首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One hundred thirteen HSV-specific CD4+ T cell clones were established from the PBL of a healthy person and their functional heterogeneity was investigated. All clones proliferated in response to stimulation with HSV in the presence of autologous APC. Among those, 48 clones showed cytotoxic activity to HSV-infected autologous EBV-transformed lymphoblastoid cell line, but not to HSV-infected autologous fibroblasts, HSV-infected allogeneic cells, or K562 cells (group 1). Five clones showed cytotoxicity against HSV-infected autologous cells as well as HSV-infected allogeneic cells and K562 cells (group 2). The cytotoxicity of these clones was found to be mediated by the direct killing but not by the "innocent bystander" killing of target cells. Sixty clones showed no cytotoxic activity, however, among these, 23 revealed HLA-unrestricted and nonspecific cytotoxicity in the presence of PHA in culture (group 3), and the remaining 37 did not show any cytotoxic activity even in the presence of PHA (group 4). The cytotoxic patterns of these clones did not change in activated and resting phases, suggesting that the difference in cytotoxic ability does not depend on cell cycles. The cytotoxic activity of group 1 was inhibited by addition of anti-HLA-DR or anti-CD3 mAb to the culture, whereas these mAb had no effect on the cytotoxicity of group 2. All four groups of clones had helper activity for anti-HSV antibody production by autologous B cells. Moreover it was found that all groups of clones simultaneously produced IL-2, IL-4, and IFN-gamma after culture with APC followed by HSV Ag stimulation. The surface phenotype of all clones was uniformly CD2+, CD3+, CD4+, CD8-, CD29+, CD45RA-, but expression of Leu 8 was varied. These data therefore indicate that HSV-specific human CD4+ T cells are classified into at least four groups according to the presence and specificity of cytotoxicity, i.e., Th cells with HSV-specific and HLA-class II-restricted cytotoxicity, Th cells with HLA-unrestricted and nonspecific cytotoxicity, Th cells with lectin-dependent cytotoxicity, and Th cells without cytotoxic activity. The present finding of functional heterogeneity among virus-specific human CD4+ T cells might shed light on the pathogenesis of CD4+ T cell immunodeficiency, such as human retrovirus infections.  相似文献   

2.
CD4+ T cells have been recently divided into two subsets. The functions of these subsets are thought to be distinct: one subset (Th1) is responsible for delayed type hypersensitivity responses and another (Th2) is primarily responsible for induction of antibody synthesis. To more precisely define the roles of both subsets in humoral immune responses, we examined the ability of a panel of nominal antigen specific Th1 and Th2 clones to induce anti-TNP specific antibody synthesis in TNP-primed or unprimed B cells. Four of nine Th1 clones induced little or no antibody synthesis with TNP-primed B cells. However, five other Th1 clones were very effective at inducing IgG anti-TNP plaque-forming cell (PFC) responses in primed B cells. One of these Th1 clones was analysed in detail and found to also provide helper function for unprimed B cells. Cognate B-T cell interaction was required for induction of both primary and secondary responses with this clone, indicating that a Th1 clone could function as a "classical" Th cell. The seven IL-4 producing Th2 clones examined were also heterogeneous in their ability to induce antibody secretion by TNP-primed B cells. Although four of the Th2 clones induced IgG and IgM anti-TNP PFC responses, two Th2 clones induced only IgM and no IgG antibody, and another clone failed to induce any anti-TNP PFC. All Th2 clones failed to induce any anti-TNP PFC. All Th2 clones produced high levels of IL-4, but "helper" Th2 clones produced significantly greater amounts of IL-5 than "non-helper" Th2 clones. These studies indicate that some IL-2- and some IL-4-producing T cell clones can induce TNP-specific antibody in cell clones can induce TNP-specific antibody in primed and unprimed B cells, and that Th1 and Th2 clones are heterogeneous in their ability to induce Ig synthesis. Therefore, although T cell clones can be classified as Th1 or Th2 types according to patterns of IL-2, IFN-gamma, or IL-4 synthesis, the functional capacity to induce antibody synthesis cannot be predicted solely by their ability to secrete these lymphokines.  相似文献   

3.
4.
Phenotypic and functional characterization of human T cell clones   总被引:8,自引:0,他引:8  
The capacity of human peripheral blood-derived T cell clones to carry out a variety of functions was examined. T cell clones were generated by stimulating individual peripheral blood T cells with PHA by a procedure that yielded a growing clone from a mean of greater than 92% of the cultured cells. A total of 65 T cell clones (44 CD4+ and 21 CD8+) generated from two individual donors were examined for their functional capabilities. All T cell clones examined secreted IL-2, IFN-gamma, and lymphotoxin/tumor necrosis factor like activity when stimulated with immobilized mAb to the CD3 complex (64.1). When 54 additional T cell clones from a third donor were analyzed, all were found to produce IL-2. Upon activation with immobilized 64.1, all CD4+ clones and 91% of the CD8+ clones induced the generation of Ig-secreting cells from purified B cells. The CD8+ clones that did not serve as Th cells alone were able to augment the capacity of fresh CD4+ cells to generate Ig-secreting cells. Each of these clones was also found to effect MHC-unrestricted cytotoxicity upon activation with immobilized 64.1. The CD8+ clones were somewhat more effective killers than CD4+ clones, although there was considerable overlap. A total of 18 clones was analyzed for TCR beta-chain gene rearrangement. Of the clones exhibiting rearrangements of the beta-chain gene, 94% were found to have a single rearrangement pattern. Finally, the detailed phenotype of 15 (11 CD4+ and 4 CD8+) of these clones was examined. Variable numbers of cells of each of the clones expressed Ag identified by mAb 4B4 (CD29), Leu 8, Leu 15 (CD11b), and NKH1. Moreover, cells of 6 of 11 CD4+ clones and 4 of 4 CD8+ clones also expressed CD45R in addition to CD29; expression of CD45R and CD29 varied with the activation status of the clone. The current data demonstrate that nearly all of the T cell clones were able to accomplish each of the functions examined regardless of the surface phenotype. Inasmuch as the clones were generated using a technique that expanded more than 92% of the circulating T cells, the data imply that the progeny of the vast majority of T cells may have the inherent capacity to exert a wide array of functional activities.  相似文献   

5.
We showed previously that T cells with the phenotype Leu-3+,8+ are required for the induction of antigen-specific Leu-2+ suppressor cells. Furthermore, when mixed lymphocyte reactions are carried out in the presence of 1 microgram/ml cyclosporin A (CsA), such cultures lead preferentially to the activation of alloantigen-specific suppressor-inducer Leu-3+,8+ cells. In an attempt to generate a clone of T cells with such specific suppressor-inducer properties, we activated Leu-3+,8+ T cells with allogeneic (HLA-DR4+) lymphocytes in the presence of CsA. Clone SP-21, derived by propagating such activated T cells with conditioned medium containing IL 2, is a noncytotoxic, nonsuppressor clone that specifically proliferates to allogeneic cells bearing HLA-DR4 antigen. When cultured with fresh autologous Leu-2+ cells in the absence of HLA-DR4+ cells, clone SP-21 selectively activates Leu-2+ suppressor cells, which inhibit the response of fresh Leu-3+ cells to DR4+ stimulator cells. On the other hand, clone SP-21 fails to induce cytolytic T cells or to help B cell differentiation. These results demonstrate that a T cell clone with a remarkably narrow functional repertoire nonetheless contains and transmits all of the signals necessary for the activation of antigen-specific suppressor cells.  相似文献   

6.
7.
We have succeeded in establishing a method to reproducibly immortalize human T cells by oncogene(s) transfection (Alam, 1997). This study was based on our previous discoveries that these immortalized T cell lines contained T cells which showed cytotoxicity against K562 cells in MHC-nonrestricted manner. Then we attempted to obtain human T cell clones exhibiting natural killer-like activity. Here, we tried to establish clones from these immortalized T cell lines by limiting dilution after stimulation with K562 cells, and then obtained 16 T cell clones. Two clones among them maintained their stability and showed vigorous growth phenotype. Thus we selected these two clones for further analysis. One is derived from the T cell line transfected with oncogenes ras and fos, the other is from the T cell line transfected with myc and fos. Both clones were demonstrated to be CD4+ T cells, indicating that CD4+ T cells were preferably expanded from T cell lines immortalized by oncogene transfection. These two clones showed cytotoxicity against K562 cells, indicating that these two T cell clones still retain a natural killer-like activity of killing target cells of K562 cells in a MHC-nonrestricted manner. The natural killer-like activity of the T cell clones was shown to be stable for more than 2 yr when cultured in the presence of IL-2, indicating that introduction of two oncogenes such as ras/fos or myc/fos resulted in the acquisition of infinite replicative life-span but not in transformational alteration of cellular function. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
9.
The isolation and characterization of the human helper inducer T cell subset   总被引:91,自引:0,他引:91  
Monoclonal antibody anti-4B4 was produced by fusing NS1 myeloma with spleen cells of a mouse immunized with Saguinus oedipus lymphocyte. This anti-4B4 antibody defines a 135-KD cell surface protein that is widely distributed throughout the hematopoietic system. More importantly, anti-4B4 is reactive with functionally unique human T cell subsets. Anti-4B4 antibody was reactive with approximately 41% of unfractionated T cells, 41% of T4+ inducer cells, and approximately 43% of T8+ cytotoxic/suppressor population. This antibody subdivided peripheral blood T4+ cells into two functionally distinct populations. The T4+4B4+ subset proliferates relatively poorly upon stimulation with Con A and autologous cell antigens (AMLR) but well on exposure to soluble antigens, and it provides a good helper signal for PWM-induced Ig synthesis. The T4+4B4- subset, in contrast, proliferates well to Con A stimulation and autologous cell antigen (AMLR) but relatively poorly to soluble antigen stimulation, and provides little help to B cells for PWM-induced Ig synthesis. The T4+4B4- subset is largely 2H4+ and functions as the inducer of the T8+ suppressor cells. Thus, the present results suggest that one can divide the human T4 population into two major subsets that are phenotypically and functionally distinct, the human helper inducer subset (T4+4B4+/H.I.) and its reciprocal population defined by anti-2H4, the suppressor inducer subset (T4+2H4+/S.I.).  相似文献   

10.
The isolation and characterization of the human suppressor inducer T cell subset   总被引:100,自引:0,他引:100  
Immunization of mice with lower primate lymphoid cells has provided a useful strategy for raising monoclonal antibodies against functionally important surface determinants on human T lymphocytes. We have developed a monoclonal antibody, anti-2H4, which defines functionally unique human T cell subsets. This anti-2H4 antibody was reactive with approximately 42% of unfractionated T cells, 41% of T4+ inducer cells, and was reactive with approximately 54% of T8+ cytotoxic/suppressor population. Anti-2H4 was not reactive with human thymocytes, but reacted with subsets of peripheral blood B cells and null cells. This antibody subdivided peripheral blood T4+ cells into two functionally distinct populations. The T4+2H4+ subset proliferate well to concanavalin A (Con A) stimulation, but poorly to soluble antigen stimulation, and provides poor help to B cells for PWM-induced Ig synthesis. The T4+2H4- subset, in contrast, proliferates poorly upon stimulation with Con A, but well on exposure to soluble antigen, and provides a good helper signal for PWM-induced Ig synthesis. What is, perhaps, most important, the T4+2H4+ subset functions as the inducer of the T8+ suppressor cells. Previous attempts to define the latter subset of cells has relied heavily on the use of specific autoantibodies present in the sera of patients with juvenile rheumatoid arthritis (JRA) and systemic lupus erythematosus (SLE). The present results suggest that anti-2H4 antibody defines the human suppressor induced subset of lymphocyte previously described as T4+JRA+. Last, the results reemphasize the previously documented remarkable structural conservation of certain T cell-specific determinants on lymphocytes of phylogenetically distant primates.  相似文献   

11.
In an attempt to understand the mechanisms of immunodeficiency induced by human T lymphotropic virus type I (HTLV-I), HSV-specific CD4+ human multifunctional T cell clones were infected with HTLV-I in vitro. Early after HTLV-I infection, when their growth was still IL-2-dependent, clones were found to have almost completely lost their cytotoxic activity. At that time, their HSV-Ag-induced proliferative response and helper function for anti-HSV antibody production by B cells were only partially impaired. After this initial phase, the HTLV-I-infected clone became IL-2-independent, and the helper function was also completely lost. IL-2-dependent HTLV-I-infected clones showed degrees of proliferative response and elevation of intracellular free Ca2+ concentration induced by anti-CD3 mAb equivalent to those of HTLV-I-uninfected clones. On the other hand, during the IL-2-independent stage, expression of CD3-TCR complex on the cell surface was markedly decreased, and no significant elevation of intracellular free Ca2+ concentration was detected in response to anti-CD3 mAb. These data indicated that the loss of cytotoxic activity of HSV-specific T cell clones observed early after HTLV-I infection was not the result of impaired antigen recognition via the CD3-TCR complex, but might be due to dysfunction in the effector phase. On the other hand, the dysfunction of helper activity found late after HTLV-I infection might have mainly occurred in the recognition phase due to the decreased expression of CD3-TCR complex. The present data appear to suggest certain aspects of the pathogenesis of the immunodeficiency occurring in HTLV-I infection.  相似文献   

12.
Activation of T lymphocytes is initiated by receptor ligand interactions at the cell surface leading to the transduction of intracellular signals followed by the de novo synthesis and expression of T cell activation markers (including receptors for interleukin 2 (IL 2) and transferrin), production of lymphokines, and T cell proliferation. This requisite first step for activation of T lymphocytes can be mimicked in certain situations with a variety of stimuli. These include antibodies to certain integral membrane proteins, phorbol esters, and plant lectins that act as mitogens. In this paper, we report that at least two classes of human T cell clones can be distinguished based upon signal requirements necessary to induce proliferation. Although all clones analyzed expressed IL 2 receptors and secreted IL 2 after non-antigenic activation, one subset of clones did not proliferate in response to the same non-antigenic signals. In that subset, complete activation leading to proliferation required interaction of the T cell with specific antigen. The ability to subset these T cell clones into two groups did not correlate with phenotypic differences, source of the clone, nor with magnitude of intracellular calcium mobilization. By studying the stimulation requirements of these two subsets of human T cell clones through the use of specific antigen or antigen-independent stimuli, it was possible to demonstrate that different stimuli varied in their ability to induce steps of T cell activation. Analysis of reactivity of these clones to suboptimal stimulation allowed the definition of intermediate stages of T cell activation. Such intermediate stages might reflect a diversity of intracellular signaling pathways or a complexity of regulatory mechanisms distal to the events that allow intracellular calcium mobilization. Thus for the first time, it has been possible to study ordered events of T cell activation in non-transformed, antigen-dependent human T lymphocytes. The data presented in this paper suggest that T cell activation is not an all or nothing phenomenon, and there is an ordered sequence of events that can be differentiated based upon signal requirements at the T cell membrane.  相似文献   

13.
Interactions between autologous T cell clones   总被引:1,自引:0,他引:1  
A human CD4 clone (Mx9/9) using the V beta 8 receptor was used as antigen to generate autologous clones (termed anti-Mx9/9 clones) which proliferate in response to this clone, but not other autologous clones. This was used as an experimental model to explore the specific interactions between autologous T cells. Anti-HLA-DR monoclonal antibodies inhibited the response of the anti-Mx9/9 clones, suggesting that these clones recognize their target antigen in association with HLA-DR. Because of the specificity of the anti-Mx9/9 clones for the initiating clone (Mx9/9), but not any other autologous V beta 8- or V beta 8+ CD4 clones, the target antigen seems to be part of the T cell receptor, but not V beta 8 itself. However, the anti-Mx9/9 clones responded also to the autologous EBV line, and thus the target antigen is not known. The regulatory activity of the anti-Mx9/9 clones was assayed by coculture with their target clone. A variety of responses were seen, both inhibitory and stimulatory, which varied depending on the "conditions" of the T cell used. These results suggest that T cells interact in a complex network, perhaps as complex as the regulatory interactions between antibody molecules and B cells.  相似文献   

14.
Human T cell clones present antigen   总被引:1,自引:0,他引:1  
Two human T cells clones are described which react with influenza virus hemagglutinin type H3 and synthetic peptides of H3 when presented by PBMC APC. Both T cell clones also responded to peptide Ag in the absence of additional APC suggesting that T cells can simultaneously present and respond to Ag. T cell clones could only present peptide Ag and not an appropriate strain of inactivated whole influenza virus thus indicating an inability to process Ag conventionally. Peptide presentation by T cells was dose dependent, restricted by MHC class II Ag and was dependent on the number of Ag presenting T cells per culture. Experiments with nested peptides showed that the same epitope was recognized in the presence and absence of PBMC APC. No Ag or IL-2 from the propagation procedure was carried over into assays and two-color fluorescence-activated cell sorter analysis of each clone detected no contaminating cells with the phenotype of monocytes, macrophages or B cells; in each T cell clone, all cells expressing MHC class II Ag co-expressed CD3. These date therefore provide strong evidence that human T cell clones can simultaneously present and respond to appropriate forms of Ag.  相似文献   

15.
The kinetics of the proliferative response and the appearance of effectors of helper activity after stimulation by antigen were examined in T cell subpopulations. As defined in previous papers of this series, one population, T1, is short-lived after adult thymectomy (ATx), and relatively resistant to elimination by anti-thymocyte serum (ATS). Another population, T2, is long-lived after ATx, but highly sensitive to elimination by small doses of ATS. From precursors within the T2 population, effectors of specific helper activity, after priming with antigen, appeared within 1 to 2 days and reached a maximum on day 4. The responding cells reached their peak proliferative response within 24 hr after stimulation by antigen. In contrast, helper activity arising from T1 precursors first appeared on day 3 and peaked on day 5. These cells did not reach their maximal proliferative response until 60 hr after priming. These findings indicate additional useful markers for distinguishing the T1 and T2 subpopulations and are consistent with models for T cell development in which T1 cells are virgin cells and T2 cells are memory cells.  相似文献   

16.
The heterogeneity of cell morphology characteristics of some colonies of human fetal kidney and amniotic fluid cells has been analyzed by biochemical and cell-cloning techniques. All the presumed subclones derived from dimorphic colonies were initially epithelioid, but some cells became fibroblastlike as the cell density increased. To determine if the observed heterogeneity occurred within clonal populations of cells, we determined the isozyme phenotype of dimers from renal cells heterozygous for glucose-6-phosphate dehydrogenase (G6PD). Colonies showing mixed cellular morphology expressed only a single G6PD isozyme, thus revealing their single-cell origin. Our results indicate that cell morphology is influenced by the cellular density within the clone, and that a single human renal cell in vitro can yield progeny of two morphological types.  相似文献   

17.
Over 80 human T helper cell (Th) clones reactive with human cytomegalovirus (HCMV) were generated using purified whole Towne strain HCMV as the in vitro antigen. These cloned T cells are CD3+, CD4+, CD8- and proliferate specifically to HCMV. All of the clones tested produce interleukin 2 and gamma-interferon and failed to show HCMV-specific cytotoxicity or natural killer (NK) activity. Most of the Th clones recognize multiple laboratory-adapted and wild-type strains of HCMV. The Th clones were also tested for their reactivity to a major envelope glycoprotein complex (gcI) and a 64,000 dalton internal matrix protein. Our results show that both proteins as well as other unidentified protein(s) are involved in Th responses to HCMV.  相似文献   

18.
Evidence is presented that the OKTA+ T cell subset in man, defined by a monoclonal hybridoma antibody, provides help for B lymphocyte differentiation in a PWM driven system. Both B cell proliferation and intracytoplasmic immunoglobulin synthesis are facilitated by OKT4+ and not by OKT4- T cells. Given earlier studies demonstrating that OKT4+ T cells were necessary for generation of T cytotoxic cells and the present study that OKT+ T cells are necessary for the differentiation of B cells, it would appear that the OKT+ population is the major human T helper (inducer) subset.  相似文献   

19.
A model of human immunodeficiency virus infection in T helper cell clones   总被引:1,自引:0,他引:1  
We present a mathematical model of the activation and proliferation of a clone of T helper cells in response to a replicating antigen. This is able to show types of behaviour akin to persistent infection and to immune memory. This model is expanded to include the infection and destruction of activated T helper cells by human immunodeficiency virus and the growth of a population of circulating human immunodeficiency virus. The resulting model is used to investigate the circumstances under which the human immunodeficiency virus can destabilize persistent infections and destroy immune memory, and to illustrate the impact of antigenic stimulation of infected T helper cell clones upon human immunodeficiency virus replication rates.  相似文献   

20.
Human cytotoxic T cell clones (CTL) were obtained by limiting dilution after in vitro priming against an allogeneic Epstein Barr virus (EBV)-transformed B cell line (B-LCL) BSM. Three OKT3+, OKT8+ E rosette-forming (RFC) but EA gamma-RFC- clones with cytotoxic activity against the stimulator cell and one "non-cytolytic" clone were expanded for over 50 generations and further characterized. Clone G9 showed allospecific lysis of Cw3+ lymphocytes and B cell lines. Three cytolytic clones (G9, D11, and A3) showed cytotoxicity to the stimulator B-LCL, to the human plasma cell leukemia-derived line LICR-LON-HMY2 and to short-term cultured melanoma cells (O-mel). Four other EBV-transformed B-LCL unrelated to the stimulator B-LCL were not lysed. These clones also exerted cytotoxic activity against NK-sensitive target cells (TC), e.g., the erythroleukemia cell line K562. Other NK-sensitive TC, e.g., lymphoma-derived Daudi cells, were killed provided they were pretreated with phytohemagglutinin (PHA). Cytolytic activity against the B-LCL cell LICR-LON and O-mel, but not against K562 or PHA-treated target cells, was inhibited by monoclonal anti-HLA ABC antibodies (MCA). The cytolytic activities of OKT3+,8+ clones G9 and A3 but not that of OKT3+,8+ clone D11 were inhibited by OKT8. Another MCA, 13.3, directed against the murine glycoprotein T-200, inhibited the cytolytic activity of clone D11 against K562 but not against the stimulator cells. Clone G9 was not inhibited by MCA 13.3. The four clones, including the OKT4+ "non-cytotoxic" clone K12, exerted lytic activity against TC that are normally resistant to lysis provided these TC were pretreated with PHA. The TC specificity range of the clones was confirmed by cold target inhibition experiments. A correlation between blocking of lytic activity by cold TC and the percentage of conjugate formation with the particular cold TC was observed. Because these clones also show differential susceptibility to inhibition of lysis by various MCA, it is concluded that human cytotoxic T cell clones can exert multiple lytic activities, i.e., the operationally defined lytic mechanisms differ at least at certain stages of the lytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号