首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of intracellular deoxyribonucleoside-triphosphate (dNTP) imbalance death of mouse mammary tumor FM3A cells was studied. When the cells were exposed to 5-fluorodeoxyuridine, deoxyadenosine, or 2-chlorodeoxyadenosine, dNTP pool imbalance resulted. The imbalance was followed by DNA double strand breaks and subsequent cell death. The DNA double strand breaks have been directly examined by means of orthogonal-field-alternation gel electrophoresis (OFAGE). Fragmented DNA band appeared to be approximately 100-200 kb in size.  相似文献   

2.
The mechanism of cytotoxic action of 5-fluorodeoxyuridine (FdUrd) in mouse FM3A cells was investigated. We observed the FdUrd-induced imbalance of intracellular deoxyribonucleoside triphosphate (dNTP) pools and subsequent double strand breaks in mature DNA, accompanied by cell death. The imbalance of dNTP pools was maximal at 8 h after 1 microM FdUrd treatment; a depletion of dTTP and dGTP pools and an increase in the dATP pool were observed. The addition of FdUrd in culture medium induced strand breaks in DNA, giving rise to a 90 S peak by alkaline sucrose gradient sedimentation. The loss of cell viability and colony-forming ability occurred at about 10 h. DNA double strand breaks as measured by the neutral elution method were also observed in FdUrd-treated cells about 10 h after the addition. These results lead us to propose that DNA double strand breaks play an important role in the mechanism of FdUrd-mediated cell death. A comparison of the ratio of single and double strand breaks induced by FdUrd to that observed following radiation suggested that FdUrd produced double strand breaks exclusively. Cycloheximide inhibited both the production of DNA double strand breaks and the FdUrd-induced cell death. An activity that can induce DNA double strand breaks was detected in the lysate of FdUrd-treated FM3A cells but not in the untreated cells. This suggests that FdUrd induces the cellular DNA double strand breaking activity. The FdUrd-induced DNA strand breaks and cell death appear to occur in the S phase. Our results indicate that imbalance of the dNTP pools is a trigger for double strand DNA break and cell death.  相似文献   

3.
The mechanism of deoxyadenosine (dAdo)-induced death of mouse mammary tumor FM3A cells was studied. When the cells were exposed to dAdo at 3 mM, an imbalance of intracellular dNTP pool resulted: dATP concentration was elevated 100-fold and the dGTP concentration was reduced to less than 1% of the control values. The imbalance was followed by breakage of mature DNA. DNA double strand breaks were observed in the dAdo treated cells 12 hr after the administration. We assume that the double strand breaks play an important role in the process of the dAdo-mediated cell death, and that the intracellular dNTP imbalance is the trigger of these events.  相似文献   

4.
The mechanism of intracellular deoxyribonucleoside-triphosphate (dNTP) imbalance death of mouse mammary tumor FM3A cells was studied. When the cells were exposed to 5-fluorodeoxyuridine, deoxyadenosine, or 2-chlorodeoxyadenosine, dNTP pool imbalance resulted. The imbalance was followed by DNA double-strand breaks and subsequent cell death. The DNA double strand breaks were directly examined by means of orthogonal-field-alternation gel electrophoresis (OFAGE). Fragmented DNA band appeared to be approximately 100-200 kbp in size. The bases of 5'-termini in the DNA were cytosine and thymine. The imbalance induced endonuclease has been isolated by DEAE-agarose column chromatography.  相似文献   

5.
The mechanism of intracellular deoxyribonucleoside-triphosphates (dNTP) pool imbalance-induced cell death in mouse FM3A (F28-7) cells was studied. When the cells were treated with 5-fluorodeoxyuridine (FdUrd), deoxyadenosine, 2-chlorodeoxyadenosine, or alpha,alpha-bis(2-hydroxy-6-isopropyltropon-3-yl)-4-methoxytolu ene, an imbalance in the cellular dNTP pool was induced. The imbalance was followed by DNA double-strand breaks and subsequent cell death. Fragmented DNA appeared to be approximately 100-200 kbp in size. The base of 5'-termini in the DNA were adenine and thymine. The endonuclease toward double stranded DNA has been found in a fraction of FdUrd treated cell lysate, and isolated using column chromatography. We propose the new mechanism dNTP pool imbalance induced cell death named; dNTP Imbalance Death.  相似文献   

6.
The mechanism of intracellular deoxyribonucleotide triphosphates (dNTP) pool imbalance-induced cell death in mouse FM3A cells was studied. When the cells were treated with 1 microM 5-fluorodeoxyuridine (FdUrd), the imbalance of the cellular dNTP pool was induced. The imbalance was followed by DNA double stranded breaks and subsequent cell death. The endonuclease toward double stranded DNA has been found in a fraction of FdUrd treated cell lysate, and isolated using column chromatography. SDS-polyacrylamide gel electrophoresis showed a major protein species of approximate 45 kDa. The endonuclease was revealed, using electrophoretic separation in SDS-polyacrylamide gels containing DNA, by incubating the gels in buffer to remove SDS and to allow renaturation and enzyme activity.  相似文献   

7.
To investigate the mechanism of double strand DNA break formation in mammalian cells, an in vitro assay was established using closed circular DNA containing two uracils on opposite DNA strands (18 and 30 base pairs apart) and extracts prepared from human cells. In this assay, formation of double strand breaks was detected by the conversion of circular DNA to linear DNA. Approximately 4-fold more double strand DNA breaks were produced by extracts from cells deficient in DNA ligase I (46BR) relative to those produced by extracts from control cells (MRC5, derived from a clinically normal individual). In parallel with the amount of double strand DNA breaks, extracts from 46BR cells produced longer repair patches (up to 24 bases in length) than those from MRC5 cells (typically <5 bases long). When purified DNA ligase I was added to 46BR extracts to complement the DNA ligase deficiency, only a negligible difference was found between the amount of doublestrand DNA breaks or the repair patch size generated in the assay relative to MRC5 extracts. Together, our data demonstrate that double strand DNA breaks are produced through formation of DNA repair patches. We refer to this process of double strand break formation as the "DNA repair patch-mediated pathway."  相似文献   

8.
The ability of butachlor to induce cytotoxicity, clastogenicity and DNA damage was assessed using Chinese hamster ovary cells (CHO), Swiss mouse embryo fibroblasts (MEF) and human peripheral blood lymphocytes. A dose and time dependent loss of viability was evident upon treatment of CHO cells with butachlor. Cell killing to an extent of 50% was observed when cells were treated with 16.2 micrograms/ml of butachlor for 24 hr or with 11.5 micrograms/ml for 48 hr. The herbicide induced micronuclei significantly in cultured lymphocytes at 24 and 48 hr of treatment suggesting that it is clastogenic. To understand the mechanism of cell death caused by butachlor, its effect on DNA strand breaks was studied in MEF. A concomitant decrease in cell viability was observed with increase in DNA strand breaks. Agarose gel electrophoresis of DNA from herbicide treated CHO cells and cytochemical staining indicate the induction of apoptosis by butachlor.  相似文献   

9.
A method to select mutator mutants was developed and 3 mutants were isolated from cultured mouse FM3A cells. Fluctuation analyses revealed that these mutator mutants have increased rates of spontaneous mutation at 3 genetic loci tested (resistance to ouabain, blasticidin S and tunicamycin). None of the 3 mutator mutants showed altered sensitivity to aphidicolin or arabinofuranosylcytosine, and so they differed from the mammalian mutator mutants reported previously. Also, all the mutator mutants had the same sensitivity as wild-type to UV or other DNA-damaging agents. Thus, these mutator mutants do not seem to have any deficiency in the DNA-repair process.

To determine whether the mutator activity was due to the intracellular dNTP pool imbalance, 4 dNTPs in these mutator mutants were determined by high-pressure liquid chromatography and compared to that of the wild-type cells. The results show that there is no large dNTP pool imbalance in these mutator mutants. Since the mutator activity is not associated with the dNTP pool imbalance, these mutants may have altered protein(s) directly involved in DNA replication.  相似文献   


10.
DNA excision repair inhibition by arabinofuranosyl cytosine (ara-C) or by ara-C/hydroxyurea (HU) was measured in log phase and confluent cultures of normal and xeroderma pigmentosium (XP)-variant human fibroblasts following insult by ultraviolet (UV) light (20 J/m2). Repair inhibition was determined by measuring the accumulation of DNA single-strand breaks/108 daltons following cell culture exposure to ara-C or ara-C/HU in a series of 3 hr. pulses up ro 24 hr. after UV insult. Both normal and XP-variant derived cells showed a wide range of sensitivity to ara-C in log phase cells (0.2–9.4 breaks/108 daltons DNA), although strand break accumulation was constant for each specific cell line. The same cells were more sensitive to ara-C/HU with a 2–14 fold increase in DNA strand breaks depending upon the cell line assayed. In confluent cultures of normal cells, maximum sensitivity to ara-C and ara-C/HU was achieved with similar levels of repair inhibition observed (16.1 and 16.5 breaks/108 daltons, respectively). The same level of repair inhibition was observed in confulent XP-variants receiving ara-C/HU, but was reduced by 62–68% in cells treated with ara-C alone. Ara-C repair arrest was more rapidly reversed by competing concentrations of exogenous deoxycytidine (dCyd) in XP-variant compared to normal cells, especially in confluent cell cultures. In ara-C/HU treated cells, the level of dCyd reversal was reduced in the XP-variant when compared to cells exposed to ara-C alone. However, the same addition of HU had relatively little effect on dCyd reversal in normal cells. The measurements of dNTP levels indicate an elevated level of intracellular deoxycytosine triphosphate in XP-variant vs normal cells. The implications of these results are discussed as they relate to possible excision repair anomalies in the XP-variant.Abbreviations ara-C arabinofuranosul cytosine - dCTP deoxycytosine triphosphate - dCyd deoxycytidine - dNTP deoxynucleoside triphosphate - dT thymidine - HU hydroxyurea - XP xeroderma pigmentosium This research was sponsored jointly by the National Cancer Institute under Interagency Agreement #40-5-63, and the Office of Health and Environment Research, U. S. Department of Energy, under Contract W-7405-eng-26 with the Union Carbide Corporation.  相似文献   

11.
Abstract

We have detected, isolated and purified an endonuclease from 5-fluoro-2′-deoxyuridine-treated FM3A cells. The molecular mass of the endonuclease was approximately 40 kDa as judged by sodium dodecyl sulfate-polyacrylamide DNA-containing gel electrophoresis. The endonuclease causes double strand breaks in DNA, with an optimum pH at 6.  相似文献   

12.
The topoisomerase IIα inhibitor etoposide is a ‘broad spectrum’ anticancer agent and a potent inducer of DNA double strand breaks. DNA damage response of mammalian cells usually involves cell cycle arrest and DNA repair or, if unsuccessful, cell death. We investigated these processes in the human colon cancer cell line HT-29 treated with three different etoposide regimens mimicking clinically relevant plasma concentrations of cancer patients. Each involved a period of drug-free incubation following etoposide exposure to imitate the decline of plasma levels between the cycles of chemotherapy. We found a massive induction of double strand breaks that were rapidly and nearly completely fixed long before the majority of cells underwent apoptosis or necrosis. An even greater percentage of cells lost clonogenicity. The occurrence of double strand breaks was accompanied by a decrease in the levels of Ku70, Ku86 and DNA-PKcs as well as an increase in the level of Rad51 protein. Twenty-four hours after the first contact with etoposide we found a pronounced G2/M arrest, regardless of the duration of drug exposure, the level of double strand breaks and the extent of their repair. During the subsequent drug-free incubation period, the loss of clonogenicity correlated well with the preceding G2/M arrest as well as with the amount of cell death found several days after exposure. However, it correlated neither with early apoptosis or necrosis nor with any of the other investigated parameters. These results suggest that the G2/M arrest is an important determinant in the cytostatic action of etoposide and that the removal of DNA double strand breaks is not sufficient to ensure cell survival.  相似文献   

13.
In the present study, cross-drug resistance in multidrug-resistant (MDR) cells, which overexpress P-glycoprotein (Pgp), a mdr1 gene product, against Pgp-unrelated drugs, and its relevance to c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK) activity were examined. The multidrug-resistant FM3A/M cells overexpressing Pgp were resistant to apoptotic cell death induced either by Pgp-related drugs including vincristine and vinblastine, which are pumped out by Pgp, or by the Pgp-unrelated drugs including 5'-fluorouracil (5-FU) and bleomycin, which are not targets for Pgp, compared with the parental FM3A cells. Verapamil reversed the resistance of FM3A/M cells to apoptosis induced by the Pgp-related drugs but not that induced by the Pgp-unrelated drugs. Interestingly, FM3A/M cells have shown significantly lower basal and drug-stimulated JNK/SAPK activities than FM3A cells. After transfection with pEBG-SEK or pEBG-SAPK constructs, FM3A/M cells recovered the basal and Pgp-unrelated drug-stimulated activities of JNK/SAPK and the susceptibility to Pgp-unrelated drug-induced apoptotic cell death comparable to those of FM3A cells. Furthermore, FM3A cells became resistant to apoptotic cell death induced by vincristine and 5-FU after transfection with pEBG-SEK(K --> R), a dominant negative inhibitory mutant of SEK. These results suggest that downregulation of JNK/SAPK activity appears to confer on Pgp-associated FM3A/M cells a cross-resistance to Pgp-unrelated drugs.  相似文献   

14.
The use of particle ion beams in cancer radiotherapy has a long history. Today, beams of protons or heavy ions, predominantly carbon ions, can be accelerated to precisely calculated energies which can be accurately targeted to tumors. This particle therapy works by damaging the DNA of tissue cells, ultimately causing their death. Among the different types of DNA lesions, the formation of DNA double strand breaks is considered to be the most relevant of deleterious damages of ionizing radiation in cells. It is well-known that the extremely large localized energy deposition can lead to complex types of DNA double strand breaks. These effects can lead to cell death, mutations, genomic instability, or carcinogenesis. Complex double strand breaks can increase the probability of mis-rejoining by NHEJ. As a consequence differences in the repair kinetics following high and low LET irradiation qualities are attributed mainly to quantitative differences in their contributions of the fast and slow repair component. In general, there is a higher contribution of the slow component of DNA double strand repair after exposure to high LET radiation, which is thought to reflect the increased amount of complex DNA double strand breaks. These can be accurately measured by the γ-H2AX assay, because the number of phosphorylated H2AX foci correlates well with the number of double strand breaks induced by low or / and high LET radiation.  相似文献   

15.
Quinone-induced cell death is often attributed to oxidative stress during which the formation of DNA strand breaks is thought to play an important role. In this study, extensive DNA damage was observed in human chronic myelogenous leukemic cells (K562) exposed for 15 minutes to low concentrations (15–100 μM) of the redox cycling quinones 2,3-dimethoxy-1,4-naphthoquinone (2,3-diOMe-1,4-NQ) and menadione. However, DNA strand breakage and cell death could not be attributed to oxidative stress as the intracellular level and redox status of the reducing equivalents NADP(H) and GSH were unaffected. The intracellular level of NAD+ was found to correlate well with the extent of DNA repair (r = 0.93, P < 0.02) and cell proliferation (r = 0.96, P < 0.01) in cells exposed to the quinones. In contrast, a significant decrease in the level of intracellular ATP was only observed in cells exposed to menadione (50–100 μM). These results suggest that redox cycling quinones are capable of inducing DNA damage in mammalian cells by a mechanism that does not involve oxidative stress. Following DNA damage, cell death is dependent on the availability of NAD+, which may be key to the rapid repair of strand breaks. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
CHO cells and cs-4-D3 cells were used to investigate the association between poly(ADP-rib) synthesis and the cessation of DNA synthesis and DNA fragmentation. The cs4-D3 cells are cold-sensitive DNA synthesis arrest mutants of CHO cells. Upon incubation at 33 degrees C, DNA synthesis in the cs4-D3 cells stops and the cells enter a prolonged G1 or G0 phase. The events that occurred when cs4 cells were incubated at 33 degrees C were similar to those that occurred when wild-type CHO cells grew to high density. (1) In both cases, DNA synthesis and cell growth stopped. (2) The NAD+ concentration/cell was 20-25% lower in growth-arrested cells than in logarithmically growing cells. (3) Poly(ADP-rib) synthesis was 3-4 fold higher in growth-arrested cells than in logarithmically growing cells. (4) The growth-inhibited cells developed DNA strand breaks which resulted in large percentages of their DNA appearing in the low molecular weight range of alkaline sucrose gradients. (5) Both the increased rate of poly(ADP-rib) synthesis and the development of DNA strand breaks appears to be characteristic of the G1 phase of the cell cycle. (6) When growth-inhibited cells were restored to conditions favorable for DNA synthesis and cell growth, the DNA strand breaks were repaired. (7) Prolonged incubation under growth-restrictive conditions resulted in the accumulation of more DNA strand breaks than the cells could repair. This was followed by cell death when the cells were restored to conditions favorable for cell growth.  相似文献   

17.
The neutral filter elution assay, for measurement of DNA double strand breakage, has been calibrated using mouse L cells and Chinese hamster V79 cells labelled with [125I]dUrd and then held at liquid nitrogen temperature to accumulate decays. The basis of the calibration is the observation that each 125I decay, occurring in DNA, produces a DNA double strand break. Linear relationships between 125I decays per cell and lethal lesions per cell (minus natural logarithm survival) and the level of elution, were found. Using the calibration data, it was calculated that the yield of DNA double strand breaks after X-irradiation of both cell types was from 6 to 9 X 10(-12) DNA double strand breaks per Gy per dalton of DNA, for doses greater than 6 Gy. Neutral filter elution and survival data for X-irradiated and 125I-labelled cells suggested that the relationships between lethal lesions and DNA double strand breakage were significantly different for both cell types. An attempt was made to study the repair kinetics for 125I-induced DNA double strand breaks, but was frustrated by the rapid DNA degradation which occurs in cells that have been killed by the freezing-thawing process.  相似文献   

18.
Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.  相似文献   

19.
The size of deoxynucleoside triphosphate pool in cultured mouse FM3A cells and mutator mutants isolated from this cell line was determined by high-pressure liquid chromatography after treatment of the cells with ultraviolet light, N-methyl-N′-nitro-N-nitrosoguanidine or mitomycin C. The results showed that, in all the FM3A cell clones, no large increase in the dATP or TTP pool was induced after treatment, while in some cases 40–50% decrease in dCTP pool was observed. It is concluded that the induction of large increase in dNTP pool is not the general effect of the mutagens.  相似文献   

20.
The inactivation efficiency and repair of single-strand breaks was investigated using model strand breaks created by endonucleolytic incision of damaged DNA. Phi X-174 duplex transfecting DNA containing either thymine glycols, urea residues, or abasic (AP) sites was incubated with AP endonucleases that produce breaks on the 3' side, the 5' side, or both sides of the lesion. For each lesion, incubation with Escherichia coli endonuclease III results in a single-strand break containing a 3' alpha, beta-unsaturated aldehyde (4-hydroxy-2-pentenal), while treatment of AP- or urea-containing DNA with E. coli endonuclease IV results in a single-strand break containing a 5' deoxyribose or a 5' deoxyribosylurea moiety, respectively. Incubation of lesion-containing DNA with both enzymes results in a base gap. Ligatable nicks containing 3' hydroxyl and 5' phosphate moieties were produced by subjecting undamaged DNA to DNase I. When the biological activity of these DNAs was assessed in wild-type cells, ligatable nicks were not lethal, but each of the other strand breaks tested was lethal, having inactivation efficiencies between 0.12 and 0.14. These inactivation efficiencies are similar to those of the base lesions from which the strand breaks were derived. In keeping with the current model of base excision repair, when phi X duplex DNA containing strand breaks with a blocked 3' terminus was transfected into an E. coli double mutant lacking the major 5' cellular AP endonucleases, a greater than twofold decrease in survival was observed. Moreover, when this DNA was treated with a 5' AP endonuclease prior to transfection, the survival returned to that of wild type. As expected, when DNA containing strand breaks with a 5' blocked terminus or DNA containing base gaps was transfected into the double mutant lacking 5' AP endonucleases, the survival was the same as in wild-type cells. The decreased survival of transfecting DNA containing thymine glycols, urea, or AP sites observed in appropriate base excision repair-defective mutants was also obviated if the DNA was incubated with the homologous enzyme prior to transfection. Thus, in every case, with both base lesions and single-strand breaks, the lesion was repaired in the cell by the enzyme that recognizes it in vitro. Furthermore, the repair step in the cell could be eliminated if the appropriate enzyme was added in vitro prior to transfection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号