首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The splanchnic circulation can make a major contribution to blood flow changes. However, the role of the splanchnic circulation in the reflex adjustments to the blood pressure increase during isometric exercise is not well documented. The central command and the muscle chemoreflex are the two major mechanisms involved in the blood pressure response to isometric exercise. This study aimed to examine the behaviour of the superior mesenteric artery during isometric handgrip (IHG) at 30% maximal voluntary contraction (MVC). The pulsatility index (PI) of the blood velocity waveform of the superior mesenteric artery was taken as the study parameter. A total of ten healthy subjects [mean age, 21.1 (SEM 0.3) years] performed an IHG at 30% MVC for 90 s. At 5 s prior to the end of the exercise, muscle circulation was arrested for 90 s to study the effect of the muscle chemoreflex (post exercise arterial occlusion, PEAO). The IHG at 30% MVC caused a decrease in superior mesenteric artery PI, from 4.84 (SEM 1.57) at control level to 3.90 (SEM 1.07) (P = 0.015). The PI further decreased to 3.17 (SEM 0.70) (P = 0.01) during PEAO. Our results indicated that ergoreceptors may be involved in the superior mesenteric artery vasodilatation during isometric exercise.  相似文献   

2.
To investigate the effect of different levels of central blood volume on cardiac performance during exercise, M-mode echocardiography was utilized to determine left ventricular size and performance during cycling exercise in the upright posture (UP), supine posture (SP), and head-out water immersion (WI). At submaximal work loads requiring a mean O2 consumption (Vo2) of 1.2 1/min and 1.5 1/min, mean left ventricular end-diastolic and end-systolic dimensions were significantly greater (P less than 0.05) with WI than UP. In the SP during exercise, left ventricular dimensions were intermediate between UP and WI. Heart rate did not differ significantly among the three conditions at rest and at submaximal exercise up to a mean Vo2 of 1.8 1/min. However, at a mean Vo2 of 2.4 1/min, heart rate in the UP was significantly greater than WI (P less than 0.01) and the SP (P less than 0.05). Maximal Vo2 did not differ statistically in the three conditions. These data indicate that a change in central blood volume results in alterations in left ventricular end-diastolic and end-systolic dimensions during moderate levels of exercise and a change in heart rate at heavy levels of exercise.  相似文献   

3.
4.
5.
Summary Ventilation frequency, volume, oxygen uptake, and oxygen transport by the blood have been studied in unrestrained octopus,Octopus vulgaris before, during and after recovery from 20 min of enforced activity. Exercise increased oxygen consumption 2.8 fold. The percentage utilisation of oxygen from the branchial water is maintained or increased at around 35% during activity and the calculated ventilation volume increases by 3 times. Prior to exercise the hemocyanin in arterial blood is 98% saturated and there is 83% utilisation of the oxygen in the blood. During activity there is remarkably little change in blood parameters so that the hemocyanin in the arterial blood remains at 96% saturation and oxygen utilisation is 90%. Cardiac output was calculated to have risen 2.5 fold during activity. As theP O 2 gradients across the gill do not change significantly during exercise the major adaptation which can account for an increase in oxygen consumption must be a 3 fold increase in the transfer factor. At rest 22% of the total CO2 present in the blood is excreted during its passage through the gills and this rises to 32% during activity. There is no accumulation of CO2 and only a slight acidification of the blood during activity. A significant respiratory and metabolic acidosis is avoided and the hemocyanin continues to function normally.  相似文献   

6.
7.
8.
9.
To examine the influence of an increase in central blood volume with head-out water immersion (WI) on the sympathoadrenal response to graded dynamic exercise, nine healthy men underwent upright leg cycle exercise on land and with WI. Plasma norepinephrine and epinephrine concentrations were used as indexes of overall sympathoadrenal activity. Oxygen consumption (VO2), heart rate, systolic blood pressure, and plasma concentrations of norepinephrine, epinephrine, and lactate were determined at work loads corresponding to approximately 40, 60, 80, and 100% peak VO2. Peak VO2 did not differ on land and with WI. Plasma norepinephrine concentration was reduced (P less than 0.05) at 80 and 100% peak VO2 with WI and on land, respectively. Plasma epinephrine and lactate concentrations were similar on land and with WI at the three submaximal work stages, but both were reduced (P less than 0.05) at peak exertion with WI. Heart rate was lower (P less than 0.05) at the three highest work intensities with WI. These results suggest that the central shift in blood volume with WI reduces the sympathoadrenal response to high-intensity dynamic exercise.  相似文献   

10.
We evaluated whether elevated blood lactate concentration during exercise in anemia is the result of elevated production or reduced clearance. Female Sprague-Dawley rats were made acutely anemic by exchange transfusion of plasma for whole blood. Hemoglobin and hematocrit were reduced 33%, to 8.6 +/- 0.4 mg/dl and 26.5 +/- 1.1%, respectively. Blood lactate kinetics were studied by primed continuous infusion of [U-14C]lactate. Blood flow distribution during rest and exercise was determined from injection of 153Gd- and 113Sn-labeled microspheres. Resting blood glucose (5.1 +/- 0.2 mM) and lactate (1.9 +/- 0.02 mM) concentrations were not different in anemic animals. However, during exercise blood glucose was lower in anemic animals (4.0 +/- 0.2 vs. 4.6 +/- 0.1 mM) and lactate was higher (6.1 +/- 0.4 vs. 2.3 +/- 0.5 mM). Blood lactate disposal rates (turnover measured with recyclable tracer, Ri) were not different at rest and averaged 136 +/- 5.8 mumol.kg-1.min-1. Ri was significantly elevated in both control (260.9 +/- 7.1 mumol.kg-1.min-1) and anemic animals (372.6 +/- 8.6) during exercise. Metabolic clearance rate (MCR = Ri/[lactate]) did not differ during rest (151 +/- 8.2 ml.kg-1.min-1); MCR was reduced more by exercise in anemic animals (64.3 +/- 3.8) than in controls (129.2 +/- 4.1). Plasma catecholamine levels were not different in resting rats, with pooled mean values of 0.45 +/- 0.1 and 0.48 +/- 0.1 ng/ml for epinephrine (E) and norepinephrine (NE), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
13.
Arterial and coronary sinus blood levels of catecholamines, adenosine 3', 5'-cyclic monophosphate (c-AMP) and lactate were measured during isometric exercise in fourteen patients. In no patient did lactate production occur. Mean resting total catecholamine levels both arterial (0.53 +/- 0.07 ng/ml; 2.94 +/- 0.38 nmol/l) and coronary sinus (0.4 +/- 0.08 ng/ml; 2.22 +/- 0.44 nmol/l), did not change significantly on exercise. Coronary sinus c-AMP levels fell on exercise from 11.5 +/- 0.8 nmol/l (resting) to 9.9 +/- 0.8 nmol/l (exercise) (P less than 0.01) with an arterial-coronary sinus difference of 1.2 nmol/l (P less than 0.01) on exercise. Our findings suggest that isometric exercise does not normally result in excessive cardiac symphathetic activity.  相似文献   

14.
The overall scheme for control is as follows: central command sets basic patterns of cardiovascular effector activity, which is modulated via muscle chemo- and mechanoreflexes and arterial mechanoreflexes (baroreflexes) as appropriate error signals develop. A key question is whether the primary error corrected is a mismatch between blood flow and metabolism (a flow error that accumulates muscle metabolites that activate group III and IV chemosensitive muscle afferents) or a mismatch between cardiac output (CO) and vascular conductance [a blood pressure (BP) error] that activates the arterial baroreflex and raises BP. Reduction in muscle blood flow to a threshold for the muscle chemoreflex raises muscle metabolite concentration and reflexly raises BP by activating chemosensitive muscle afferents. In isometric exercise, sympathetic nervous activity (SNA) is increased mainly by muscle chemoreflex whereas central command raises heart rate (HR) and CO by vagal withdrawal. Cardiovascular control changes for dynamic exercise with large muscles. At exercise onset, central command increases HR by vagal withdrawal and "resets" the baroreflex to a higher BP. As long as vagal withdrawal can raise HR and CO rapidly so that BP rises quickly to its higher operating point, there is no mismatch between CO and vascular conductance (no BP error) and SNA does not increase. Increased SNA occurs at whatever HR (depending on species) exceeds the range of vagal withdrawal; the additional sympathetically mediated rise in CO needed to raise BP to its new operating point is slower and leads to a BP error. Sympathetic vasoconstriction is needed to complete the rise in BP. The baroreflex is essential for BP elevation at onset of exercise and for BP stabilization during mild exercise (subthreshold for chemoreflex), and it can oppose or magnify the chemoreflex when it is activated at higher work rates. Ultimately, when vascular conductance exceeds cardiac pumping capacity in the most severe exercise both chemoreflex and baroreflex must maintain BP by vasoconstricting active muscle.  相似文献   

15.
16.
17.
18.
19.
The mechanisms responsible for the oxygen uptake (VO2) slow component during high-intensity exercise have yet to be established. In order to explore the possibility that the VO2 slow component is related to the muscle contraction regimen used, we examined the pulmonary VO2 kinetics during constant-load treadmill and cycle exercise at an exercise intensity that produced the same level of lactacidaemia for both exercise modes. Eight healthy subjects, aged 22-37 years, completed incremental exercise tests to exhaustion on both a cycle ergometer and a treadmill for the determination of the ventilatory threshold (defined as the lactate threshold, Th1a) and maximum VO2 (VO2max). Subsequently, the subjects completed two "square-wave" transitions from rest to a running speed or power output that required a VO2 that was halfway between the mode-specific Th1a and VO2max. Arterialised blood lactate concentration was determined immediately before and after each transition. The VO2 responses to the two transitions for each exercise mode were time-aligned and averaged. The increase in blood lactate concentration produced by the transitions was not significantly different between cycling [mean (SD) 5.9 (1.5) mM] and running [5.5 (1.6) mM]. The increase in VO2 between 3 and 6 min of exercise; (i.e. the slow component) was significantly greater in cycling than in running, both in absolute terms [290 (102) vs 200 (45) ml x min(-1); P<0.05] and as a proportion of the total VO2 response above baseline [10 (3)% vs 6 (1)%; P < 0.05]. These data indicate that: (a) a VO2 slow component does exist for high-intensity treadmill running, and (b) the magnitude of the slow component is less for running than for cycling at equivalent levels of lactacidaemia. The greater slow component observed in cycling compared to running may be related to differences in the muscle contraction regimen that is required for the two exercise modes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号