首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Straw-rich manure from organic pig farming systems was composted in passively aerated static piles to estimate the effect of monthly turning on organic matter degradation and NH(3), N(2)O and CH(4) emissions. Turning enhanced the rate of drying and degradation. The four-month treatment degraded 57+/-3% of the initial organic matter in the turned piles, while only 40+/-5% in the static piles. The turned piles showed low ammonia and N(2)O emissions, 3.9+/-0.2% and 2.5+/-0.1% of total initial nitrogen, respectively. Static piles gave low ammonia (2.4+/-0.1% N(initial)), but high (9.9+/-0.5% N(initial)) N(2)O emissions. Prevalence of anaerobic regions in the static system was supported by the higher CH(4) emissions, 12.6+/-0.6% VS(degraded) for the static vs. 0.4+/-0.0% VS(degraded) for the turned system. It was shown, that straw-rich pig manure with very low C/N ratios could be composted directly without significant NH(3) and N(2)O emissions if turned on a monthly basis.  相似文献   

2.
To evaluate the NH(3), N(2)O, and CH(4) emissions from composting of livestock waste without forced aeration in turned piles, and to investigate the possible relationship between the scale of the compost pile and gas emission rates, we conducted swine manure composting experiments in parallel on small- and large-scale compost piles. Continuous measurements of gas emissions during composting were carried out using a chamber system, and detailed gas emission patterns were obtained. The total amount of each gas emission was computed from the amount of ventilation and gas concentration. NH(3) emission was observed in the early period of composting when the material was at a high temperature. Sharp peaks in CH(4) emission occurred immediately after swine manure was piled up, although a high emissions level continued after the first turning only in the large-scale pile. N(2)O emissions started around the middle stage of the composting period when NH(3) emissions and the temperature of the compost material began to decline. The emission rates of each gas in the small and large piles were 112.8 and 127.4 g NH(3)-N/kg T-N, 37.2 and 46.5 g N(2)O-N/kg T-N, and 1.0 and 1.9 g CH(4)/kg OM, respectively. It was found that changing the piling scale of the compost material was a major factor in gas emission rates.  相似文献   

3.
微生物菌剂对猪粪堆肥中细菌群落结构的影响   总被引:1,自引:0,他引:1  
以猪粪和小麦秸秆做堆肥试验,处理组添加外源微生物菌剂,利用常规方法对堆肥样品进行理化性状测定,采用高通量测序技术分析堆肥过程中细菌群落特征。理化性状测定结果表明: 添加外源菌剂可延长堆肥高温时间,降低堆肥发酵末期的pH,增加全氮含量,加快C/N的下降。主成分分析表明: 外源菌剂影响堆肥样品细菌群落的稳定性。门分类水平上,厚壁菌门、变形菌门和绿弯菌门的相对丰度在处理组中较高;纲分类水平上,梭状芽孢杆菌纲、α-变形菌纲和γ-变形菌纲在处理组的升温期和高温期相对丰度增加;科分类水平上,小单孢菌科和梭状芽孢杆菌纲的消化链球菌科、梭菌科以及盐厌氧菌科的相对丰度在处理组的升温期和高温期均呈上升趋势。Pearson相关性分析表明,盐胞菌属与外源菌剂呈显著正相关,而氨苄芽孢杆菌属与外源菌剂呈显著负相关。研究表明,猪粪堆肥中添加外源菌剂可使堆肥的理化性质和细菌群落结构均发生显著变化。  相似文献   

4.
A model has been developed to predict pig manure evolution (mass, dry and organic matter, N, P, K, Cu and Zn contents) and related gaseous emissions (methane (CH4), nitrous oxide (N2O) and ammonia (NH3)) from pig excreta up to manure stored before spreading. This model forms part of a more comprehensive model including the prediction of pig excretion. The model simulates contrasted management systems, including different options for housing (slatted floor or deep litter), outside storage of manure and treatment (anaerobic digestion, biological N removal processes, slurry composting (SC) with straw and solid manure composting). Farmer practices and climatic conditions, which have significant effects on gaseous emissions within each option, have also been identified. The quantification of their effects was based on expert judgement from literature and local experiments, relations from mechanistic models or simple emission factors, depending on existing knowledge. The model helps to identify relative advantages and weaknesses for each system. For example, deep-litter with standard management practices is associated with high-greenhouse gas (GHG) production (+125% compared to slatted floor) and SC on straw is associated with high NH3 emission (+15% compared to slatted floor). Another important result from model building and first simulations is that farmer practices and the climate induce an intra-system (for a given infrastructure) variability of NH3 and GHG emissions nearly as high as inter-system variability. For example, in deep-litter housing systems, NH3 and N2O emissions from animal housing may vary between 6% and 53%, and between 1% and 19% of total N excreted, respectively. Thus, the model could be useful to identify and quantify improvement margins on farms, more precisely or more easily than current methodologies.  相似文献   

5.
Thermophilic ammonium-tolerant bacterium Bacillus sp. TAT105 grows and reduces ammonia (NH3) emissions by assimilating ammonium nitrogen during composting of swine feces. To evaluate the efficacy of a biological additive containing TAT105 at reducing NH3 emissions, composting tests of swine manure on a pilot scale (1.8 m3) were conducted. In the TAT105-added treatment, NH3 emissions and nitrogen loss were lower than those in the control treatment without TAT105. No significant difference was detected in losses in the weight and volatile solids between the treatments. Concentration of thermophilic ammonium-tolerant bacteria in the compost increased in both treatments at the initial stage of composting. In the TAT105-added treatment, bacterial concentration reached ~109 colony-forming units per gram of dry matter, several-fold higher than that in the control and stayed at the same level until the end. These results suggest that TAT105 grows during composting and reduces NH3 emissions in TAT105-added treatment.  相似文献   

6.
Gaseous nitrogen (N) emissions, especially emissions of dinitrogen (N2) and ammonia (NH3), have long been considered as the major pathways of N loss from flooded rice paddies. However, no studies have simultaneously evaluated the overall response of gaseous N losses to improved N fertilization practices due to the difficulties to directly measure N2 emissions from paddy soils. We simultaneously quantified emissions of N2 (using membrane inlet mass spectrometry), NH3 and nitrous oxide (N2O) from a flooded paddy field in southern China over an entire rice‐growing season. Our field experiment included three treatments: a control treatment (no N addition) and two N fertilizer (220 kg N/ha) application methods, the traditional surface application of N fertilizer and the incorporation of N fertilizer into the soil. Our results show that over the rice‐growing season, the cumulative gaseous N losses from the surface application treatment accounted for 13.5% (N2), 19.1% (NH3), 0.2% (N2O) and 32.8% (total gaseous N loss) of the applied N fertilizer. Compared with the surface application treatment, the incorporation of N fertilizer into the soil decreased the emissions of NH3, N2 and N2O by 14.2%, 13.3% and 42.5%, respectively. Overall, the incorporation of N fertilizer into the soil significantly reduced the total gaseous N loss by 13.8%, improved the fertilizer N use efficiency by 14.4%, increased the rice yield by 13.9% and reduced the gaseous N loss intensity (gaseous N loss/rice yield) by 24.3%. Our results indicate that the incorporation of N fertilizer into the soil is an effective agricultural management practice in ensuring food security and environmental sustainability in flooded paddy ecosystems.  相似文献   

7.
Wu X  Wei Y  Zheng J  Zhao X  Zhong W 《Bioresource technology》2011,102(10):5924-5931
The purposes of this study were to investigate the behavior of three tetracyclines including chlortetracycline (CTC), oxytetracycline (OTC) and tetracycline (TC) and their degradation products in a pilot scale swine manure composting, and also to study the degradation kinetics of CTC, OTC and TC. During the pilot scale composting, CTC, OTC and TC were degraded by 74%, 92% and 70%, respectively. Several degradation products were found like 4-epitetracycline (ETC), 4-epioxytetracycline (EOTC), 4-epichlortetracycline (ECTC), demeclocycline (DMCTC) and anhydrotetracycline (ATC). Both the simple and the adjusted first-order kinetic models successfully fit the degradation process of CTC, OTC and TC during the composting, but the adjusted first-order kinetic model fit much better with the calculated half-lives of 8.2, 1.1 and 10.0 days, respectively.  相似文献   

8.
Sulfur dioxide (SO2) in the atmosphere has been demonstrated to have many adverse impacts on the environment and human health. In this study, deposition of SO2 ranging from 9.0 to 127.8 mg kg?1 with an average of 35.7 mg S kg?1 was found to substantially stimulate NO and N2O emissions from soils in the humid subtropical areas of Hainan, Fujian, Jiangxi, and Yunnan provinces of China under field conditions. Laboratory tests indicated that the stimulations were mediated biologically as the effects were not observed in sterilized soils. Acidification of soil resulting from SO2 deposition was not responsible for the stimulated NO and N2O emissions alone as the stimulation did not occur by acidifying soil with HNO3 treatment. By using the 15N tracing method, we found that the N2O emissions stimulated by SO2 deposition were from either denitrification, heterotrophic nitrification or both, but not from autotrophic nitrification. Therefore, atmospheric SO2 deposition would most likely stimulate NO and N2O emissions in acidic soils in which heterotrophic nitrification dominates NO and N2O production and waterlogged soils in which denitrification dominates NO and N2O production.  相似文献   

9.

Background and aims

Elevated atmospheric CO2 (eCO2) and tropospheric O3 (eO3) can alter soil microbial processes, including those underlying N2O emissions, as an indirect result of changes in plant inputs. In this study, effects of eCO2 and eO3 on sources of N2O in a soybean (Glycine max (L.) Merr.) agroecosystem in Illinois (SoyFACE) were investigated. We hypothesized that increases in available C and anaerobic microhabitat under eCO2 would stimulate N2O emissions, with a proportionally larger increase in denitrification derived N2O (N2OD) compared to nitrification plus nitrifier denitrification derived N2O (N2ON+ND). We expected opposite effects under eO3.

Methods

Isotopically labeled 15NH 4 14 NO3 and 14NH 4 15 NO3 were used to evaluate mineral N transformations, N2OD, and N2ON+ND in a 12-day incubation experiment.

Results

We observed minimal effects of eCO2 and eO3 on N2O emissions, movement of 15?N through mineral N pools, soil moisture content and C availability. Possibly, altered C and N inputs by eCO2 and eO3 were small relative to the high soil organic C content and N-inputs via biological N2-fixation, minimizing potential effects of eCO2 and eO3 on N-cycling.

Conclusion

We conclude that eCO2 and eO3 did not affect N2O emissions in the short term. However, it remains to be tested whether N2O emissions in SoyFACE will be unaltered by eCO2 and eO3 on a larger temporal scale under field conditions.  相似文献   

10.
不同微生物菌剂处理对猪粪堆肥中氨挥发的影响   总被引:25,自引:1,他引:25  
研究不同微生物复合菌剂及添加比例对猪粪与木屑混合(鲜重比为鲜猪粪∶木屑9∶1)堆肥过程中NH3挥发的影响.结果表明,在堆肥过程中,NH3挥发主要产生在堆肥前期15 d的升温和高温期,添加3‰的微生物复合菌剂1、2和3对猪粪堆肥中NH3挥发都有一定的抑制作用,减轻氮素损失与堆肥恶臭,添加5‰复合菌剂1有显著抑制作用(P<0.05).  相似文献   

11.
Two pilot composting experiments were conducted to investigate the effect of low initial C/N ratio on the composting of swine manure with rice straw by measuring physical and chemical parameters. The results showed that the thermophilic duration of bin 1 and bin 2 was long enough to satisfy the sanitary standard, and swine manure could reach maturity. Bin 1 containing larger amount of swine manure and less amount of rice straw showed a higher nitrogen loss (8%), shorter thermophilic phase, and longer maturity time (about 2 weeks) than bin 2. However, economical analysis showed a lower initial C/N ratio (20) could reduce 172 kg rice straw per ton fresh swine manure than a higher C/N ratio (25), and more swine manure could also be treated. Therefore, a low initial C/N ratio (20) could be suggested in the composting of swine manure with rice straw.  相似文献   

12.
A mathematical model was developed from literature data to predict the volume and composition of pig's excreta (dry and organic matter, C, N, P, K, Cu and Zn contents), and the emission of greenhouse gases (CH4 and CO2) though respiration and from the intestinal tract, for each physiological stage (post-weaning and fattening pigs and lactating and gestating sows). The main sources of variation considered in the model are related to animal performances (feed efficiency, prolificacy, body weight gain, etc.), to water and nutrient intakes and to housing conditions (ambient temperature). Model predictions were validated by using 19 experimental studies, most of them performed in conditions close to those of commercial farms. Validation results showed that the model is precise and robust when predicting slurry volume (R2 = 0.96), slurry N (R2 = 0.91), P (R2 = 0.95) and to a lesser extent dry matter (R2 = 0.75) contents. Faeces and urine composition (minerals and macronutrients) can also be precisely assessed, provided the composition and the digestibility of the feed are well known. Sensitivity analysis showed strong differences in CH4 emission and excretion amounts and composition according to physiological status, animal performance, temperature and diet composition. The model is an efficient tool to calculate nutrient balances at the animal level in commercial conditions, and to simulate the effect of production alternatives, such as feeding strategy or animal performance, on excreta production and composition. This is illustrated by simulations of three feeding strategies, which demonstrates important opportunities to limit environmental risks through diet manipulations.  相似文献   

13.
Composting allows simple management of animal manure but excessive aeration can increase emissions of polluting gases such as ammonia or nitrous oxide. The aim of the present work was to determine the effect of three techniques--turning, compacting and the addition of water--on gaseous emissions. One ton of cattle manure and 3 tons of turkey manure were composted in two and four cells for 46 and 51 days respectively. The manure was either turned, wetted, or compacted. Emissions of carbon dioxide, water vapor, ammonia and nitrous oxide were monitored. The results show that turning did not alter the free air space. Compacting can be used specifically to reduce the water loss. A reduction of free air space by 20-60%, either by compacting or adding water (or both), reduced the ammonia and nitrous oxide emissions by 30-70%.  相似文献   

14.
黄树辉  曾光辉  吕军 《生态学报》2007,27(3):1248-1253
模拟稻田土壤在加入不同量的(NH4)2SO4和双氢按(DCD)抑制剂的溶液后先进行淹水培养,然后让土壤自然蒸发变干,直至土壤产生裂缝到裂缝稳定,最后在裂缝稳定后的复水的连续培养试验。通过模拟对土壤进行复杂的、动态的水分含量变化过程中试验,探讨双氢胺抑制剂对其N2O释放的影响。每天监测土体释放的N2O通量,以及渗漏液中溶解的N2O浓度和pH值。这些监测结果表明:在相同的水分管理条件下,土壤中没有氮肥加入,只有DCD加入的A处理释放N2O气体最少,其平均释放通量为340.91μgm^-2h^-1;土壤中有高剂量的氮肥和DCD加入的E处理释放N2O最多,其平均释放通量为9280.23μgm^-2h^-1。裂缝产生稳定后的复水能减少N2O向空气中的释放。渗漏液中的N2O浓度都是过饱和的。当土壤中肥料(NH4)2SO4加入量(每千克土壤中外加N≤3g)相对较少的情况下,DCD抑制剂能抑制裂缝产生过程中的N2O释放;当土壤中肥料(NH4)2SO4加入量(每千克土壤中外加N≥6g)相对较多的情况下,DCD抑制裂缝产生过程中的N2O释放效果不明显。此外还得出(NH4)2SO4和DCD的加入量比是10:1时,其抑制N2O排放的效果比(NH4)2SO4和DCD的加入量比分别是10:1.5和10:2要好。土体释放的N2O通量和渗漏液中溶解的N2O浓度之间不存在相关性,土体释放的N2O通量和渗漏液中的pH值之间也不存在相关性。但是渗漏液中的N:O浓度和pH值之间存在显著的正线性相关关系。  相似文献   

15.
The oxygen control of denitrification and its emission of NO/N2O/N2 was investigated by incubation of Nycodenz-extracted soil bacteria in an incubation robot which monitors O2, NO, N2O and N2 concentrations (in He+O2 atmosphere). Two consecutive incubations were undertaken to determine (1) the regulation of denitrification by O2 and NO2(-) during respiratory O2 depletion and (2) the effects of re-exposure to O2 of cultures with fully expressed denitrification proteome. Early denitrification was only detected (as NO and N2O) at 相似文献   

16.
Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N2O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer‐reviewed publications with 520 field measurements were synthesized using meta‐analysis procedure to examine the N fertilizer‐induced soil NO and the combined NO+N2O emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO‐N fluxes were estimated to be 4.06 kg ha?1 yr?1, with the greatest (9.75 kg ha?1 yr?1) in vegetable croplands and the lowest (0.11 kg ha?1 yr?1) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EFNO) and combined NO+N2O (EFc) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71–1.61% and 1.81–3.35%, respectively. Forests had the greatest EFNO (2.39%). Within the croplands, the EFNO (1.71%) and EFc (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EFNO (2.93%) and EFc (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multiyears are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands.  相似文献   

17.
Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.  相似文献   

18.
Net productions of permanent soil atmosphere gases (N2, CO2, O2) and temporary gases (N2O, NO) were monitored in soil cores using a non-interfering, fully automated measuring technique allowing highly time resolved measurements over prolonged periods. The influence of changes in available organic carbon on CO2, N2O, NO and N2 production was studied by changing the soil carbon content through aerobic preincubations of different length, up to 21 days.The aerobic preincubation caused an increase in NO3 - concentration and a decrease in available carbon content. Available carbon content dominated both CO2 and total N gas (N2+N2O+NO) production during anaerobiosis. Both CO2 and total N gas production rates decreased with increasing length of the previous aerobic preincubation, this in spite of the higher initial NO3 - concentration.Total denitrification rates were closely related to the anaerobic CO2 production rates. No relation was found between water soluble carbon content and total denitrification. The N2O/N2 ratio could be explained by an interaction of carbon availability, NO3 - concentration and enzyme status. Net N2O consumption was monitored. The balance between cumulative total N gas production and NO3 - consumption varied according to the different treatments. Cumulative N2O production exceeded cumulative N2 production for 0 up to 5 days.  相似文献   

19.
Heterotrophic nitrification by Alcaligenes faecalis DSM 30030 was not restricted to media containing organic forms of nitrogen. In both peptone-meat extract and defined media with ammonium and citrate as the sole nitrogen and carbon sources, respectively, NO2-, NO3-, NO, and N2O were produced under aerobic growth conditions. Heterotrophic nitrification was not attributable to old or dying cell populations. Production of NO2-, NO3-, NO, and N2O was detectable shortly after cultures started growth and proceeded exponentially during the logarithmic growth phase. NO2- and NO3- production rates were higher for cultures inoculated in media with pH values below 7 than for those in media at alkaline pH. Neither assimilatory nor dissimilatory nitrate or nitrite reductase activities were detectable in aerobic cultures.  相似文献   

20.
采用预设取样器和静态箱气相色谱法,对渗滤液灌溉条件下,土柱土壤不同深度剖面 N2O的浓度以及N2O和CO2的表面释放通量进行了监测.结果表明: 渗滤液灌溉可促进N2O的生成和释放,灌溉后24 h内土柱N2O的释放通量与表土下10 cm(r=0.944,P< 0.01)、20 cm(r=0.799,P<0.01)、30 cm(r=0.666,P<0.01)和40 cm(r=0.482,P<0.05)处所生成的N2O浓度呈显著相关,且相关程度依次递减.渗滤液灌溉还促进了CO2的释放,但N2O与CO2释放通量之间无显著相关性(P>0.05).渗滤液的灌溉负荷主要决定温室气体释放总量的强弱(N2O和CO2,以CO2当量计),灌溉负荷为6 mm·d-1条件下温室气体释放总量为灌溉负荷2 mm·d-1的3倍多.采用表土下20 cm处灌溉方式可比表土下10 cm处灌溉方式削减47%的温室气体释放总量.渗滤液灌溉土壤14 d内,N2O释放量约占温室气体释放总量的57.0%~91.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号