首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this research was to assess the feasibility of using lyophilization to stabilize an exploratory compound, CNK-20402, with a minimal amount of impurity (CNK-20193) formation. A mixed-level full factorial experimental design was used to screen excipients of glycine, mannitol, lactose monohydrate, and povidone K-12. Cryostage microscopy, powder X-ray diffraction, Karl Fischer titration, HPLC, and water vapor sorption were used to assess the formulations' physicochemical properties and stability. Initial physical characterization from powder X-ray diffraction revealed that the mannitol- and glycine-containing formulations were crystalline with the patterns of the pure excipient, whereas the remaining formulations were amorphous in structure. Chemically, the formulations stored at 50°C for 1 month had 2.36%, 1.05%, 0.81%, 0.79%, and 0.49% CNK-20193 for glycine, mannitol, drug alone, povidone K-12, and lactose formulations, respectively. The formulations containing drug-mannitol, drug alone, and druglactose were selected for accelerated stability study based on statistical analysis. Recovery of CNK-20193 in these formulations was 1.22%, 1.00%, and 0.55%, respectively, when stored at 40°C/75% relative humidity storage conditions for 3 months. Water vapor sorption analysis revealed weight gains of over 7%, 21%, and 24% for the mannitol, lactose, and drug alone formulations, respectively. Testing formulations with different concentrations of lactose by water vapor sorption indicated that CNK-20402 concentrations as low as 10% (wt/wt) could inhibit the recrystallization of lactose. The lactose-containing formulation exhibited the best stability among the formulations tested. The protective mechanism of lactose on the CNK-20402, based on water vapor sorption studies, is believed to be a result of (1) the drug-lactose interaction, and (2) competition between lactose and drug for the residual water in the formulation. Published: September 20, 2005  相似文献   

2.
Development of palatable formulations for pediatric and geriatric patients involves various challenges. However, an innovative development with beneficial characteristics of marketed formulations in a single formulation platform was attempted. The goal of this research was to develop solid oral flexible tablets (OFTs) as a platform for pediatrics and geriatrics as oral delivery is the most convenient and widely used mode of drug administration. For this purpose, a flexible tablet formulation using cetirizine hydrochloride as model stability labile class 1 and 3 drug as per the Biopharmaceutical Classification System was developed. Betadex, Eudragit E100, and polacrilex resin were evaluated as taste masking agents. Development work focused on excipient selection, formulation processing, characterization methods, stability, and palatability testing. Formulation with a cetirizine-to-polacrilex ratio of 1:2 to 1:3 showed robust physical strength with friability of 0.1% (w/w), rapid in vitro dispersion within 30 s in 2–6 ml of water, and 0.2% of total organic and elemental impurities. Polacrilex resin formulation shows immediate drug release within 30 min in gastric media, better taste masking, and acceptable stability. Hence, it is concluded that ion exchange resins can be appropriately used to develop taste-masked, rapidly dispersible, and stable tablet formulations with tailored drug release suitable for pediatrics and geriatrics. Flexible formulations can be consumed as swallowable, orally disintegrating, chewable, and as dispersible tablets. Flexibility in dose administration would improve compliance in pediatrics and geriatrics. This drug development approach using ion exchange resins can be a platform for formulating solid oral flexible drug products with low to medium doses.  相似文献   

3.
Phase transformations in formulations can lead to instability in physicochemical, biopharmaceutical, and processing properties of products. The influences of formulation design on the optimal dosage forms should be specified. The aim here was to investigate whether excipients with different water sorption behavior affect hydrate formation of nitrofurantoin in wet masses. Nitrofurantoin anhydrate was used as a hydrate-forming model drug, and 4 excipients with different water-absorbing potential (amorphous low-substituted hydroxypropylcellulose, modified maize starch, partially amorphous silicified microcrystalline cellulose, and crystalline α-lactose monohydrate) were granulated with varying amounts of purified water. Off-line evaluation of wet masses containing nitrofurantoin anhydrate and excipient (1∶1) was performed using an X-ray powder diffractometer (XRPD) and near-infrared spectroscopy, and drying phase was evaluated by variable temperature XRPD. Only amorphous excipient in the formulation retarded hydrate formation of an active pharmaceutical ingredient (API) at high water contents. Hygroscopic partially crystalline excipient hindered hydrate formation of API at low water contents. Crystalline excipient was unable to control hydrate formation of API. The character of excipient affects the stability of formulation. Thus, correct selection of excipients for the formulation can control processing-induced phase transitions and improve the storage stability of the final dosage form. Published: October 6, 2005  相似文献   

4.
A nanoparticle formulation of docetaxel (DTX) was designed to address the strengths and limitations of current taxane delivery systems: PEGylation, high drug conjugation efficiency (>30 wt %), a slow-release mechanism, and a well-defined and stable nanoparticle identity were identified as critical design parameters. The polymer conjugate was synthesized with carboxymethylcellulose (CMC), an established pharmaceutical excipient characterized by a high density of carboxylate groups permitting increased conjugation of a drug. CMC was chemically modified through acetylation to eliminate its gelling properties and to improve solvent solubility, enabling high yield and reproducible conjugation of DTX and poly(ethylene glycol) (PEG). The optimal conjugate formulation (Cellax) contained 37.1 ± 1.5 wt % DTX and 4.7 ± 0.8 wt % PEG, exhibited a low critical aggregation concentration of 0.6 μg/mL, and formed 118-134 nm spherical nanoparticles stable against dilution. Conjugate compositions with a DTX degree of substitution (DS) outside the 12.3-20.8 mol % range failed to form discrete nanoparticles, emphasizing the importance of hydrophobic and hydrophilic balance in molecular design. Cellax nanoparticles released DTX in serum with near zero order kinetics (100% in 3 weeks), was internalized in murine and human cancer cells, and induced significantly higher toxic effects against a panel of tumor cell lines (2- to 40-fold lower IC50 values) compared to free DTX.  相似文献   

5.
Due to its extreme lipophilicity, the oral delivery of cinnarizine (CN) encounters several problems such as poor aqueous solubility and pH-dependent dissolution, which result in low and erratic bioavailability. The current study aims to design self-nanoemulsifying drug delivery systems (SNEDDS) of CN that circumvent such obstacles. Equilibrium solubility of CN was determined in a range of anhydrous and diluted lipid-based formulations. Dynamic dispersion tests were carried out to investigate the efficiency of drug release and magnitude of precipitation that could occur upon aqueous dilution. Droplet sizes of selected formulations, upon (1:1,000) aqueous dilution, were presented. The optimal formulations were enrolled in subsequent dissolution studies. The results showed that increasing lipid chain length and surfactant lipophilicity raised the formulation solvent capacity, while adding co-solvents provoked a negative influence. The inclusion of mixed glycerides and/or hydrophilic surfactants improved the drug release efficiency. Generally, no significant precipitation was observed upon aqueous dilution of the formulations. Five formulations were optimal in terms of their superior self-emulsifying efficiency, drug solubility, dispersion characteristics, and lower droplet size. Furthermore, the optimal formulations showed superior dissolution profile compared to the marketed (Stugeron®) tablet. Most importantly, they could resist the intensive precipitation observed with the marketed tablet upon shifting from acidic to alkaline media. However, SNEDDS containing medium-chain mixed glycerides showed the highest drug release rate and provide great potential to enhance the oral CN delivery. Accordingly, the lipid portion seems to be the most vital component in designing CN self-nanoemulsifying systems.  相似文献   

6.
The first successful development of controlled microwave processing for pharmaceutical formulations is presented and illustrated with a model drug (ibuprofen) and two excipients (stearic acid and polyvinylpyrrolidone). The necessary fine temperature control for formulation with microwave energy has been achieved using a uniquely modified microwave oven with direct temperature measurement and pulse-width modulation power control. In addition to comparing microwave and conventional heating, the effect of the presence of liquid (water) in aiding the mixing of the drug and excipient during formulation was also investigated. Analysis of the prepared formulations using differential scanning calorimetry and dissolution studies suggest that microwave and conventional heating produce similar products when applied to mixtures of ibuprofen and stearic acid. However, the differences were observed for the ibuprofen and polyvinylpyrrolidone formulation in terms of the dissolution kinetics. In all cases, the presence of water did not appear to influence the formulation to any appreciable degree. The application of controllable microwave heating is noteworthy as fine temperature control opens up opportunities for thermally sensitive materials for which microwave methods have not been feasible prior to this work.  相似文献   

7.
Demonstrations of bio-similarity between subsequent entry (follow-on) biologics and innovator’s formulated drug products may depend upon methods that either remove excipients completely or allow the exchange of excipients to give equivalent formulations. Excipient exchange through dialysis is perhaps the simplest of such methods but its use has been hotly debated. This debate, in the absence of published data, has relied largely on theoretical considerations. This study presents data that indicate that excipient exchange can allow comparisons of different formulations of the same therapeutic protein. The use of excipient exchange to and from one concentration of mannitol to another or to a mixture of glycine and mannitol was reproducibly demonstrated for recombinant human growth hormone (rhGH). We show that marketed rhGH products from several different manufacturers exhibit differences in conformational stability when compared directly. These differences, however, are shown to be the result of differences in formulation rather than in the drug substance itself and were removed through excipient exchange. The data presented, therefore, also indicate that failure to assure a common excipient background can lead to erroneous conclusions about the similarities and differences in the physico-chemical properties of two preparations of the same therapeutic protein made by different manufacturing processes.  相似文献   

8.
The polyelectrolyte complex (PEC) hydrogel beads based on chitosan (CS) and carrageenan (CR) have been studied as a controlled release device to deliver sodium diclofenac (DFNa) in the simulated gastrointestinal condition. Various factors potentially influencing the drug release (ie, CS/CR proportion, DFNa content, types and amount of cross-linking agents) were also investigated. The optimal formulation was obtained with CS/CR proportion of 2/1 and 5% (wt/vol) DFNa. The controlled release of the drug from this formulation was superior to other formulations and was able to maintain the release for approximately 8 hours. Upon cross-linking with glutaric acid and glutaraldehyde, the resulting beads were found to be more efficient for prolonged drug release than their non-cross-linking counterparts. The bead cross-linked with glutaraldehyde was able to control the release of the drug over 24 hours. The difference in the drug release behavior can be attributed to the differences in ionic interaction between the oppositely charged ions and to the concentrations of the drug within the beads, which depends on the compositions of the formulation and the pH of the dissolution medium. The release of drug was controlled by the mechanism of the dissolution of DFNa in the dissolution medium and the diffusion of DFNa through the hydrogel beads.  相似文献   

9.
Stability is one of the most important properties of drug candidates. Instable compounds can lead to false positive high‐throughput screening (HTS) hits, incorrect bioassay results, erroneous structure–activity relationships (SAR), low oral bioavailability, drug withdrawal, toxic reactions from degradation products, and difficult formulation development. Screening of stability has been implemented early in drug discovery to identify labile chemotypes and guide structural modification. The most commonly applied stability studies in drug discovery are stability–pH profile, stability in gastrointestinal fluids, stability in bioassay media, excipient compatibility, and prodrug screening. The strategy enhances the quality of drug development candidates and reduces the risks.  相似文献   

10.
The present work was undertaken with the objectives of improving the dissolution velocity, related oral bioavailability, and minimizing the fasted/fed state variability of repaglinide, a poorly water-soluble anti-diabetic active by exploring the principles of nanotechnology. Nanocrystal formulations were prepared by both top-down and bottom-up approaches. These approaches were compared in light of their ability to provide the formulation stability in terms of particle size. Soluplus® was used as a stabilizer and Kolliphor™ E-TPGS was used as an oral absorption enhancer. In vitro dissolution profiles were investigated in distilled water, fasted and fed state simulated gastric fluid, and compared with the pure repaglinide. In vivo pharmacokinetics was performed in both the fasted and fed state using Wistar rats. Oral hypoglycemic activity was also assessed in streptozotocin-induced diabetic rats. Nanocrystals TD-A and TD-B showed 19.86 and 25.67-fold increase in saturation solubility, respectively, when compared with pure repaglinide. Almost 10 (TD-A) and 15 (TD-B)-fold enhancement in the oral bioavailability of nanocrystals was observed regardless of the fasted/fed state compared to pure repaglinide. Nanocrystal formulations also demonstrated significant (p < 0.001) hypoglycemic activity with faster onset (less than 30 min) and prolonged duration (up to 8 h) compared to pure repaglinide (after 60 min; up to 4 h, respectively).KEY WORDS: diabetes mellitus, fasted and fed state variability, nanocrystal, oral hypoglycemic activity, repaglinide  相似文献   

11.
The aim of the present study was to investigate the potential of a nanoemulsion formulation for transdermal delivery of aceclofenac. Various oil-in-water nanoemulsions were prepared by the spontaneous emulsification method. The nanoemulsion area was identified by constructing pseudoternary phase diagrams. The prepared nanoemulsions were subjected to different thermodynamic stability tests. The nanoemulsion formulations that passed thermodynamic stability tests were characterized for viscosity, droplet size, transmission electron microscopy, and refractive index. Transdermal permeation of aceclofenac through rat abdominal skin was determined by Franz diffusion cell. The in vitro skin permeation profile of optimized formulations was compared with that of aceclofenac conventional gel and nanoemulsion gel. A significant increase in permeability parameters such as steady-state flux (J(ss)), permeability coefficient (K(p)), and enhancement ratio (E(r)) was observed in optimized nanoemulsion formulation F1, which consisted of 2% wt/wt of aceclofenac, 10% wt/wt of Labrafil, 5% wt/wt of Triacetin, 35.33% wt/wt of Tween 80, 17.66% wt/wt of Transcutol P, and 32% wt/wt of distilled water. The anti-inflammatory effects of formulation F1 showed a significant increase (P < .05) in percent inhibition value after 24 hours when compared with aceclofenac conventional gel and nanoemulsion gel on carrageenan-induced paw edema in rats. These results suggested that nanoemulsions are potential vehicles for improved transdermal delivery of aceclofenac.  相似文献   

12.
Poorly water-soluble drugs such as cefpodoxime proxetil (400 μg/ml) offer a challenging problem in drug formulation as poor solubility is generally associated with poor dissolution characteristics and thus poor oral bioavailability. According to these characteristics, preparation of cefpodoxime proxetil microparticle has been achieved using high-speed homogenization. Polymers (methylcellulose, sodium alginate, and chitosan) were precipitated on the surface of cefpodoxime proxetil using sodium citrate and calcium chloride as salting-out agents. The pure drug and the prepared microparticles with different concentrations of polymer (0.05–1.0%) were characterized in terms of solubility, drug content, particle size, thermal behavior (differential scanning calorimeter), surface morphology (scanning electron microscopy), in vitro drug release, and stability studies. The in vivo performance was assessed by pharmacokinetic study. The dissolution studies demonstrate a marked increase in the dissolution rate in comparison with pure drug. The considerable improvement in the dissolution rate of cefpodoxime proxetil from optimized microparticle was attributed to the wetting effect of polymers, altered surface morphology, and micronization of drug particles. The optimized microparticles exhibited excellent stability on storage at accelerated condition. The in vivo studies revealed that the optimized formulations provided improved pharmacokinetic parameter in rats as compared with pure drug. The particle size of drug was drastically reduced during formulation process of microparticles.  相似文献   

13.
The objective of this study was to develop and manufacture a stable parenteral formulation for Phase I clinical trials of VNP40101M (1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(2-methylamino)carbonyl] hydrazine), a novel antitumor agent. The solubility and stability of the drug was determined. Solubility studies suggested that VNP40101M exhibited poor aqueous solubility but showed appreciable solubility in nonaqueous solvents. The aqueous solubility of the drug could not be increased by adjusting the pH. At a pH above 7, basecatalyzed decomposition of VNP40101M occurred. The low octanol-water partition coefficient of 0.75 suggested poor solubility in lipophilic solvents. Based on these preformation observations, a parenteral formulation containing 10 mg/mL of VNP40101M was prepared in a solvent system consisting of 30% ethyl alcohol and 70% polyethylene glycol-300 (PEG-300). To minimize base-catalyzed hydrolytic degradation. citric acid at 0.6% concentration was included to acidify the formulation. Rubber closures, filter membranes, and liquid transfer tubing were selected on the basis of compatibility studies and absence of loss of drug the of adsorption of these components. The formulation was subjected to accelerated stability studies and dilution studies with large volume parenteral (LVP) solutions, normal saline, and 5% dextrose injection (D5W). The results of the dilution study indicated that the formulation could be diluted in these solutions up to 2 mg/mL for 8 hours without drug precipitation and degradation. Accelerated stability studies suggested that the product should be kept at 2°C to 8°C for long-term storage. The developed formulation was successfully scaled up and manufactured for use in clinical trials. Published: August 26, 2001.  相似文献   

14.
Poor aqueous solubility of drugs and the improvement thereof has always been a challenge for the pharmaceutical industry. With this, one of the focuses of the pharmaceutical research scientist involves investigating possible metastable forms of a given drug to be incorporated into solid dosage forms. The rationale being, the improved solubility offered by the metastable solid-state forms of drugs. Solubility remains a major challenge for formulation scientists, especially with antimicrobial agents where the emergence of resistance is directly dependent on the concentration and duration of the parasite exposed to the drug. Sulfadoxine-pyrimethamine combination therapies are still the recommended treatments for uncomplicated Plasmodium falciparum malaria. The aim of this study was to prepare an amorphous form of sulfadoxine and to investigate the stability and recrystallization behavior thereof. The amorphous form was prepared by the well-known quench cooling of the melt. The physico-chemical properties and stability of amorphous sulfadoxine were studied using hot-stage microscopy (HSM), scanning electron microscopy (SEM), x-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), as well as microcalorimetry. The recrystallization kinetics were studied isothermally by applying the Johnson-Mehl-Avrami model and non-isothermally by applying the Kissinger model. The physical stabilization of the amorphous form was investigated using physical mixtures of amorphous sulfadoxine with polyvinylpyrrolidone-25 (PVP-25). It was proved that sulfadoxine is a good glass former with relative high physical stability; however, water acts as a strong plasticizer for amorphous sulfadoxine, detrimentally affecting the stability during exposure to high moisture conditions.  相似文献   

15.
Dyslipidemia is common in patients with type 2 diabetes. Statins are used as the first choice in treatment of diabetic dyslipidemia. Atorvastatin represents a first-line treatment option, alongside other hydroxyl methylglutaryl coenzyme A reductase inhibitors. Repaglinide is a short-acting, oral, insulin secretagogue that is used in the treatment of type 2 diabetes mellitus. Both the category of drugs undergo extensive metabolism with cytochrome enzyme system. This may lead to drug-drug interaction problems with altered repaglinide activity which is cautious. Repaglinide/atorvastatin/atorvastatin + repaglinide were administered orally to normal, diabetic rats, and to normal rabbits. Blood samples were collected at different time intervals and were analyzed for blood glucose by GOD-POD method using commercial glucose kits and repaglinide estimation in plasma by HPLC method. Diabetes was induced by alloxan 100 mg/kg body weight administered by I.P route. In the presence of atorvastatin, repaglinide activity was increased and maintained for longer period in diabetic rats compared with repaglinide matching control. The present study concludes co-administration of atorvastatin was found to improve repaglinide responses significantly in diabetic rats and improved glucose metabolism of atorvastatin played an important role and increased repaglinide levels by competitive CYP 3A4 enzyme inhibition by atorvastatin could be added advantage for anti hyperglycemic activity.  相似文献   

16.
Reactive impurities in pharmaceutical excipients could cause drug product instability, leading to decreased product performance, loss in potency, and/or formation of potentially toxic degradants. The levels of reactive impurities in excipients may vary between lots and vendors. Screening of excipients for these impurities and a thorough understanding of their potential interaction with drug candidates during early formulation development ensure robust drug product development. In this review paper, excipient impurities are categorized into six major classes, including reducing sugars, aldehydes, peroxides, metals, nitrate/nitrite, and organic acids. The sources of generation, the analytical method for detection, the stability of impurities upon storage and processing, and the potential reactions with drug candidates of these impurities are reviewed. Specific examples of drug–excipient impurity interaction from internal research and literature are provided. Mitigation strategies and corrective measures are also discussed.  相似文献   

17.
Screening of different adjuvants, namely, suspending agents, phagostimulants, stickers, antimicrobial agents, and UV screens to develop aqueous biopesticidal suspensions of Bacillus thuringiensis (Bt) variety kurstaki HD-1 fermented broths, specifically, nonhydrolyzed sludge, hydrolyzed sludge, starch industry wastewater, and soya (commercial medium), were investigated. The selected suspending agents [20% (wt:vol)] included sorbitol, sodium monophosphate, and sodium metabisulfite with corresponding suspendibility of 74-92, 69-85, and 71-82%, respectively. Molasses [0.2% (wt:vol)] increased adherence by 84-90% for all fermented broths. The optimal phagostimulants [0.5% (wt:vol)], namely, soya and molasses, caused entomotoxicity increase of 3-13 and 7-13%, respectively. Sorbic and propionic acids showed high antimicrobial action [0.5% (wt:vol)], irrespective of fermentation medium. Sodium lignosulfonate, molasses, and Congo red, when used as UV screens [0.2% (wt:vol)], showed percent corresponding entomotoxicity losses of 3-5, 0.5-5 and 2-16, respectively. The Bt formulations, when exposed to UV radiation, showed higher half-lives (with and without UV screens) than the fermented broths or semisynthetic soya medium and commercial Bt formulation. UV screen-amended nonhydrolyzed, hydrolyzed, and starch industry wastewater formulations showed 1.3-1.5-fold higher half-lives than commercial Bt formulation. Thus, the recommended formulation comprises sorbitol, sodium monophosphate, sodium metabisulfite (suspending agents); molasses, soya flour (phagostimulants); molasses and skimmed milk powder (rainfasteners); sorbic and propionic acids (antimicrobial agents) and sodium lignosulfate; and molasses and Congo red (UV screens). These waste-based Bt formulations offer better UV resistance in comparison with commercial formulation.  相似文献   

18.
The anti-tumor efficacy of liposomal formulations of cell cycle dependent anticancer drugs is critically dependent on the rates at which the drugs are released from the liposomes. Previous work on liposomal formulations of vincristine have shown increasing efficacy for formulations with progressively slower release rates. Recent work has also shown that liposomal formulations of vincristine with higher drug-to-lipid (D/L) ratios exhibit reduced release rates. In this work, the effects of very high D/L ratios on vincristine release rates are investigated, and the antitumor efficacy of these formulations characterized in human xenograft tumor models. It is shown that the half-times (T(1/2)) for vincristine release from egg sphingomyelin/cholesterol liposomes in vivo can be adjusted from T(1/2) = 6.1 h for a formulation with a D/L of 0.025 (wt/wt) to T(1/2) = 117 h (extrapolated) for a formulation with a D/L ratio of 0.6 (wt/wt). The increase in drug retention at the higher D/L ratios appears to be related to the presence of drug precipitates in the liposomes. Variations in the D/L ratio did not affect the circulation lifetimes of the liposomal vincristine formulations. The relationship between drug release rates and anti-tumor efficacy was evaluated using a MX-1 human mammary tumor model. It was found that the antitumor activity of the liposomal vincristine formulations increased as D/L ratio increased from 0.025 to 0.1 (wt/wt) (T(1/2) = 6.1-15.6 h respectively) but decreased at higher D/L ratios (D/L = 0.6, wt/wt) (T(1/2) = 117 h). Free vincristine exhibited the lowest activity of all formulations examined. These results demonstrate that varying the D/L ratio provides a powerful method for regulating drug release and allows the generation of liposomal formulations of vincristine with therapeutically optimized drug release rates.  相似文献   

19.
Amorphous solid dispersions (ASDs) are inherently unstable because of high internal energy. Evaluating physical and chemical stability during the process and storage is essential. Numerous researches have demonstrated how polymers influence the drug precipitation and physical stability of ASDs, while the influence of polymers on the chemical stability of ASDs is often overlooked. Therefore, this study aimed to investigate the effect of polymers on the physical and chemical stability of spray-dried ASDs using dipyridamole (DP) as a model drug. Proper polymers were selected by assessing their abilities to inhibit drug recrystallization in supersaturated solutions. HPMC E5, Soluplus®, HPMCP-55, and HPMCAS-LP were shown to be effective stabilizers. The optimized formulations were further stored at a high temperature (60 °C) and high humidity (40 °C, 75% RH) for 2 months, and their physical and chemical stability was evaluated using polarizing optical microscopy, FTIR, HPLC, and mass spectrometry (MS). In general, crystallization was observed in all samples, which indicated the physical instability under stressed storage conditions. Also, it was noted that the polymers in ASDs rather than physical mixtures, induced a dramatic drug degradation after being exposed to a high temperature (HPMCP-55 >?80% and HPMCAS-LP >?50%) and high humidity (HPMCP-55 >?40% and HPMCAS-LP >?10%). The MS analysis further confirmed the degradation products, which might be generated from the reaction between dipyridamole and phthalic anhydride decomposed from HPMCP-55 and HPMCAS-LP. Overall, the exposure of ASDs to stressed conditions resulted in recrystallization and even the chemical degradation induced by polymers.  相似文献   

20.
Organoleptic agents constitute an important niche in the field of pharmaceutical excipients. These agents encompass a range of additives responsible for coloring, flavoring, sweetening, and texturing formulations. All these agents have come to play a significant role in pharmaceuticals and cosmetics due to their ability to increase patient compliance by elevating a formulation’s elegance and esthetics. However, it is essential to review their physical and chemical attributes before use, as organoleptic agents, similar to active pharmaceutical ingredients (APIs), are susceptible to physical and chemical instability leading to degradation. These instabilities can be triggered by API-organoleptic agent interaction, exposure to light, air and oxygen, and changes in pH and temperature. These organoleptic agent instabilities are of serious concern as they affect API and formulation stability, leading to API degradation or the potential for manifestation of toxicity. Hence, it is extremely critical to evaluate and review the physicochemical properties of organoleptic agents before their use in pharmaceuticals and cosmetics. This literature review discusses commonly used organoleptic agents in pharmaceutical and cosmeceutical formulations, their associated instabilities, and probable approaches to overcoming them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号