首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to investigate the regulatory mechanism for the atrial release of atrial natriuretic peptide (ANP), a perfused rabbit atrial model was devised. In the present experiments, the effect of a reduction in atrial distension on the immunoreactive ANP (irANP) secretion was investigated and compared in the perfused right and left atria of rats. Elevations in right and left atrial pressure resulted in proportional increases in the volume of atrial distension-reduction which was larger in the right than in the left atria. The basal rate of irANP secretion was higher in the right than in the left atria. Increases in the volume of atrial distension-reduction resulted in proportional increases in irANP secretion in both atria. Increment in irANP secretion in response to a reduction in atrial distension was significantly higher in the right than in the left atria. Higher rate of irANP secretion in response to unit volume change was observed in the right atria. Increases in the volume of atrial distension-reduction resulted in accentuated irANP responses in the right atrium. IrANP content was significantly higher in the right than in the left atria. The results suggest that the right atrium is a predominant site in ANP secretion in rats.  相似文献   

2.
In order to verify the contribution of right atrial pressure to atrial natriuretic polypeptides (ANP) release, we measured plasma levels of immunoreactive (ir)-ANP when graded rise of right atrial pressure was executed in anesthetized dogs. Increasing right atrial pressure (RAP) from 2.7 +/- 0.6 to 9.0 +/- 0.7 mmHg, plasma levels of ir-ANP in aorta tended to increase by 33% but not significantly (p greater than 0.05). However, when RAP was increased from 9.0 +/- 0.7 to 17.0 +/- 1.1 mmHg, ir-ANP levels in aorta were significantly (p less than 0.05) increased by 132% of control within 5 min from the start of RAP elevation. The RAP elevation produced a sustained increase in plasma levels of ir-ANP. There was a positive correlation between right atrial pressure and plasma levels of ir-ANP. The plasma levels of ir-ANP were similar between aorta and pulmonary artery. These results demonstrate that increasing atrial pressure is closely correlated with ANP release and ANP is not greatly metabolized by pulmonary circulation.  相似文献   

3.
Hyperosmolality has been known to increase ANP release. However, its physiological role in the regulation of atrial myocytic ANP release and the mechanism by which hyperosmolality increases ANP release are to be defined. The purpose of the present study was to define these questions. Experiments were performed in perfused beating rabbit atria. Hyperosmolality increased atrial ANP release, cAMP efflux, and atrial dynamics in a concentration-dependent manner. The osmolality threshold for the increase in ANP release was as low as 10 mosmol/kgH2O (approximately 3%) above the basal levels (1.55 +/- 1.71, 17.19 +/- 3.11, 23.15 +/- 5.49, 54.04 +/- 11.98, and 62.00 +/- 13.48% for 10, 20, 30, 60, and 100 mM mannitol, respectively; all P < 0.01). Blockade of sarcolemmal L-type Ca2+ channel activity, which increased ANP release, attenuated hyperosmolality-induced increases in ANP release (-13.58 +/- 4.68% vs. 62.00 +/- 13.48%, P < 0.001) and cAMP efflux but not atrial dynamics. Blockade of the Ca2+ release from the sarcoplasmic reticulum, which increased ANP release, attenuated hyperosmolality-induced increases in ANP release (13.44 +/- 7.47% vs. 62.00 +/- 13.48%, P < 0.01) and dynamics but not cAMP efflux. Blockades of Na+-K+-2Cl- cotransporter, Na+/H+ exchanger, and Na+/Ca2+ exchanger had no effect on hyperosmolality-induced increase in ANP release. The present study suggests that hyperosmolality regulates atrial myocytic ANP release and that the mechanism by which hyperosmolality activates ANP release is closely related to the cross-talk between the sarcolemmal L-type Ca2+ channel activity and sarcoplasmic reticulum Ca2+ release, possibly inactivation of the L-type Ca2+ channels.  相似文献   

4.
An easy and convenient isolated atrial perfusion technique was developed. The effect of stretch of the atrial subpericardial myocytes was investigated in the inside-out perfused rabbit atria. Graded distension of the inverted atria was induced by changing the elevation of the atrial catheter tip. Intra-luminal volume expansion resulted in an increase in release of immunoreactive atrial natriuretic peptides (irANPs). The response was volume, or pressure dependent. Distension-induced release of irANPs occurred at the reduction of the distension. IrANPs in epicardial perfusate showed both high and low molecular weights. The major peak of irANP was observed at the corresponding fraction to the rat ANP-(1-28) in the Sephadex G-50 gel chromatography. The data suggest that the epicardial release of irANP is stretch-induced response and that the release may be involved in the regulation of cardiac function.  相似文献   

5.
Release of ANP is dependent on right atrial distension and pressure, which in turn are dependent on both venous return and left ventricular function. These two latter parameters are both modulated by beta-receptors. In the present study, the effects of selective beta-blockade vs non-selective beta-blockade on hypertonic volume expansion induced changes in ANP release and systemic hemodynamics were assessed in 8 healthy normotensive male volunteers. On placebo, infusion of hypertonic saline (1200 ml of 2.5% NaCl) caused an intravascular volume expansion of 10-11%, and small non-significant increases in cardiac performance (LVEDV, SV, or CI), but it provoked a 2-fold increase in plasma ANP. Beta-blockade by either atenolol or propranolol blunted the increase in cardiac volume load (reflected by LVEDV) as compared to placebo, but did not affect the ANP response to volume expansion. The increase in ANP correlated closely with the intravascular volume expansion on placebo and to a lesser extent on beta-blockade. In healthy men, therefore, intravascular volume expansion that caused only small changes in cardiac activity, resulted in clear increases in release of ANP. Inhibition of the increase in cardiac volume load by beta-blockade did not interfere with ANP increase, suggesting a role for extra-cardiac receptors in the release of ANP or a change in the pressure/volume relationship.  相似文献   

6.
Sensitive radioimmunoassay for determination of immunoreactive atrial natriuretic peptide (ANP) in human plasma was developed and employed for the study of plasma ANP concentrations in healthy controls under basal conditions (2.4 +/- 0.1 pmol/l) and during volume expansion by saline infusion (9.6 +/- 2.0 pmol/l and 14.2 +/- 1.8 pmol/l, respectively). Plasma renin activity and plasma aldosterone concentration exhibited opposite changes during saline infusion. In pathological states associated with extracellular fluid volume (ECFV) expansion, ANP concentration were significantly higher than in the controls (liver cirrhosis 8.6 +/- 0.9; congestive heart failure 33.1 +/- 4.8; chronic renal failure before haemodialysis 72.2 +/- 6.4 pmol/l). Further volume expansion in liver cirrhosis by saline infusion led to the further increase in ANP (13.3 +/- 1.3 and 16.1 +/- 1.5 pmol/l, respectively) and ECFV reduction by ultrafiltration during haemodialysis in chronic renal failure diminished but did not normalize plasma ANP (22.5 +/- 2.9 pmol/l). In patients with arterial hypertension the concentration of ANP exceeded the normal range by 62.5% and reached 8.0 +/- 0.5 pmol/l on the average. Our results support the suggestion that ANP is an important regulatory humoral mechanism participating in the regulation of sodium, volume and blood pressure homeostasis.  相似文献   

7.
The concentrations of atrial natriuretic peptide (ANP) in atria, hypothalami and plasma were investigated in relation to the variations of the plasma endogenous immunoreactive arginine vasopressin (Ir-AVP) during water deprivation or hemorrhage in normal conscious Wistar rats. Furthermore, the in vitro and in vivo effect of extracellular hyperosmolarity on ANP release from right atrium and hypothalamus was examined. Water deprivation elevated circulating immunoreactive ANP (Ir-ANP: pg/ml) to 153 +/- 7 (24 h); 174 +/- 1 (48 h) from the control level (109.6 +/- 7.8). This increase in Ir-ANP concentration which correlated with atrial (r = -0.93) or hypothalamic (r = -0.87) Ir-ANP content decrease, was associated with significantly enhanced levels of plasma Ir-AVP, plasma sodium, osmolarity and hematocrit. An acute volume depletion by hemorrhage significantly reduced plasma Ir-ANP (67 +/- 8.4 pg/ml) from the sham operated level (140 +/- 18 pg/ml). Plasma Ir-AVP was elevated dramatically (207.4 +/- 53.4 pg/ml) compared with the sham operated level (8.8 +/- 2.6 pg/ml). These results, indicating the lack of correlation between plasma Ir-ANP and Ir-AVP in vivo, suggest that the ANP secretion, which is regulated mainly by plasma volume, may be modulated by a change in plasma osmolarity. Extracellular hyperosmolarity stimulated the ANP release from superfused sliced normal rat atria and hypothalami.  相似文献   

8.
To examine whether endogenous secretion of atrial natriuretic peptide (ANP) modifies the bronchomotor response to moderately strenuous exercise and, conversely, whether hyperpnea of exercise or bronchoconstriction alone modulates the release of ANP, we compared the rise in specific airway resistance and the rise in circulating immunoreactive ANP (IR-ANP) induced by a 5-min submaximal exercise and by eucapnic hyperpnea with cold dry air and exercise-matched minute ventilation in six healthy individuals and in five subjects with clinically stable asthma. As expected, the increase in specific airway resistance from base line provoked by exercise was greater in the asthmatic subjects (from 11.8 +/- 7.1 to 34.0 +/- 18.6 l.cmH2O.l-1.s-1) than in the healthy subjects (from 3.7 +/- 1.2 to 4.5 +/- 1.9 l.cmH2O.l-1.s-1). In both groups, exercise was associated with a similar and significant rise in plasma IR-ANP levels, ranging from 222 to 550% from base-line value in the healthy group and from 176 to 1,120% from base-line value in the asthmatic group. Peak plasma IR-ANP levels occurred from 3 to 15 min after completion of exercise with a return to base-line values within 60 min. Although eucapnic hyperpnea was associated with a similar increase in specific airway resistance as was exercise, it provoked an increase in circulating IR-ANP in only one subject.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To test the hypothesis that reduced oxygen tension stimulates cardiac atrial natriuretic peptide (ANP) secretion, we measured ANP release and expression in neonatal rat atrial and ventricular cardiac myocytes exposed to 45 min and 3, 6, and 24 hr of 3% or 21% oxygen. In atrial cardiocytes, the percentage of increase in culture media ANP concentration from baseline was greater in cells exposed to 3% than in cells exposed to 21% oxygen after 3 hr (814% +/- 52% vs. 567% +/- 33%, P < 0.05) and 6 hr of exposure (1639% +/- 91% vs. 1155% +/- 73%, P < 0.05). No differences in the percentage of increase in culture media ANP concentration was seen at 45 min (284% +/- 27% vs. 201% +/- 16%, P = NS) or 24 hr (2499% +/- 250% vs. 2426% +/- 195%). There was a significant increase in cellular ANP content between 3 and 24 hr in atrial cardiocytes exposed to 21% oxygen (105% +/- 40% vs. 296% +/- 60%, P < 0.05), but not in atrial cardiocytes exposed to 3% oxygen (118% +/- 20% vs. 180% +/- 26%, P = NS). Steady-state ANP mRNA levels in atrial cardiocytes were not affected by oxygen tension. In ventricular cardiocytes, oxygen tension did not affect ANP secretion, cellular ANP content, or steady-state ANP mRNA levels. We conclude that reduced oxygen tension increases release of ANP from atrial, but not ventricular cardiocytes and that this mechanism may contribute to the elevation in plasma ANP seen during acute hypoxia.  相似文献   

10.
To study the role of the pituitary gland in the release of Atrial Natriuretic Peptide (ANP) plasma and atrial concentrations were measured both in intact and in hypophysectomized rats. The plasma concentration of ANP (pg/ml) was significantly (p less than 0.01) decreased from 143 +/- 35 to 82 +/- 29 (mean +/- SD, n) while the tissue concentration (ng/wet tissue mg) remained unchanged, 192 +/- 46 and 194 +/- 39, respectively. The total atrial amount of ANP (ug) was, however, significantly (p less than 0.01) decreased from 29.7 +/- 7.8 to 17.0 +/- 3.3 after hypophysectomy. In intact animals, a volume load (1.1ml/100 body weight g 0.9% NaCl) resulted in 2-fold (p less than 0.001) increase in the plasma ANP levels whereas similar load had no effects on plasma ANP levels in hypophysectomized animals. In both groups, the right atrial pressure was increased from about 2 to about 6 mmHg. We conclude that in the absence of pituitary gland the right atrial pressure and the atrial ANP concentration do not change but plasma ANP levels and the response to volume stimulus are attenuated.  相似文献   

11.
Atrial tachyarrhythmias and atrial pacing are associated with increased cardiac secretion of atrial natriuretic peptide (ANP) in man. Using treadmill exercise to exhaustion, we have studied the effect of exercise induced tachycardia on plasma immunoreactive ANP (IR-ANP) and vasoactive hormones in 6 normal men before and after 6 days of sodium loading (salt supplements and 0.4 mg 9 alpha fludro hydrocortisone daily for 4 days). Similar increases in heart rate and plasma catecholamine levels occurred during exercise in both studies. Sodium loading increased resting supine plasma IR-ANP (P less than 0.037) and suppressed plasma renin and aldosterone, including the renin-aldosterone response to exercise. Plasma IR-ANP increased more than 3-fold during exercise to 48 +/- 7 before and 66 +/- 12 pmol/l after sodium loading (P greater than 0.1). When the response of individual subjects was examined, there was no significant correlation between change in plasma IR-ANP and change in heart rate or catecholamine levels in either exercise study. Exercise induces greater increments in plasma IR-ANP than either acute or chronic sodium loading in normal men and may be a useful and rapid means of assessing the heart's ability to secrete ANP.  相似文献   

12.
The circulating immunoreactive atrial natriuretic peptide (C-terminal; alpha-ANP) increases during exercise to become suppressed in the first hours of the recovery. The response of the N-terminal ANP fragments to acute exercise is not known while proANP (31-67) appears to be elevated with chronic exercise. We evaluated the plasma concentrations of the N-terminal ANP fragments (1-30) and (31-67) in oarsmen (n=10) before and after two acute exercise bouts separated by 5 h. As control, measurements were made on a day with no exercise (n=12). At rest, the concentrations of proANP(1-30) and proANP(31-67) were 344+/-42 and 810+/-172 pmol x l(-1), respectively. Half an hour after the first exercise bout, proANP(1-30) was elevated (to 404+/-48 pmol x l(-1); P<0.05) and decreased below the pre-exercise level (to 316+/-41 pmol x l(-1); P<0.05) 4 h into the recovery period. Also, 30 min after the second exercise session, the concentration of proANP(1-30) was elevated to 408+/-45 pmol x l(-1) (P<0.05) and the pre-exercise level was re-established on the following morning. Thus, proANP(1-30), rather than proANP(31-67), responded to acute exercise. These results suggest that atrial distension and, therefore, the central blood volume changes markedly in athletes during a day with repeated exercise bouts.  相似文献   

13.
The effect of ischemia on atrial natriuretic peptide (ANP) release from heart ventricles was studied by exposing the perfused hearts of Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats to global ischemia after excision of the atria. Ischemia for 2, 5 and 20 min caused an increase of 0.3 +/- 1.1, 12.4 +/- 5.5 and 11.4 +/- 4.2 ng/g dry weight in ANP release of the WKY ventricles, respectively. ANP release increased 3.4 +/- 2.8 ng/g dry weight after 5 minutes' ischemia from the SHR ventricles. The increase was not caused by cell damage, as only processed form of the peptide was detected in the perfusates. The increase in ANP release in the WKY ventricles correlated positively with the tissue lactate/pyruvate ratio (r = 0.85) and adenosine (r = 0.99), and negatively with the phosphorylation potential (r = -0.70). The results indicate that ventricular ischemia increases ANP release, probably due to changes in myocardial energy metabolism.  相似文献   

14.
Atrial volume, pressure, and heart rate are considered the most important modulators of atrial natriuretic peptide (ANP) release, although their relative role is unknown. Continuous positive-pressure breathing in normal humans may cause atrial pressure and atrial volume to go in opposite directions (increase and decrease, respectively). We utilized this maneuver to differentially manipulate atrial volume and atrial pressure and evaluate the effect on ANP release. Effective filling pressure (atrial pressure minus pericardial pressure) was also monitored, because this variable has been proposed as another modulator of ANP secretion. We measured right atrial (RA) pressure, RA area, esophageal pressure (reflection of pericardial pressure), and RA and peripheral venous ANP in seven healthy adult males at rest and during continuous positive-pressure breathing (19 mmHg for 15 min). Continuous positive-pressure breathing decreased RA area (mean +/- SE, *P less than 0.05) 13.6 +/- 1.1 to 10.5 +/- 0.8* cm2, increased RA pressure 4 +/- 1 to 16 +/- 1* mmHg, increased esophageal pressure 2 +/- 1 to 12 +/- 1* mmHg, and increased effective filling pressure 2 +/- 0 to 4 +/- 1* mmHg. RA ANP increased from 67 +/- 17 to 91 +/- 18* pmol/l and peripheral venous ANP from 43 +/- 4 to 58 +/- 6* pmol/l.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Tachycardia releases atrial natriuretic peptide in the anesthetized rabbit   总被引:2,自引:0,他引:2  
In anesthetized, vagotomized rabbits the plasma concentration of immunoreactive atrial natriuretic peptide (IR-ANP) was found to be 58.5 +/- 3.4 pg/mL (n = 18) when measured using a radio-immunoassay. Tachycardia, induced by electrical pacing of the right atrium, resulted in increased plasma levels of IR-ANP. The size of the increase in IR-ANP appeared to be related to the degree of tachycardia induced. The release of IR-ANP with tachycardia was unaffected by beta-adrenergic blockade with atenolol (2 mg/kg), muscarinic blockade with atropine (2 mg/kg) or ganglionic blockade with hexamethonium (10 mg/kg). The results show that IR-ANP is released in response to tachycardia and that this does not involve a neuronal reflex.  相似文献   

16.
徐东  吴jing 《生理学报》1989,41(1):49-55
应用特异的心钠素免疫金银染色和放射免疫测定法,证明在人和大鼠脊髓内亦存在有心钠素样物质。心钠素免疫金银染色发现在人脊髓各段均有心钠素免疫反应阳性的神经元广泛分布。这些神经元主要位于脊髓腹角,同时脊髓背角和侧角亦有少量分布。应用对照吸收试验,其心钠素免疫反应阳性颗粒便消失或明显减少。心钠素放射免疫测定发现,从大鼠颈髓到胸、腰、骶髓均有心钠素样物质存在,其中以骶髓含量最高,为21.9±4.48ng/g组织;腰髓次之,为3.78±0.74ng/g组织;颈、胸髓含量最低,分别为0.58±0.14和0.46±0.21ng/g组织。应用凝胶过滤和高压液相层析证明,大鼠脊髓中心钠素亦以多分子形式存在,但以28个氨基酸的大鼠心房利纳多肽(rANP)为主。此外,对在体大鼠脊髓蛛网膜下腔灌流研究发现,高钾去极化刺激可使大鼠脊髓心钠素样物质释放。  相似文献   

17.
Stored cardiac pro-atrial natriuretic peptide (pro-ANP) is converted to ANP and released upon stretch from the atria into the circulation. Corin is a serin protease with pro-ANP-converting properties and may be the rate-limiting enzyme in ANP release. This study was aimed to clone and sequence corin in the rat and to analyze corin mRNA expression in heart failure when ANP release upon stretch is blunted. Full-length cDNA of rat corin was obtained from atrial RNA by RT-PCR and sequenced. Tissue distribution as well as regulation of corin mRNA expression in the atria were determined by RT-PCR and RNase protection assay. Heart failure was induced by an infrarenal aortocaval shunt. Stretch was applied to the left atrium in a working heart modus, and ANP was measured in the perfusates. The sequence of rat corin cDNA was found to be 93.6% homologous to mouse corin cDNA. Corin mRNA was expressed almost exclusively in the heart with highest concentrations in both atria. The aortocaval shunt led to cardiac hypertrophy and heart failure. Stretch-induced ANP release was blunted in shunt animals (control 1,195 +/- 197 fmol.min(-1).g(-1); shunt: 639 +/- 99 fmol.min(-1).g(-1), P < 0.05). Corin mRNA expression was decreased in both atria in shunt animals [right atrium: control 0.638 +/- 0.004 arbitrary units (AU), shunt 0.566 +/- 0.014 AU, P < 0.001; left atrium: control 0.564 +/- 0.009 AU, shunt 0.464 +/- 0.009 AU, P < 0.001]. Downregulation of atrial corin mRNA expression may be a novel mechanism for the blunted ANP release in heart failure.  相似文献   

18.
To study atrial natriuretic peptide (ANP) physiology in the chronically catheterized pregnant sheep model we developed a heterologous radioimmunoassay for ovine ANP using an antiserum raised against 1-28 human ANP. This antiserum (Tor I) is specific for the aminoterminus of the human ANP molecule and shows little cross reaction with any carboxyterminus ANP fragments. Ovine ANP immunoreactivity was characterized using this antiserum and a commercially available carboxyterminus ANP antiserum obtained from Peninsula Laboratories. Each antiserum detected 2 peaks of immunoreactivity in ovine atrial extracts chromatographed on a Biogel P-10 column. The minor peak migrated at a position close to 125I-human ANP whereas the major peak represented a larger molecular weight species of ANP. Examination of gel filtration eluates of ovine plasma extracts showed one immunoreactive ANP peak using the Tor I assay system and 2 peaks with the Peninsula Laboratories assay. Plasma immunoreactive ANP levels were determined in 9 sheep using both radioimmunoassay systems. Mean (+/- SEM) levels were similar using the Peninsula Laboratories and the Tor I assay systems (57 +/- 8 pg/ml versus 43 +/- 4 pg/ml, P greater than 0.05). Using the Tor I antiserum, fetal plasma immunoreactive ANP levels were found to be significantly higher than maternal levels (188 +/- 17 versus 48 +/- 8 pg/ml, P less than 0.01) whereas pregnant and nonpregnant adult sheep had similar plasma immunoreactive ANP levels (48 +/- 8 versus 43 +/- 4 pg/ml, P greater than 0.05). Disappearance curves of synthetic human ANP from the plasma of maternal and fetal sheep were assessed using both immunoassay systems and found to be similar.  相似文献   

19.
To elucidate the involvement of the brain renin-angiotensin system and the brain atrial natriuretic polypeptide (ANP) system in the regulation of ANP secretion from the heart, the effects of intracerebroventricular administration of angiotensin II and ANP on the plasma ANP level were examined in conscious unrestrained rats. The intracerebroventricular administration of angiotensin II at doses of 100 ng and 1 microgram significantly enhanced ANP secretion induced by volume-loading with 3-mL saline infusion (peak values of the plasma ANP level: control, 220 +/- 57 pg/mL; 100 ng angiotensin II, 1110 +/- 320 pg/mL, p less than 0.01; 1 microgram angiotensin II, 1055 +/- 60 pg/mL, p less than 0.01). The intracerebroventricular injection of angiotensin II at the same doses alone had no significant effect on the basal plasma ANP level. The enhancing effect of central angiotensin II on ANP secretion induced by volume-loading was significantly attenuated by pretreatment with the intravenous administration of the V1-receptor antagonist of vasopressin or with the intracerebroventricular administration of phentolamine. The intracerebroventricular administration of alpha-rANP(4-28) (5 micrograms) had no significant influence on the basal plasma ANP level; however, it significantly attenuated central angiotensin II potentiating effect of volume-loading induced ANP secretion. These results indicate that the brain renin-angiotensin system regulates ANP secretion via the stimulation of vasopressin secretion and (or) via the activation of the central alpha-adrenergic neural pathway, and that the brain ANP system interacts with the brain renin-angiotensin system in the central modulation of ANP secretion from the heart.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The release of immunoreactive (ir-) rat atrial natriuretic peptide (rANP) with volume expansion in in situ retrograde perfused rat heart was examined. The volume expansion induced by the infusion of the perfusion medium into the right atrium increased the mean right atrial pressure and the ir-rANP release without changing the rate of the heart beat. There was a significant correlation between the peak values of ir-rANP release and those of mean atrial pressure. The bilateral cervical vagotomy did not effect the ir-rANP release induced by the volume expansion. Therefore, it is highly likely that the stimulatory effect of volume expansion on rANP release is due to, at least in part, the atrial distension accompanied by an increase in mean atrial pressure, not involving a vagal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号