acid concentrations. Average protozoan concentrations peaked on day 5, progressively declined until day 56, and then increased (P less than 0.05), suggesting an adaptation to ruminal conditions. Concentrations of Isotricha spp. were higher (P less than 0.05) on the final two sampling dates than at any other time. After day 28, Entodinium, Isotricha, and Polyplastron were the only surviving genera. Protozoa were not detected in 11 heifers on day 42 and day 56, but only two animals were defaunated on day 119, indicating either exogenous or endogenous refaunation. Average protozoan concentrations were not different (P greater than 0.25) between ruminal samples collected by stomach tube the day before slaughter (2.8 x 10(5)/g) and digesta samples collected the next day (1.6 x 10(5)/g). In feedlot cattle, defaunation apparently is transitory and individual animals harbor a dynamic protozoan population that fluctuates in response to changing ruminal conditions.  相似文献   

2.
When unadapted mixed ruminal bacteria (312 mg of protein per liter) were treated with monensin (5 mM) in vitro, the rates of ammonia production from enzymatic digests of casein, gelatin, and soy protein (0.5 g of N per liter) were decreased from 46 +/- 2 to 24 +/- 1, 20 +/- 1 to 7 +/- 1, and 40 +/- 2 to 18 +/- 2 nmol/mg of protein per min, respectively. Monensin also caused a decrease in ammonia production in vivo. Nonlactating dairy cows which were fed 0.56 kg of timothy hay 12 times per day had a steady-state ruminal ammonia concentration of 2.7 +/- 0.1 mM, and the ammonia concentration decreased to 1.2 +/- 0.2 mM when monensin (350 mg/day) was added to the diet. The decrease in ammonia production was associated with a 10-fold reduction (4.1 x 10(6) versus 4.2 x 10(5)/ml) in the most probable number of ammonia-producing ruminal bacteria that could use protein hydrolysate as an energy source. Monensin had little effect on the most probable number of carbohydrate-utilizing ruminal bacteria (6.5 versus 7.0 x 10(8)/ml). The addition of protein hydrolysates (560 g) to the rumen caused a rapid increase in the ammonia concentration, but this increase was at least 30% lower when the animals were fed monensin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Ruminal microbial populations, fermentation characteristics, digestibility, and liquid flow rates in two ruminally cannulated bison and two ruminally cannulated Hereford steers fed a prairie hay diet were compared. No significant differences in anaerobic bacterial counts, volatile fatty acid concentrations, or ruminal pHs were evident between bison and cattle. Also, no significant differences in neutral detergent fiber digestibility, indigestible fiber retention time, or intake were detected between bison and cattle, although cattle had higher levels (P less than 0.08) of ruminal dry matter and indigestible fiber than bison. Bison had a smaller (P = .02) ruminoreticular volume, faster liquid dilution rates, and faster liquid turnover times than cattle. The average ruminal ammonia nitrogen concentration was higher (P = 0.02) in bison (1.17 mg/dl) than in cattle (0.79 mg/dl). Total ciliate protozoal counts and cell volume were greater (P = 0.07) in bison (32.8 x 10(4)/g and 407.1 x 10(-4) ml/g, respectively) than in cattle (15.7 x 10(4)/g and 162.2 x 10(-4) ml/g, respectively). Bison harbored higher (P less than 0.02) numbers of Dasytricha spp., Eudiplodinium maggii, Eudiplodinium bursa, and Epidinium spp. than cattle and possessed a type B protozoan population. The cattle possessed a mixed type A-type B population that was characterized by Ophryoscolex spp. and Polyplastron spp. in association with low concentrations of Epidinium spp. and Eudiplodinium maggii.  相似文献   

4.
Ruminal microbial populations, fermentation characteristics, digestibility, and liquid flow rates in two ruminally cannulated bison and two ruminally cannulated Hereford steers fed a prairie hay diet were compared. No significant differences in anaerobic bacterial counts, volatile fatty acid concentrations, or ruminal pHs were evident between bison and cattle. Also, no significant differences in neutral detergent fiber digestibility, indigestible fiber retention time, or intake were detected between bison and cattle, although cattle had higher levels (P less than 0.08) of ruminal dry matter and indigestible fiber than bison. Bison had a smaller (P = .02) ruminoreticular volume, faster liquid dilution rates, and faster liquid turnover times than cattle. The average ruminal ammonia nitrogen concentration was higher (P = 0.02) in bison (1.17 mg/dl) than in cattle (0.79 mg/dl). Total ciliate protozoal counts and cell volume were greater (P = 0.07) in bison (32.8 x 10(4)/g and 407.1 x 10(-4) ml/g, respectively) than in cattle (15.7 x 10(4)/g and 162.2 x 10(-4) ml/g, respectively). Bison harbored higher (P less than 0.02) numbers of Dasytricha spp., Eudiplodinium maggii, Eudiplodinium bursa, and Epidinium spp. than cattle and possessed a type B protozoan population. The cattle possessed a mixed type A-type B population that was characterized by Ophryoscolex spp. and Polyplastron spp. in association with low concentrations of Epidinium spp. and Eudiplodinium maggii.  相似文献   

5.
When mixed ruminal bacteria from cattle fed timothy hay were suspended in a medium containing a low concentration of potassium, monensin and lasalocid catalyzed a rapid depletion of potassium from cells. The ionophore-mediated potassium depletion was concentration dependent, and it was possible to describe the relationship with saturation constants. Mixed ruminal bacteria never lost more than 50% of their potassium (Kmax = 46%), and the concentrations of monensin and lasalocid needed to cause half-maximal potassium depletion (Kd) were 178 and 141 nM, respectively. When cattle were fed 350 mg of monensin per day, the ratio of ruminal acetate to propionate decreased from 4.2 to 2.9, and the Kd of monensin was eightfold greater than the value for mixed ruminal bacteria from control animals. Monensin supplementation also caused a twofold increase in the Kd of lasalocid. Lasalocid supplementation (350 mg per day) had no effect on the ruminal acetate-to-propionate ratio, but it caused a twofold increase in the Kd values of monensin and lasalocid. Increases in Kd occurred almost immediately after ionophore was added to the ration, and the Kd values returned to their prefeeding values within 14 days of withdrawal. Ionophore supplementation had no effect on the Kmax values, and approximately 50% of the population was always highly ionophore resistant. Because the Kd values of even adapted ruminal bacteria were low (< 1.5 microM), it appears that a large proportion of the ruminal ionophore is bound nonselectively to feed particles or ionophore-resistant bacteria.  相似文献   

6.
To evaluate the effect of monensin on the performance of growing cattle under different environmental temperatures, 24 male calves (81.9 ± 7.7 kg mean weight and 100 days old) were distributed in a 2 × 2 factorial arrangement, contrasting 0 or 85 mg monensin/animal per day at 24.3 or 33.2 °C (environmental temperatures). Monensin supplementation increased weight gain (P=0.036), improved feed efficiency (P=0.040), increased ruminal concentrations of volatile fatty acids (VFA; P=0.003) and decreased the molar proportion of butyrate (P=0.034); all effects irrespective of environmental temperatures. A temperature-dependent monensin effect was detected on nitrogen retention (P=0.018) and N retained:N absorbed ratio (P=0.012). Animals fed monensin retained higher N amounts than those of the non-supplemented ones when the environmental temperature was 33.2 °C. Environmental temperature and monensin supplementation showed an interaction effect on urine N concentration (P=0.003). Temperature did not affect N excretion in monensin-fed animals, but increased N excretion in the non-supplemented ones. Monensin increased the crude protein (CP) digestibility (P=0.094) for animals at both temperatures. In conclusion, monensin changes the metabolism of the heat-stressed animals by increasing rumen VFA concentration, digestibility and protein retention, thus improving food use and weight gain.  相似文献   

7.
Changes in the concentrations of cholecystokinin, gastric inhibitory peptide, gastrin, motilin, pancreatic polypeptide, secretin, somatostatin, and vasoactive intestinal peptide in calf plasma and antral, duodenal and/or pancreatic tissues were assessed by radioimmunoassay during postnatal development and after weaning in 50 male Holstein-Friesian calves (randomly distributed into 10 groups of 5 animals each). The calves in the first group were killed at birth while those in 6 other groups were colostrum-fed for 2 days and then milk-fed until 7, 28, 56, 70 or 119 days of age. Those in the remaining 3 groups were given the same diets until day 28, were then weaned between day 29-56, and slaughtered on days 56, 70 or 119. In milk-fed animals, changes in plasma and tissue concentrations of almost all digestive regulatory peptides were observed during the 1st month of postnatal life, especially at day 2. Weaning was accompanied by variations in the plasma concentrations of somatostatin, secretin, gastrin, pancreatic polypeptide and gastric inhibitory peptide but not by any apparent change in peptide tissue concentrations (except VIP in the duodenum). Thus, the variations in tissue concentrations are primarily age-related, while plasma concentrations were modified by age and weaning.  相似文献   

8.
Omasal ciliated protozoa in cattle, bison, and sheep.   总被引:2,自引:2,他引:0       下载免费PDF全文
Omasal contents were collected from slaughtered cattle (n = 54), bison (n = 15), and sheep (n = 40) to determine numbers and generic distribution of ciliated protozoa. Total protozoan numbers were significantly lower in omasal contents than in ruminal contents of all three species, but the percent composition of all protozoan genera was similar between omasal and ruminal populations. The highest numbers of omasal protozoa found were 7.61 X 10(5)/g in cattle, 7.01 X 10(5)/g in bison, and 1.29 X 10(6)/g in sheep. Omasal dry matter was significantly higher than ruminal dry matter in all species and ranged up to 51.5% in cattle fed high-concentrate diets. The omasal pH was similar to the ruminal pH in all species. The number of omasal laminae averaged 149, 145, and 74 for cattle, bison, and sheep, respectively. Although protozoan concentrations in omasal contents were approximately 80% lower than those in ruminal contents, the omasum harbored relatively high numbers of ciliated protozoa. The resident omasal protozoa are extremely difficult to remove, particularly in cattle, and apparently are responsible for reinoculating transiently defaunated rumens.  相似文献   

9.
Omasal contents were collected from slaughtered cattle (n = 54), bison (n = 15), and sheep (n = 40) to determine numbers and generic distribution of ciliated protozoa. Total protozoan numbers were significantly lower in omasal contents than in ruminal contents of all three species, but the percent composition of all protozoan genera was similar between omasal and ruminal populations. The highest numbers of omasal protozoa found were 7.61 X 10(5)/g in cattle, 7.01 X 10(5)/g in bison, and 1.29 X 10(6)/g in sheep. Omasal dry matter was significantly higher than ruminal dry matter in all species and ranged up to 51.5% in cattle fed high-concentrate diets. The omasal pH was similar to the ruminal pH in all species. The number of omasal laminae averaged 149, 145, and 74 for cattle, bison, and sheep, respectively. Although protozoan concentrations in omasal contents were approximately 80% lower than those in ruminal contents, the omasum harbored relatively high numbers of ciliated protozoa. The resident omasal protozoa are extremely difficult to remove, particularly in cattle, and apparently are responsible for reinoculating transiently defaunated rumens.  相似文献   

10.
An experiment was done to test the hypothesis that seasonal changes in environment during the first and second 6 months of life influence age at puberty in heifers. Twenty-eight Angus X Holstein heifers, born in March (M) or September (S), were reared under natural conditions until 6 months of age. From 6 to 12 months of age, heifers were reared in environmental chambers programmed to simulate seasonal changes in temperature and photoperiod characteristic of spring, summer and early autumn (Sp-F chamber) or autumn, winter and early spring (F-Sp chamber). S were younger (P less than 0.06) at puberty than M, and Sp-F were younger (P less than 0.08) than F-Sp for both M and S. Mean ages at puberty were 295 for S, Sp-F; 319 for S, F-Sp; 321 for M, Sp-F and 346 days for M, F-Sp. Average daily gain (ADG) between 6 and 9 months of age [1.03 kg/day (S) vs. 0.91 kg/day (M)] and mean concentrations of serum luteinizing hormone (LH) between 6 and 7 months of age [3.45 ng/ml (S) vs. 0.47 ng/ml (M)] were greater (P less than 0.01) for S than M, suggesting an association between these traits and date of birth effects on age at puberty. Differences in these traits did not seem to be involved in the chamber effect on age at puberty, since ADG from 6-9 months of age was greater (P less than 0.05) for F-Sp heifers and chamber did not generally affect LH concentrations. Serum concentrations of follicle-stimulating hormone (FSH) were not significantly influenced by month of birth or chamber, but concentrations tended to decrease with age. Serum concentrations of thyroxine (T4) were higher in M than S at 6 months of age (7.8 micrograms/dl vs. 6.3 micrograms/dl) but not at other times, and chamber did not have a significant affect. Prolactin (Prl) concentrations paralleled patterns of temperature and day length and did not appear to be related to age. Although cattle are not seasonal breeders, these results demonstrate that season of birth and season of attainment of puberty influence age at puberty in heifers. Season may have influenced age at puberty by affecting serum concentrations of LH or Prl, or growth rate.  相似文献   

11.
Friesian x Hereford heifers (n = 19; mean +/- s.e.m. body weight (BW) = 375 +/- 5 kg) were used in a randomized incomplete block design. Heifers were fed 0.7 (n = 7; L), 1.1 (n = 7; M) or 1.8% (n = 5; G) of BW in dry matter (DM)/day for 10 weeks. Ovaries were examined by ultrasound, for one oestrous cycle, from week 5 of treatment. Maximum diameter of dominant follicles was smaller (P less than 0.05) in L (11.8 +/- 0.1 mm) than in M (13.7 +/- 0.2 mm) or G (13.2 +/- 0.3 mm) heifers. Growth rate (mm/day) of dominant follicles during the oestrous cycle was not affected (P greater than 0.05) by dietary intake. Persistence of dominant follicles was shorter (P less than 0.05) in L (9.8 +/- 0.2 days) than in M (11.9 +/- 0.3 days) or G (12.7 +/- 0.4 days) heifers. Three dominant follicles were identified during the oestrous cycle of 5 of 7 L, 3 of 7 M and 1 of 5 G heifers (P less than 0.10); 2 dominant follicles were identified in the remaining heifers (n = 2 of 7, 4 of 7 and 4 of 5, respectively). Length of the luteal phase and luteal-phase concentrations of progesterone were not affected (P greater than 0.05) by treatment. Low dietary intake reduced the diameter and persistence of dominant follicles during the oestrous cycle of beef heifers and tended to increase the proportion of oestrous cycles with 3 dominant follicles.  相似文献   

12.
A study was designed to characterise ovarian follicular dynamics in heifers treated with porcine luteinizing hormone (pLH) or gonadotropin releasing hormone (GnRH) on days 3, 6 or 9 (ovulation = day 0), corresponding to the growing, early-static, and late-static phases of the first follicular wave. Following ovulation, 65 beef heifers were assigned, by replicate, to the following seven treatment groups: 25 mg im of pLH on days 3, 6 or 9 (n = 9 per group); 100 microg im of GnRH on days 3, 6 or 9 (n = 9 per group); or controls (no treatment; n = 11). Ovulation occurred within 36 h in 67%, 100% and 67% of heifers treated with pLH and in 89%, 56% and 22% of heifers treated with GnRH on days 3, 6 or 9, respectively (treatment-by-day interaction, P < 0.09). Combined for all treatment days, ovulation rates were 78% and 56% in pLH- and GnRH-treated groups, respectively (P < 0.09). Overall, mean day (+/- SD) of emergence of the second follicular wave in heifers that ovulated was different from that in controls or in heifers that did not ovulate (P < 0.05). Mean (+/- SD) day of emergence of the second wave occurred earlier (day 5.6+/-1.2; P < 0.05) in heifers that ovulated after treatment on day 3 (n = 14) than in controls (day 8.7+/-1.6; n = 11); however, wave emergence in all heifers treated on day 6 (day 8.1+/-0.5; n = 18) did not differ from controls, regardless of whether or not ovulation occurred. In the heifers that ovulated in response to treatment on day 9 (n = 8), the emergence of the second follicular wave was delayed (day 10.9+/-0.4; P < 0.05). The day of emergence of the second wave in the 14 treated heifers that failed to ovulate, irrespective of the day of treatment (day 8.9+/-1.4) did not differ from control heifers. The emergence of the second wave was more synchronous in day 6 heifers (regardless of whether they ovulated) and in day 9 heifers that ovulated compared to control heifers (P < 0.05). Results did not support the hypothesis that the administration of pLH or GnRH at known stages of the follicular wave in cycling heifers would consistently induce ovulation or atresia and, thereby, induce emergence of a new follicular wave at a predictable interval. New wave emergence was induced consistently (1.3 days post-treatment) only in those animals that ovulated in response to treatment. However, 22% of LH-treated heifers and 44% of GnRH-treated heifers failed to ovulate. Treatments did not induce atresia of the dominant follicle or alter the interval to new wave emergence in animals that did not ovulate in response to treatment.  相似文献   

13.
Prepubertal Angus crossbred heifers (n = 24) between 8 and 10 mo of age were used to determine if progestogen treatment would enhance jugular concentrations of 13,14-dihydro-15-keto-prostaglandin F2 alpha (PGFM) after oxytocin (OT) injections. Heifers were stratified by age and weight and allotted to randomized treatments in a 2 x 2 factorial arrangement. Heifers were treated with either a norgestomet (NOR) implant (6 mg) for 9 d or no implant (0 mg; BLK). On d 8 of NOR treatment, jugular veins were catheterized and, on d 9, blood samples were collected every 15 min for 165 min. The first four samples were used to determine basal PGFM concentrations (an indirect measure of uterine PGF2 alpha release). After collection of the fourth sample, either OT (100 IU) or saline (0 IU; SAL) was injected via the jugular catheter. After the 165-min sample was collected, NOR implants were removed. Beginning 48 h after implant removal, a second 165- min blood sampling period was initiated. Average progesterone concentrations were less than 1 ng/ml during both bleeding periods. Within treatment, PGFM concentrations were similar between the first and second sampling periods; therefore, data within treatment were combined. Basal PGFM concentrations were higher (P < .01) in NOR-treated than in BLK heifers. Oxytocin did not increase PGFM concentrations in BLK-OT heifers; however, a marked increase in PGFM was detected in the NOR-OT heifers in response to oxytocin. Average PGFM concentration was greatest (P < .0001) in NOR-OT heifers, and PGFM profiles differed (P < .0001) between NOR-OT and each of the other treatment groups. Results from this study indicate that NOR increases basal PGFM and may "condition" the uterus to respond to OT in prepubertal heifers.  相似文献   

14.
Ruminal amino acid degradation is a nutritionally wasteful process that produces excess ruminal ammonia. Monensin inhibited the growth of monensin-sensitive, obligate amino acid-fermenting bacteria and decreased the ruminal ammonia concentrations of cattle. 16S rRNA probes indicated that monensin inhibited the growth of Peptostreptococcus anaerobius and Clostridium sticklandii in the rumen. Clostridium aminophilum was monensin sensitive in vitro, but C. aminophilum persisted in the rumen after monensin was added to the diet. An in vitro culture system was developed to assess the competition of C. aminophilum, P. anaerobius, and C. sticklandii with predominant ruminal bacteria (PRB). PRB were isolated from a 10(8) dilution of ruminal fluid and maintained as a mixed population with a mixture of carbohydrates. PRB did not hybridize with the probes to C. aminophilum, P. anaerobius, or C. sticklandii. PRB deaminated Trypticase in continuous culture, but the addition of C. aminophilum, P. anaerobius, and C. sticklandii caused a more-than-twofold increase in the steady-state concentration of ammonia. C. aminophilum, P. anaerobius, and C. sticklandii accounted for less than 5% of the total 16S rRNA and microbial protein. Monensin eliminated P. anaerobius and C. sticklandii from continuous cultures, but it could not inhibit C. aminophilum. The monensin resistance of C. aminophilum was a growth rate-dependent, inoculum size-independent phenomenon that could not be maintained in batch culture. On the basis of these results, we concluded that the feed additive monensin cannot entirely counteract the wasteful amino acid deamination of obligate amino acid-fermenting ruminal bacteria.  相似文献   

15.
Selenium (Se) content of feedstuffs is dependent on the Se level of the soil. Even though Se in grass and forage crops is primarily present in organic forms, Se is commonly supplemented in cattle diets in an inorganic (sodium selenite) form in geographic regions where Se soil concentrations are low. The purpose of this study was to answer two important questions about inorganic (ISe) vs organic (OSe) forms of dietary supplementation of Se (3?mg/day) to growing beef heifers (0.5?kg/day): (1) what would the effect of supplementing Se with an equal blend of ISe:OSe (Mix) have on Se tissue concentrations and (2) how long does it take for the greater assimilation with OSE to occur and stabilize? A long-term (224?day) Se dietary supplementation trial was conducted with serial sampling performed (days?28, 56, 112, and 224) to determine the length of time required to achieve Se supplement (OSE, Mix, and ISe)-dependent changes in Se assimilation in blood fractions and liver tissue. Forty maturing Angus heifers were fed a corn silage-based diet for 98?days with no Se supplementation, and then a cracked corn/cottonseed hull-based diet (basal diet) without Se supplementation for 74?days. Liver biopsies were taken for Se analysis, and heifers were fed the same diet for another 14?days. Heifers were assigned (n?=?10) to one of four Se treatment groups such that basal liver Se contents were stratified among groups, and then fed enough of the basal diet (0.08?mg Se per day) and a mineral-vitamin mix that provided 0.16 (control) or 3.0?mg Se per day in ISe (sodium selenite), OSe (Sel-Plex(?)), or Mix (1:1 ISe:OSe) form to support 0.5?kg/day growth for 224?days. More Se was found in whole blood, red blood cells, serum, and liver of Mix and OSe heifers than ISe heifers, and all were greater than control. Se content either increased until day?56 then was stable (liver and plasma), or was stable until day?56 (whole blood) or day?112 (red blood cells) and then increased steadily through day?224, for all supplemental Se treatments. These data indicate that a 1:1 mix (1.5?mg Se:1.5?mg Se) of supplemental ISe and OSe is equal to 3?mg/day OSe supplementation and greater than 3?mg/day ISe supplementation. The data also indicate that Se levels stabilized in liver and plasma by 56 to 112?days whereas whole blood and red blood cell concentrations were still increasing through 224?days of supplementation, regardless of the form of supplemental Se.  相似文献   

16.
We have previously shown that the number of ovarian follicles <4 mm in diameter can be increased by enhanced dietary intake in heifers. This study investigated the effect of the same dietary treatment on superovulatory response. The estrous cycles of 24 mature Hereford x Friesian heifers were synchronized by a standard progesterone plus prostaglandin protocol. The animals were fed with either 100% (group M, n = 12) or 200% (group 2M, n = 12) maintenance requirements for a 3-week period. Starting from day 4 of the synchronized estrous cycle, all the animals were superovulated using a standard 4-day FSH regime followed by an injection of GnRH analogue (GnRHa) to induce ovulation. Rectal ultrasound scanning was carried out to assess ovarian follicular populations at the start of FSH treatment and on the day of GnRHa injection, and to determine the number of corpora lutea 5 days after GnRHa injection. The body weight (BW) and body condition score (BCS) were recorded weekly and plasma samples were collected throughout the experimental period. There were no differences in either BW or BCS between two groups at the start of the experiment. The BW and BCS were maintained during the experiment in the group M, whilst animals in the group 2M showed a non-significant (P > 0.05) increase in BW and BCS. Circulating concentrations of insulin were significantly (P < 0.01) higher in heifers from the group 2M throughout the controlled feeding period. The group 2M had significantly (P < 0.05) more follicles 2-4 mm in diameter at the start of FSH treatment and more (P < 0.01) follicles >9 mm in diameter on the day of GnRHa injection, when compared with the group M. Similarly, 5 days after GnRHa injection there were significantly (P < 0.01) more corpora lutea in the group 2M (18.1+/-2.2) than in the group M (10.6+/-3.0). In addition, plasma progesterone concentrations following GnRHa injection were significantly (P < 0.01) higher in heifers from the group 2M. In conclusion, these results confirm that increased dietary intake can enhance the recruitment of ovarian follicles in heifers. This treatment may provide a valuable approach to improving superovulatory response in cattle.  相似文献   

17.
The Effect of Nisin and Monensin on Ruminal Fermentations In Vitro   总被引:5,自引:0,他引:5  
When mixed ruminal bacteria and alfalfa were incubated in vitro, monensin and nisin both inhibited methane production so long as the concentrations were greater than 1 μM. Monensin- and nisin-dependent methane depressions caused a decrease in the acetate to propionate ratio (4.5 to 3.0). Total volatile fatty acid production was decreased by both monensin and nisin addition at concentrations greater than 2 μM. Starch-digesting ruminal bacteria were initially inhibited by monensin and nisin, but this effect disappeared after two to four transfers. Nisin always inhibited cellulolytic bacteria, but the nisin-dependent inhibition of cellulose digestion was no greater than the inhibition caused by monensin. Monensin and nisin also inhibited amino acid degradation, and nisin was more effective than monensin in controlling the growth of Clostridium aminophilum, an obligate amino acid-fermenting ruminal bacterium that can tolerate low concentrations of monensin. Because nisin was as potent as monensin, bacteriocins such as nisin may have potential as feed additives. Received: 2 December 1996 / Accepted: 10 February 1997  相似文献   

18.
Brahman cows (n = 49) and primiparous heifers (n = 11), Brahman x Hereford primiparous F1 heifers (n = 86) and Simmental x Brahman primiparous F1 heifers (n = 13) were randomly allotted by breed, age and date of calving to one of eight treatment groups: 1) control; 2) once-daily suckling; 3) lasalocid (200 mg/hd/d); 4) alfaprostol (5 mg intermuscular injections on Days 21 and 32 post partum); 5) lasalocid + once-daily suckling; 6) alfaprostol + once daily suckling; 7) alfaprostol + lasalocid; 8) alfaprostol + lasalocid + once daily suckling. All animals received 2.3 kg/hd/d of a concentrate (6 corn : 1 cottonseed meal) and lasalocid was mixed and fed in the concentrate. Body weights and condition scores were taken on Day 1 post partum and every 28 d thereafter. All animals were maintained with sterile marker bulls with Brahman and Simmental x Brahman cattle artificially inseminated at first estrus. Blood samples were collected at weekly intervals starting on Day 21 post partum until estrus and at nine to twelve days post estrus when the ovaries were palpated for corpora lutea. After the first postpartum estrus with a corpora lutea, cows were placed with fertile bulls. Mean serum progesterone concentrations were below 0.5 ng/ml prior to treatment. Calf weight gains to 90 d were not affected by age (P > 0.10) but were lower in the once-daily suckling group (P < 0.05). Treatment did not affect cow weight or condition score (P > 0.10). Cows had a shorter postpartum interval (P < 0.0001) than heifers. Once-daily suckling shortened postpartum interval (P < 0.0001) and positively influenced the cumulative frequency of return to estrus by 40 d post partum (P < 0.02). Alfaprostol did not affect postpartum interval (P > 0.10) but did increase the cumulative frequency of return to estrus by 90 d post partum (P < 0.03). Lasalocid did not affect postpartum interval or cumulative frequency of return to estrus (P > 0.10). Both once-daily suckling and alfaprostol were effective in increasing the numbers of animals inseminated by 90 d post partum. The once-daily suckling + alfaprostol treatment resulted in the shortest postpartum interval.  相似文献   

19.
Follicle stimulating hormone (FSH) is a glycoprotein hormone with a short half-life and has to be given twice daily for 3-4 days to induce superovulation in heifers. Since such a regimen is time consuming we compared the ovulatory response and yield of embryos in heifers following superovulation with either once or twice daily injections of pFSH for 4 days during the mid-luteal phase of a synchronized estrous cycle or during a prolonged luteal phase in heifers which had been immunized against prostaglandin F2alpha (PG). In Experiment 1, crossbred heifers (n = 42) previously actively immunized against a PG immunogen were superovulated in a 2 (cyclic or persistent corpus luteum) x 2 (once or twice daily injection) factorial plan. The heifers were superovulated with 75 units pFSH, which was injected subcutaneously once (22.5, 22.5, 15 and 15 units per day) or twice daily (9.3 units per injection) for 4 days. In Experiment 2, cyclic crossbred beef heifers (n = 80) were superovulated using pFSH which was given randomly to heifers once daily subcutaneously (T1) or twice daily intramuscularly (T2) using the same daily dose of 9, 7, 5, and 3 mg per day. Estrus was induced in all heifers in both experiments using 500 mug and 250 mug Cloprostenol 12 hours apart on the third day of pFSH injections. All heifers were inseminated twice with frozen-thawed semen at 12 and 24 hours after the onset of standing estrus or at 56 and 72 hours after the first PG if estrus was not observed. Embryos were recovered at slaughter and graded on a scale of 1 to 5 (1 = excellent, 5 = degenerated). Data were recorded for the number of corpora lutea (CL), large (>/=10 mm) and medium (5-9 mm) follicles, number of embryos recovered and embryo morphology. Data were analyzed by least squares analysis of variance procedures. In Experiment 1, there was no difference in ovulation rate between main effects. Fewer embryos were recovered from heifers with a persistent corpus luteum (pCL) and injected once daily (1.71+/-.75 vs 5.75+/-1.27) than from any other group. Heifers with pCL yielded lower (P < 0.05) numbers of freezable embryos than cyclic animals, regardless of injection regimen. In Experiment 2, T2 heifers had a significantly higher number of CL (16.4+/-1.7 vs 7.7+/-1.7; P = 0.0003), large follicles (4.1+/-0.5 vs 2.8+/-0.5; P = 0.04), medium follicles (6.4+/-0.7 vs 4.4+/-0.7; P = 0.04), embryos recovered (9.6+/-1.1 vs 4.9+/-1.1; P = 0.0025) and freezable embryos (4.7+/-0.7 vs 2.1+/-0.7; P = 0.014) than T1 heifers. It is concluded that a single daily subcutaneous injection of pFSH results in a lower superovulatory response than the twice daily regimen in heifers.  相似文献   

20.
Nutritionally induced anovulatory and cyclic Angus x Hereford heifers were used to evaluate follicular growth and concentrations of hormones and metabolites during anovulation and resumption of ovulation. Anovulatory heifers were fed to gain 0.6 (LGAIN) or 1.5 (HGAIN) kg/day until resumption of ovulation, and heifers with normal estrous cycles were fed a maintenance diet (M). Follicles >/= 4 mm in diameter were measured by daily ultrasonography in HGAIN and LGAIN heifers during one follicular wave before realimentation (Wan) and in two waves (W-2, W-1) immediately before the wave resulting in first ovulation or luteinization (W0). Ovaries of M heifers were evaluated to determine the day of ovulation of the second-wave dominant follicle (DF). Resumption of ovulation after realimentation occurred 23 days earlier in HGAIN than in LGAIN. Maximum diameter, growth rate, and persistence of dominant follicles increased, while persistence of first subordinate follicles decreased between anovulation and resumption of ovulation in anovulatory heifers. Concentrations of LH in serum were similar for HGAIN and LGAIN and gradually increased during realimentation. The increase in estradiol before the first ovulation was less in realimented heifers compared with cyclic heifers. Concentrations of insulin-like growth factor-I (IGF-I) in HGAIN and LGAIN gradually increased during realimentation but were lower than concentrations of IGF-I in cyclic heifers at ovulation. Increased diameter, growth rate, and persistence of the DF were associated with increased concentrations of LH, estradiol, and IGF-I during the transition from nutritionally induced anovulation to resumption of ovulatory cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号