首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vasoactive intestinal peptide (VIP) stimulated in a dose-dependent manner the accumulation of cAMP in human melanoma-derived cell line IGR39. The maximal effect (about 100 times the basal level) was observed with 10 nM VIP. Half-maximum cAMP production was obtained at 0.78 nM VIP. VIP-related peptides were also potent in stimulating the cAMP production in IGR39 cells. The order of potency was VIP much greater than peptide histidine-methioninamide greater than human growth-hormone-releasing factor(1-44) greater than secretin greater than glucagon. Using the same conditions, IGR37 cells, a metastasic counterpart of IGR39 cells, displayed a weak stimulation of cAMP production. After exposure of IGR39 cells to 10 nM VIP, the cAMP response to a new stimulation by VIP was strongly reduced. This desensitization of IGR39 cells to VIP was rapid (t1/2 less than 2 min) and homologous. Preincubation of IGR39 cells in the presence of native VIP induced disappearance of the VIP-binding sites at the cell surface. This phenomenon was dependent on time and VIP concentration. Maximum effect (loss of 80% of binding capacity) was obtained after exposure of the cells at 37 degrees C with a VIP concentration of 1 microM. The t1/2 of maximum disappearance was less than 2 min and the concentration of VIP giving half-maximum decrease in binding of mono[125I]iodinated VIP (125I-VIP) was 8 nM. This phenomenon was also reversible since 85% of the VIP-binding capacity could be restored in less than 1 h by incubating IGR39 cells in a VIP-free medium. The IGR39 cell line should be a useful model for further study of the structure and function of the human VIP receptor.  相似文献   

2.
Isolated rat hepatocytes were pulse-labelled with [35S]methionine at 37 degrees C and subsequently incubated (chased) for different periods of time at different temperatures (37-16 degrees C). The time courses for the secretion of [35S]methionine-labelled albumin and haptoglobin were determined by quantitative immunoprecipitation of the detergent-solubilized cells and of the chase media. Both proteins appeared in the chase medium only after a lag period, the length of which increased markedly with decreasing chase temperature: from about 10 and 20 min at 37 degrees C to about 60 and 120 min at 20 degrees C for albumin and haptoglobin respectively. The rates at which the proteins were externalized after the lag period were also strongly affected by temperature, the half-time for secretion being 20 min at 37 degrees C and 200 min at 20 degrees C for albumin; at 16 degrees C no secretion could be detected after incubation for 270 min. Analysis by subcellular fractionation showed that part of the lag occurred in the endoplasmic reticulum and that the rate of transfer to the Golgi complex was very temperature-dependent. The maximum amount of the two pulse-labelled proteins in Golgi fractions prepared from cells after different times of chase decreased with decreasing incubation temperatures, indicating that the transport from the Golgi complex to the cell surface was less affected by low temperatures than was the transport from the endoplasmic reticulum to the Golgi complex.  相似文献   

3.
Monoclonal antibodies have been produced against primary bone cells obtained from the collagenase digestion of mouse cranial bone. Antibodies were selected on the basis of their immunoglobulin class and those which were identified as IgG were further screened for their ability to inhibit cAMP accumulation in response to sub-maximal doses of the 1-34 amino-terminal peptide of bovine parathyroid hormone, bPTH(1-34). Nine hybridoma clones were subsequently characterized as inhibitory with respect to parathyroid hormone (PTH) responses in intact mouse cranial bone and which also identified a variety of membrane components from detergent extracts of surface-labeled primary bone cells. Five of these antibodies immunoprecipitated a membrane component with Mr of 80 000 that appeared to be a major component of the extract susceptible to surface-labeling with 125I. All nine monoclonal antibodies were shown to bind to a suspended-cell preparation of primary bone cells with 2-3 orders of magnitude greater binding than that of control antibodies. Using this assay, one clone, designated 3G12 IgG, was observed to exhibit desensitization effects at the binding level with a time course and dose dependency for PTH pre-incubation that was similar to the establishment of the refractory state in other systems. In addition, the desensitization effect occurred at 37 degrees C but not at 4 degrees C. This antibody was shown to bind saturably to both intact mouse cranial bone and primary bone cells with an apparent affinity constant (Ka) in the range of 10(9) M. Inhibition of bone cAMP accumulation in response to 2.5 nM bPTH(1-34) was directly correlated to the binding of 3G12 IgG to intact mouse calvariae. A maximum inhibition of approximately 85% was observed. 3G12 IgG immunoprecipitated a single membrane component, Mr 150 000, from NP-40 detergent extracts of 125I-labeled primary mouse bone cells. The molecular mass of this component was also 150 000 daltons when run on polyacrylamide gel slabs under non-reducing conditions. Control and PTH-pre-treated bone cells were surface-labeled, detergent-solubilized and immunoprecipitated with 3G12 IgG in order to investigate further the desensitization effect at the molecular level. Incubation of bone cells with 1 microgram/ml bPTH(1-34) for 45 min at 37 degrees C caused an increased susceptibility to surface-labeling with 125I that was approximately three-fold higher in specific activity than that of control cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
A number of mammalian enzymes have been expressed in Escherichia coli using the T7 RNA polymerase system, but the production of large amounts of these proteins has been limited by the low percentage of active enzyme that is found in the soluble fraction. In this report the effect of induction temperature was tested on the recovery of four rat liver enzymes, 6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase, fructose-2,6-bisphosphatase, glucokinase, and fructose-1,6-bisphosphatase. We also tested the effect using a host cell strain that contains a plasmid encoding T7 lysozyme, an inhibitor of T7 RNA polymerase. Large amounts of the first three enzymes accumulated in the cells after 4 h of induction at 37 degrees C, but only about 1-2% of the total expressed proteins were recovered in a soluble, active form. When the induction was carried out at 22 degrees C for 48 h with the pLysS strain, 20- to 30-fold higher amounts of the active expressed enzymes were recovered in the soluble fraction, even though the total accumulation and the rate of synthesis of these proteins were reduced. The optimal concentration of isopropyl-1-thio-beta-D-galactopyranoside required for induction was the same at both temperatures. On the other hand, the recovery of active fructose-1,6-bisphosphatase, a heat-stable enzyme, was 66% at 37 degrees C and was essentially unchanged at an induction temperature of 22 degrees C. Lowered induction temperature would appear to be of utility for enhanced recovery of active mammalian enzymes which are insoluble in E. coli cytosol at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Pulmonary surfactant is synthesised in alveolar type II cells and secreted into the lining of the lung in response to ventilation, temperature changes and autonomic neurotransmitters. Type II cells were isolated from the heterothermic marsupial, Sminthopsis crassicaudata. The neurotransmitters, isoproterenol and carbamylcholine chloride significantly increased phosphatidylcholine secretion at 37 degrees C (basal: 14.2%, isoproterenol: 20.1%, carbamylcholine: 17.0%). Temperature reduced the rate of secretion from dunnart type II cells (e.g. basal: 14.2% at 37 degrees C; 7.2% at 18 degrees C). However, the change in secretory rate between 37 degrees C and 18 degrees C was less than expected if due to temperature alone (Q10= 1.4). The surfactant secretory pathway is therefore modulated by factors other than and in addition to, temperature. The response of dunnart type II cells to the agonists remained the same at both temperatures. Basal secretion was higher in dunnart type II cells (14.2% in 4 h) than has been reported in rat type II cells (1.9% in 3 h) and consequently, the agonist-stimulated increases in secretion from dunnart type II cells (41% above basal in 4 h) were much lower than observed for rat type II cells (200% above basal in 1.5 h).  相似文献   

6.
Assembly of nicotinic acetylcholine receptor (AChR) subunits was investigated using mouse fibroblast cell lines stably expressing either Torpedo (All-11) or mouse (AM-4) alpha, beta, gamma, and delta AChR subunits. Both cell lines produce fully functional cell surface AChRs. We find that two independent treatments, lower temperature and increased intracellular cAMP can increase AChR expression by increasing the efficiency of subunit assembly. Previously, we showed that the rate of degradation of individual subunits was decreased as the temperature was lowered and that Torpedo AChR expression was acutely temperature sensitive, requiring temperatures lower than 37 degrees C. We find that Torpedo AChR assembly efficiency increases 56-fold as the temperature is decreased from 37 to 20 degrees C. To determine how much of this is a temperature effect on degradation, mouse AChR assembly efficiencies were determined and found to be only approximately fourfold more efficient at 20 than at 37 degrees C. With reduced temperatures, we can achieve assembly efficiencies of Torpedo AChR in fibroblasts of 20-35%. Mouse AChR in muscle cells is also approximately 30% and we obtain approximately 30% assembly efficiency of mouse AChR in fibroblasts (with reduced temperatures, this value approaches 100%). Forskolin, an agent which increases intracellular cAMP levels, increased subunit assembly efficiencies twofold with a corresponding increase in cell surface AChR. Pulse-chase experiments and immunofluorescence microscopy indicate that oligomer assembly occurs in the ER and that AChR oligomers remain in the ER until released to the cell surface. Once released, AChRs move rapidly through the Golgi membrane to the plasma membrane. Forskolin does not alter the intracellular distribution of AChR. Our results indicate that cell surface expression of AChR can be regulated at the level of subunit assembly and suggest a mechanism for the cAMP-induced increase in AChR expression.  相似文献   

7.
Mouse lymphoma L5178 Y-S and Y-R cells differing in radiosensitivity by 1.5 times were treated with benzamide, an inhibitor of poly(ADP-ribosylation), for 24 h before and 18 h after X-irradiation, and incubated after irradiation at 25 degrees C and 37 degrees C. Clonogenic capacity of LY-S cells incubated at 25 degrees C exceeded that of the same cells incubated at 37 degrees C; the clonogenic capacity of LY-R cells did not vary with the postirradiation incubation temperature. Benzamide increased equally the radiosensitivity of LY-R cells incubated at both temperatures, whereas that of LY-S cells was only increased at 37 degrees C. Repair of potentially lethal damages to LY-S cells incubated at 25 degrees C was independent of the effectiveness of poly(ADP-ribosylation).  相似文献   

8.
A psychrotrophic pseudomonad isolated from iced fish oxidized alanine at temperatures close to 0 degrees C and grew over the range 0 degrees C-35 degrees C. The rate of oxidation of alanine, measured manometrically, by cells grown at 2 degrees C was lower than that of cells grown at 22 degrees C. However, the consumption of oxygen after heat treatment at 35 degrees for 35 min was reduced considerably by 2 degrees C grown cells. Alanine oxidase activity was tested in an extract from cells grown at 2 degrees C and 22 degrees C with alanine as the sole carbon, nitrogen, and energy source. Cells grown at 2 degrees C produced an alanine oxidase with a temperature optimum of 35 degrees C and pH optimum of 8, which lost about 80% activity by heat treatment at 40 degrees C for 30 min. There was no change in activity after dialysis at pH 7, 8, or 9. Extracts from cells grown at 22 degrees C contained an alanine oxidase system with an optimum temperature of 45 degrees C, a pH optimum above 8, and only about 30% reduction of activity after heat treatment. This enzyme activity was concentrated in the 0.5 M elution fraction from a Sephadex column, and dialysis reduced the activity at pH 7 and 8. Mesophilic enzyme synthesis apparently started around a growth temperature of 10 degrees C. The crude alanine oxidase systems of Pseudomonas aeruginosa derived from cells grown at 13 degrees C and 37 degrees C had a common optimum temperature of 45 degrees C. These data suggest that one mechanism of psychrophilic growth by psychrotrophic bacteria may be the induction of enzymes with low optimum temperatures in response to low temperature conditions.  相似文献   

9.
The role of hormone receptor lateral mobility in signal transduction was studied using a cellular system in which the receptor mobile fraction could be reversibly modulated to largely varying extents. The G-protein-coupled vasopressin V2-type receptor was labeled in LLC-PK1 renal epithelial cells using a fluorescent analogue of vasopressin, and receptor lateral mobility measured using fluorescence microphotolysis (fluorescence photobleaching recovery). The receptor mobile fraction (f) was approximately 0.9 at 37 degrees C and less than 0.1 at 10 degrees C, in accordance with previous studies. When cells were incubated for 1 h at 4 degrees C without hormone, and then warmed up to 37 degrees C and labeled with the vasopressin analogue, f increased from approximately 0.4 to 0.8 over approximately 1 h. The apparent lateral diffusion coefficient was not markedly affected by temperature pretreatment. Studies with radiolabeled vasopressin indicated that temperature pretreatment influenced neither receptor number nor binding/internalization kinetics. F-actin staining revealed that temperature change resulted in reversible changes of cytoskeletal structure. The maximal rate of in vivo cAMP production at 37 degrees C in response to vasopressin, but not to forskolin (receptor-independent agonist), was also markedly influenced by preincubation of cells at 4 degrees C, thus paralleling the effects of temperature preincubation on f. A linear correlation between f and maximal cAMP production was observed, suggesting that the receptor mobile fraction is a key parameter in hormone signal transduction in vivo. We conclude that mobile receptors are required to activate G-proteins, and discuss the implications of this for signal transduction mechanisms.  相似文献   

10.
In CHO and R1H cells thermotolerance was induced by a pre-incubation at 40 degrees C, by an acute heat shock at 43 degrees C followed by a time interval at 37 degrees C, and during continuous heating at 42 degrees C. Thermotolerance, which was tested at 43 degrees C, primarily causes an increase in D0 of the heat-response curve. The degree of maximum thermotolerance was found to be generally more pronounced in CHO than in R1H cells, but the time interval at 37 degrees C, as well as at 40 degrees C, to reach this maximum level was the same in both cell lines. CHO and R1H cells could be sensitized to 40 degrees C by a pre-treatment at 43 degrees C. When compared for the same survival rate after pre-treatment at 43 degrees C alone the degree of thermosensitization was about the same in both cell lines. In either cell line thermosensitization was found to be suppressed when cells were made thermotolerant by a previous incubation at 40 degrees C for 16 hours.  相似文献   

11.
Harper JL  Daly JW 《Life sciences》2000,67(6):651-662
The effect of temperature on calcium release and influx has been compared in differentiated and undifferentiated HL-60 cells. Receptor-mediated release of intracellular calcium by ATP was little affected by temperature in HL-60 cells. In differentiated HL-60 cells the store-operated calcium (SOC) channel-dependent sustained elevation of calcium levels after ATP was maximal at 25-29 degrees C; at higher temperatures calcium levels returned relatively rapidly towards basal levels. In undifferentiated cells, a SOC channel-dependent sustained elevation of calcium levels was not observed with levels returning to basal levels much more rapidly than in differentiated cells. The initial thapsigargin-initiated elevation of calcium did not become maximal until about 25 degrees C in both differentiated and undifferentiated HL-60 cells. In differentiated cells, the SOC channel-dependent sustained elevation of calcium after thapsigargin was maximal at 30-37 degrees C, while in undifferentiated cells, the sustained elevation was maximal at 25-30 degrees C. Loperamide, which augments the SOC channel-dependent sustained elevation of calcium, showed a temperature-dependent response that was maximal at about 22 degrees C after either ATP or thapsigargin and was minimal at 37 degrees C. In contrast, inhibition of SOC channel-dependent elevation of calcium by miconazole or trifluoperazine was not greatly affected by temperature.  相似文献   

12.
To analyze the role of SV40 genome in the phenotypic alterations previously observed in SV40-transformed cell lines, we infected rabbit renal cortical cells with a temperature-sensitive SV40 mutant strain (tsA58) and compared the cell phenotypes at temperatures permissive (33 degrees C) and restrictive (39.5 degrees C) for SV40 genome expression. At both temperatures, the resulting cell line (RC.SVtsA58) expresses cytokeratin and uvomorulin, but epithelial differentiation is more elaborate at 39.5 degrees C as shown by the formation of a well-organized cuboidal monolayer with numerous tight junctions and desmosomes. Functional characteristics are also markedly influenced by the culture temperature: cells grown at 33 degrees C respond only to isoproterenol (ISO, 10(-6) M) by a sevenfold increase in cAMP cell content above basal values; in contrast, when transferred to 39.5 degrees C, they exhibit increased sensitivity to ISO (ISO/basal: 19.1) and a dramatic response to 10(-7) M dDarginine vasopressin (dDAVP/basal: 18.2, apparent Ka: 5 X 10(-9) M) which peaks 48 h after the temperature shift. The latter is associated with membrane expression of V2-type AVP receptors (approximately 50 fmol/10(6) cells) which are undetectable when SV40 genome is activated (33 degrees C). Clonal analysis, additivity studies, and desensitization experiments argue for the presence of a single cell type responsive to both AVP and ISO. The characteristics of the RC. SVtsA58 cell line at 39.5 degrees C (effector-stimulated cAMP profile, lack of expression of brush-border hydrolases and Tamm-Horsfall protein) suggest that it originates from the cortical collecting tubule, and probably from principal cells.  相似文献   

13.
Characterization of cold-sensitive secY mutants of Escherichia coli.   总被引:10,自引:2,他引:8       下载免费PDF全文
Mutations which cause poor growth at a low temperature, which affect aspects of protein secretion, and which map in or around secY (prlA) were characterized. The prlA1012 mutant, previously shown to suppress a secA mutation, proved to have a wild-type secY gene, indicating that this mutation cannot be taken as genetic evidence for the secA-secY interaction. Two cold-sensitive mutants, the secY39 and secY40 mutants, which had been selected by their ability to enhance secA expression, contained single-amino-acid alterations in the same cytoplasmic domain of the SecY protein. Protein export in vivo was partially slowed down by the secY39 mutation at 37 to 39 degrees C, and the retardation was immediately and strikingly enhanced upon exposure to nonpermissive temperatures (15 to 23 degrees C). The rate of posttranslational translocation of the precursor to the OmpA protein (pro-OmpA protein) into wild-type membrane vesicles in vitro was only slightly affected by reaction temperatures ranging from 37 to 15 degrees C, and about 65% of OmpA was eventually sequestered at both temperatures. Membrane vesicles from the secY39 mutant were much less active in supporting pro-OmpA translocation even at 37 degrees C, at which about 20% sequestration was attained. At 15 degrees C, the activity of the mutant membrane decreased further. The rapid temperature response in vivo and the impaired in vitro translocation activity at low temperatures with the secY39 mutant support the notion that SecY, a membrane-embedded secretion factor, participates in protein translocation across the bacterial cytoplasmic membrane.  相似文献   

14.
The present study was undertaken to establish whether molecular events leading to binding, transformation-activation, and nuclear translocation of cytoplasmic uterine estrogen receptor described for cell-free systems also occur in intact uterine cells. Cell suspensions were incubated at 0 degrees C or 37 degrees C with estradiol (E2) and specific binding to intracellular receptors was measured. The data demonstrate that saturation of specific estrogen binding sites occurs within 60 min at 37 degrees C and within 22 h at 0 degrees C, with a total of approximately 24,000 to 30,000 receptor sites per cell. At equilibrium, the total number and subcellular distribution of receptor . estradiol (R . E2) complexes formed in cells incubated at 0 degrees C or 37 degrees C were identical. Scatchard analysis of the equilibrium binding data yielded the same association constants for cytoplasmic and nuclear R . E2 formed in intact cells incubated at either temperature. Sucrose density gradient analysis of nuclear and cytoplasmic R . E2 formed in intact cells at 0 degrees C or 37 degrees C showed that at both temperatures, the nuclear R . E2 had a 5 S sedimentation coefficient; at both temperatures, a 5 S cytosol R . E2 was detected; only in the 0 degrees C incubation, an additional 4 S cytosol R . E2 was found. These results suggest that the molecular interactions regulating the dynamics of estrogen binding in the intact cell are similar at both physiological and low temperatures.  相似文献   

15.
Curves describing the loss of K from human red cells as a function of time can be interpreted in terms of an equation which treats the K content of the cell (varphi) as the result of an accumulation process occurring at a rate P and an outward diffusion process regulated by a constant a. The equation is useful for describing the observations and for exploring the mechanisms which may be responsible for the K losses, although it cannot be used for analyzing the experimental data in a strict sense in the absence of independent metabolic data because P and a may both be functions of time. The applicability of the equation is illustrated by its use in connection with experimental curves showing K loss as a function of time at 4 degrees , 25 degrees , and 37 degrees C. for systems containing human red cells in isotonic NaCl or NaCl-buffer. At 4 degrees C., the K loss follows an exponential curve approaching an asymptote in the neighborhood of varphi = 0.50 +/- 0.15. The corresponding value of P implies that the cells are able to accumulate about 0.6 per cent of their initial K per hour under these conditions. At 25 degrees C., the K loss starts exponentially but becomes roughly linear with time after 24 to 48 hours. The change of form is probably due to the appearance of autolysins in the system. Curves of a similar mixed or intermediate form may be obtained even at 4 degrees C. if the observations are sufficiently extended and if spontaneous hemolysis becomes appreciable. At 37 degrees C., the K loss is exponential for the first 24 to 36 hours, the curves approaching asymptotes which, translated into terms of P, indicate that the cells can accumulate about 7 +/- 3 per cent of their initial K per hour. After this time autolysis begins to affect the shape of the curves, the rate of K loss increasing rapidly. The effect of adding fluoride or iodoacetate is to lower the position of the asymptote to which the curves proceed; i.e., to decrease the accumulation rate P, to increase the diffusion constant a, or both. Cyanide has almost no effect. Hypotonicity has little effect on the rate of K loss at 37 degrees C.; at 4 degrees C., the rate of loss is somewhat less in hypotonic NaCl. The observation that the K loss in systems at 4 degrees C. and containing as much as 0.086 M NaF does not become complete, but proceeds exponentially towards an asymptote between varphi = 0.2 and 0.4, suggests that 20 to 40 per cent of the cell K is much less diffusible than the remainder at low temperatures and in the absence of lytic substances. A similar conclusion is suggested by the form of the curve for K loss into saline at 4 degrees C., an accumulation rate of 0.6 m. eq./litre of cells/hour at the end of 100 hours or more being improbably great for a system at such a low temperature and containing no added glucose.  相似文献   

16.
Intracellular particle movements, of both saltatory and streaming types, in HeLa S-3 cells were simultaneously interrupted after 1 h exposure of cells to 43 degrees C, within 10 min at 44 degrees C and within 5 min at 45 degrees C. Intracellular movement inhibited after 15 min at 44 degrees C and 10 min at 45 degrees C was not reversible in cells rescued at 37 degrees C. Brownian motion was not observed in heat-treated cells while they were maintained at elevated temperatures, but became pronounced in blebbing which occurred shortly after they were returned to 37 degrees C. Returning these cells to 45 degrees C intensified the Brownian activity inside blebs, and rapidly induced cell lysis. The same heat-treated cells were simultaneously studied by laser-Doppler microscopy, which confirmed: a) that flow (cytoplasmic streaming) is completely arrested at 44 degrees C within 10 min, b) flow recovered in 10-15 min in cells rescued after 10-15 min at 44 degrees C, c) submicroscopic particles down to the size of water molecules had faster self-diffusion coefficients at 44 degrees C than at 37 degrees C. Proton nmr studies on cells exposed from 4 to 45 degrees C gave corrected relaxation times T1 and T2 which rose with temperature in a predictable manner. Inhibition of cellular movement at elevated temperatures was not specifically attributable to the depletion of intracellular ATP levels.  相似文献   

17.
Brachiola (Nosema) algerae is a microsporidian species generally believed to be an intracellular parasite of insects, especially mosquitoes. However, both mosquito and human isolates have been shown to infect mammalian cells. The present study was undertaken to determine if spores of two insect and two human isolates of B. algerae cultured at 30 degrees C and 37 degrees C differed in their ability to germinate and infect cultured green monkey kidney cells at these two temperatures. Spores from all four isolates exhibited an optimum pH of 9.5 for germination. Mercury (Hg2+) inhibited germination of all isolates equally. Germination of spores from all four isolates was significantly greater when the parasite was cultured at 30 degrees C than when cultured at 37 degrees C. However, spores from the insect isolates cultivated at 30 degrees C or 37 degrees C infected significantly fewer mammalian cells at 37 degrees C than did spores from the human isolates under the same conditions. Thus, there is no correlation between the effects of temperature on the germination and the infectivity of an isolate. In addition, while exposure of B. algerae to 37 degrees C has been reported to cause spore dysmorphism, we failed to observe any consistent ultrastructural changes that explained the greater infectivity of the human isolates at 37 degrees C.  相似文献   

18.
Absorption of power in large body volumes can occur with some approaches used for hyperthermia treatment of cancer. A systemic heat absorption rate exceeding the heat dissipation rate can lead to systemic temperature elevation that limits the magnitude and duration of application of power and hence the degree of preferential tumor temperature rise. We describe a hyperthermia approach consisting of regional electromagnetic power absorption and extracorporeal blood cooling with regulation of both systemic heat absorption and dissipation rates ("balanced heat transfer"). A test of this approach in five dogs with nonperfused tumor models demonstrated intratumoral temperatures greater than 42 degrees C, while systemic temperature remained at 33 degrees C and visceral temperatures within the heated region equilibrated between 33 and 42 degrees C. Solutions of the bioheat transfer equation were obtained for a simplified model with a tumor perfusion rate lower than surrounding normal tissue perfusion rate. In this model, the use of arterial blood temperatures less than 37 degrees C allowed higher power densities to be used, for given normal tissue temperatures, than when arterial temperature was greater than or equal to 37 degrees C. As a result, higher intratumoral temperatures were predicted. Control of arterial blood temperature using extracorporeal cooling may thus (1) limit systemic temperature rise produced by regional heating devices and (2) offer a means of improving intratumoral temperature elevations.  相似文献   

19.
This study was designed to investigate whether thermotolerant roots exhibit respiratory acclimation to elevated temperatures. Root respiratory acclimation traits in response to increasing temperatures were compared between two Agrostis species contrasting in heat tolerance: thermal A. scabra and heat-sensitive A. stolonifera. Roots of both species were exposed to 17, 27, or 37 degrees C. Root RGR declined with increasing temperatures from 17 degrees C to 37 degrees C in both species; however, root growth of A. scabra maintained a significantly higher RGR than A. stolonifera at 27 degrees C or 37 degrees C. A. scabra exhibited a significantly higher respiration acclimation potential to elevated temperatures, both in the short term (60 min) and in the long term (7-28 d) as compared with A. stolonifera, when temperatures increased from 17 degrees C to 27 degrees C or from 27 degrees C to 37 degrees C. Thermal A. scabra also maintained a significantly lower maintenance cost than A. stolonifera as temperatures increased to 27 degrees C or 37 degrees C. The results suggested that root thermotolerance of thermal A. scabra was associated with both short-term and long-term respiratory acclimation to changes in temperatures. The superior ability of adjusting the rate of root respiration to compensate for increases in carbon demand during short- or long-term temperature increases in the heat-tolerant A. scabra may result in the reduction in carbon expenditure or costs for maintenance, leading to extended root survivability in high temperature soils.  相似文献   

20.
Analysis of the temperature dependence of the monosaccharide transport system in the yeast Rhodotorula gracilis (ATCC 26194, CBS 6681), as tested with D-xylose, revealed that the apparent affinity of the transport system, measured as the reciprocal of the half-saturation constant KT, increased when transport velocity was stimulated by temperature (15--30 degrees C) and decreased when the rate of uptake was reduced at temperatures aboce 30 degrees C. Breaks in Arrhenius plots were accompanied by corresponding breaks in van't Hoff plots. Whereas untreated cells exhibited in the van't Hoff plot a discontinuity at 28--30 degrees C this was not observed in heat-treated cells (at either 37 or 45 degrees C). In heat-treated cells the maximum transport velocity was always lower and the apparent affinity higher than in untreated cells at the same temperature; the optimum temperature for both transport velocity and apparent affinity was shifted to higher values. The data are interpreted in terms of a reversible phase transition of membrane lipids effecting an irreversible alteration of membrane structure. The temperature-induced reversible alkalinization of unbuffered yeast suspensions supports this interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号