首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
To study K+ channels in the basolateral membrane of chloride-secreting epithelia, rat tracheal epithelial monolayers were cultured on permeable filters and mounted into an Ussing chamber system. The mucosal membrane was permeabilized with nystatin (180 μg/ml) in the symmetrical high K+ (145 mm) Ringer solution. During measurement of the macroscopic K+ conductance properties of the basolateral membrane under a transepithelial voltage clamp, we detected at least two types of K+ currents: one is an inwardly rectifying K+ current and the other is a slowly activating outwardly rectifying K+ current. The inwardly rectifying K+ current is inhibited by Ba2+. The slowly activating K+ current was potentiated by cAMP and inhibited by clofilium, phorbol 12-myristae 13-acetate (PMA) and lowering temperature. This is consistent with the biophysical characteristics of I SK channel. RT-PCR analysis revealed the presence of I SK cDNA in the rat trachea epithelia. Although 0.1 mm Ba2+ only had minimal affect on short-circuit current (I sc) induced by cAMP in intact epithelia, 0.1 mm clofilium strongly inhibited it. These results indicate that I SK might be important for maintaining cAMP-induced chloride secretion in the rat trachea epithelia. Received: 1 March 1996/Revised: 5 August 1996  相似文献   

2.
L-lactate transport mechanism across rat jejunal enterocyte was investigated using isolated membrane vesicles. In basolateral membrane vesicles l-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP, pCMBS and phloretin, while furosemide is ineffective. The pH gradient effect is strongly temperature dependent. The initial rate of the proton gradient-induced lactate uptake is saturable with respect to external lactate with a K m of 39.2 ± 4.8 mm and a J max of 8.9 ± 0.7 nmoles mg protein−1 sec−1. A very small conductive pathway for l-lactate is present in basolateral membranes. In brush border membrane vesicles both Na+ and H+ gradients exert a small stimulatory effect on lactate uptake. We conclude that rat jejunal basolateral membrane contains a H+-lactate cotransporter, whereas in the apical membrane both H+-lactate and Na+-lactate cotransporters are present, even if they exhibit a low transport rate. Received: 22 October 1996/Revised: 11 March 1997  相似文献   

3.
Since the major mechanisms responsible for regulation of intracellular pH of enterocytes are located in the basolateral membrane, respective effects may be expected on pH in the compartment near the basolateral membrane. A method was established to estimate the pH at the basolateral membrane (pH b ) of isolated caecal epithelia of guinea pig using pH-sensitive fluorescein attached to lectin (lens culinaris). In the presence of bicarbonate and a perfusion solution-pH of 7.4, pH b was 7.70 ± 0.15. In the absence of bicarbonate or chloride as well as by inhibition of the basolateral Cl-HCO 3 exchange with H2-DIDS, pH b was reduced near to solution-pH. Inhibition of the basolateral Na+-H+ exchanger by adding a sodium- and bicarbonate-free, low-buffered solution increased pH b . Decrease of pH of serosal perfusion solution to 6.4 provoked a similar decrease of pH b to solution pH. Short-chain fatty acids (SCFA) added to the mucosal solution caused a slight decrease of pH b . SCFA added to the serosal side alkalized pH b . However, in the presence of bicarbonate pH b returned quickly to the initial pH b , and after removal of SCFA a transient acidification of pH b was seen. These responses could not be inhibited by MIA or H2-DIDS. We conclude that no constant pH-microclimate exists at the basolateral side. The regulation of the intracellular pH of enterocytes reflects pH b . The slightly alkaline pH b is due to the bicarbonate efflux. Data support the presence of an SCFA-HCO 3 exchange. Received: 17 December 1998/Revised: 24 February 1999  相似文献   

4.
We have previously reported the presence of two Ca2+ influx components with relatively high (KCa= 152 ± 79 μm) and low (KCa= 2.4 ± 0.9 mm) affinities for Ca2+ in internal Ca2+ pool-depleted rat parotid acinar cells [Chauthaiwale et al. (1996) Pfluegers Arch. 432:105–111]. We have also reported the presence of a high affinity Ca2+ influx component with KCa= 279 ± 43 μm in rat parotid gland basolateral plasma membrane vesicles (BLMV). [Lockwich, Kim & Ambudkar (1994) J. Membrane Biol. 141:289–296]. The present studies show that a low affinity Ca2+ influx component is also present in BLMV with KCa= 2.3 ± 0.41 mm (Vmax= 16.36 ± 4.11 nmoles of Ca2+/mg protein/min). Our data demonstrate that this low affinity component is similar to the low affinity Ca2+ influx component that is activated by internal Ca2+ store depletion in dispersed parotid gland acini by the following criteria: (i) similar KCa for calcium flux, (ii) similar IC50 for inhibition by Ni2+ and Zn2+; (iii) increase in KCa at high external K+, (iv) similar effects of external pH. The high affinity Ca2+ influx in cells is different from the low affinity Ca2+ influx component cells in its sensitivity to pH, KCl, Zn2+ and Ni2+. The low and high affinity Ca2+ influx components in BLMV can also be distinguished from each other based on the effects of Zn2+, Ni2+, KCl, and dicyclohexylcarbodiimide. In aggregate, these data demonstrate the presence of a low affinity passive Ca2+ influx pathway in BLMV which displays characteristics similar to the low affinity Ca2+ influx component detected in parotid acinar cells following internal Ca2+ store depletion. Received: 19 March 1997/Revised: 25 November 1997  相似文献   

5.
In the first part of this study, photofrin II sensitized membrane modifications of OK-cells were investigated at the level of macroscopic membrane currents. In this second part, the inside-out configuration of the patch-clamp technique is applied to analyze the phenomena at the microscopic level. It is shown that the characteristic single channel fluctuations of the electric current disappear after the start of illumination of membrane patches in the presence of photofrin II. This holds for all three types of ion channels investigated: the large-conductance Ca2+-dependent K+ channel (maxi-KCa), a K+ channel of small conductance (sK), and a stretch-activated nonselective cation channel (SA-cat). Part of the experiments show a transient activation of the channels (indicated by an increase of the probability in the open-channel state) before the channels are converted into a closed nonconductive state. Inactivation of all three channel types proceeds by a continuous reduction of their open probability, while the single channel conductance values are not affected. The process of photodynamically induced channel inactivation is followed by a pronounced increase of the leak conductance of the plasma membrane. The latter process — after light-induced initiation — is found to continue in the dark. The ionic pathways underlying the leak conductance also allow permeation of Ca2+ ions. The resulting Ca2+-flux may contribute to the photodynamically induced increase of the intracellular Ca2+ concentration observed in various cell lines. Received: 26 May 1998/Revised: 8 September 1998  相似文献   

6.
The plasma membrane calcium pump, which ejects Ca2+ from the cell, is regulated by calmodulin. In the absence of calmodulin, the pump is relatively inactive; binding of calmodulin to a specific domain stimulates its activity. Phosphorylation of the pump with protein kinase C or A may modify this regulation. Most of the regulatory functions of the enzyme are concentrated in a region at the carboxyl terminus. This region varies substantially between different isoforms of the pump, causing substantial differences in regulatory properties. The pump shares some motifs of the carboxyl terminus with otherwise unrelated proteins: The calmodulin-binding domain is a modified IQ motif (a motif which is present in myosins) and the last 3 residues of isoform 4b are a PDZ target domain. The pump is ubiquitous, with isoforms 1 and 4 of the pump being more widely distributed than 2 and 3. In some kinds of cells isoform 1 or 4 is missing, and is replaced by another isoform. Received: 26 January 1998/Revised: 6 April 1998  相似文献   

7.
Photofrin II is a photosensitizer frequently applied in photodynamic therapy. Light-induced tumor cell inactivation observed in the presence of this substance has been suggested to start with modifications at the level of cellular membranes. In the present study electrophysiological techniques are applied in order to investigate the action of photofrin II on functional properties of the plasma membrane of opossum kidney (OK) cells (as an epithelial model system) and of fibroblasts. Illumination of the cells in the presence of photofrin II (or Zn-phthalocyanine) leads to comparatively fast depolarization of the membrane potential. It is caused by a strong change of the membrane conductance which proceeds in two phases. Both phases contribute to a loss of ion selectivity of the plasma membrane between K+ and Na+. In the first phase, specific pathways for K+, which determine the resting potential under physiological conditions, are inactivated. The second phase is distinguished by a marked increase of a nonselective conductance. The increase of the latter — after light-induced initiation — continues in the dark. The conclusions are derived from light-induced, time-dependent changes of the membrane conductance and of the shape of the current-voltage relationship detected under different experimental conditions. Received: 26 May 1998/Revised: 8 September 1998  相似文献   

8.
Recent studies from our laboratory have shown that in the mouse and rat nephron Ca2+ and Mg2+ are not reabsorbed in the medullary part of the thick ascending limb (mTAL) of Henle's loop. The aim of the present study was to investigate whether the absence of transepithelial Ca2+ and Mg2+ transport in the mouse mTAL is due to its relative low permeability to divalent cations. For this purpose, transepithelial ion net fluxes were measured by electron probe analysis in isolated perfused mouse mTAL segments, when the transepithelial potential difference (PDte.) was varied by chemical voltage clamp, during active NaCl transport inhibition by luminal furosemide. The results show that transepithelial Ca2+ and Mg2+ net fluxes in the mTAL are not driven by the transepithelial PDte. At zero voltage, a small but significant net secretion of Ca2+ into the tubular lumen was observed. With a high lumen-positive PDte generated by creating a transepithelial bath-to-lumen NaCl concentration gradient, no Ca2+ and Mg2+ reabsorption was noted; instead significant and sustained Ca2+ and Mg2+ net secretion occurred. When a lumen-positive PDte was generated in the absence of apical furosemide, but in the presence of a transepithelial bath-to-lumen NaCl concentration gradient, a huge Ca2+ net secretion and a lesser Mg2+ net secretion, not modified by ADH, were observed. Replacement of Na+ by K+ in the lumen perfusate induced, in the absence of PDte changes, important but reversible net secretions of Ca2+ and Mg2+. In conclusion, our results indicate that the passive permeability of the mouse mTAL to divalent cations is very low and not influenced by ADH. This nephron segment can secrete Ca2+ and Mg2+ into the luminal fluid under conditions which elicit large lumen-positive transepithelial potential differences. Given the impermeability of this epithelium to Ca2+ and Mg2+, the secretory processes would appear to be of cellular origin. Received: 30 January 1996/Revised: 24 April 1996  相似文献   

9.
Saccharomyces cerevisiae and mammals concerning the mechanisms of the translocation step and discuss the roles of the proteins implicated in this process. Received: 5 June 1996/Revised: 20 September 1996  相似文献   

10.
The present experiments were designed to examine the function of Na/K pumps from Dahl salt-sensitive (S) and salt-resistant (R) rats. Previous reports have suggested that there is a difference in primary sequence in the α1 subunit, the major Na/K pump isoform in the kidney. This sequence difference might contribute to differences in NaCl excretion in these two strains which in turn could influence the systemic blood pressure. Using ``back-door' phosphorylation of pumps isolated from basolateral membranes of kidney cortex, we found no differences between S and R strains. We also examined the Na/K pumps from cultured inner medullary collecting duct (IMCD) cells. This approach takes advantage of the fact that monolayers cultured from S rats transport about twice as much Na+ as monolayers cultured from R rats. In cells whose apical membrane was made permeable with amphotericin B, comparison of the affinities for ouabain, Na+, and K+, respectively, showed only small or no differences between S and R monolayers. Ouabain binding showed no difference in the number of Na/K pumps on the basolateral membrane of cultured cells, despite a 2-fold difference in Na+ transport rates. The analysis of the steady-state Na+ transport indicates that Na/K pumps in IMCD monolayers from S rats operate at a higher fraction of their maximum capacity than do pumps in monolayers from R rats. The results, taken together, suggest that the major reason for the higher rate of Na+ transport in S monolayers is because of a primary increase in the conductive permeability of the apical membrane to Na+. They suggest that the epithelial Na+ channel is intrinsically different or differently regulated in S and R rats. Received: 6 May 1996/Revised: 16 October 1996  相似文献   

11.
In vivo studies with leaf cells of aquatic plant species such as Elodea nuttallii revealed the proton permeability and conductance of the plasma membrane to be strongly pH dependent. The question was posed if similar pH dependent permeability changes also occur in isolated plasma membrane vesicles. Here we report the use of acridine orange to quantify passive proton fluxes. Right-side out vesicles were exposed to pH jumps. From the decay of the applied ΔpH the proton fluxes and proton permeability coefficients (PH+) were calculated. As in the intact Elodea plasma membrane, the proton permeability of the vesicle membrane is pH sensitive, an effect of internal pH as well as external pH on PH+ was observed. Under near symmetric conditions, i.e., zero electrical potential and zero ΔpH, PH+ increased from 65 × 10−8 at pH 8.5 to 10−1 m/sec at pH 11 and the conductance from 13 × 10−6 to 30 × 10−4 S/m2. At a constant pH i of 8 and a pH o going from 8.5 to 11, PH+ increased more than tenfold from 2 to 26 × 10−6 m/sec. The calculated values of PH+ were several orders of magnitude lower than those obtained from studies on intact leaves. Apparently, in plasma membrane purified vesicles the transport system responsible for the observed high proton permeability in vivo is either (partly) inactive or lost during the procedure of vesicle preparation. The residue proton permeability is in agreement with values found for liposome or planar lipid bilayer membranes, suggesting that it reflects an intrinsic permeability of the phospholipid bilayer to protons. Possible implications of these findings for transport studies on similar vesicle systems are discussed. Received: 5 April 1995/Revised: 28 March 1996  相似文献   

12.
We had previously shown that an influx of extracellular Ca2+ (Ca2+ e ), though it occurs, is not strictly required for aminoethyldextran (AED)-triggered exocytotic membrane fusion in Paramecium. We now analyze, by quenched-flow/freeze-fracture, to what extent Ca2+ e contributes to exocytotic and exocytosis-coupled endocytotic membrane fusion, as well as to detachment of ``ghosts' — a process difficult to analyze by any other method or in any other system. Maximal exocytotic membrane fusion (analyzed within 80 msec) occurs readily in the presence of [Ca2+] e ≥ 5 × 10−6 m, while normally a [Ca2+] e = 0.5 mm is in the medium. A new finding is that exocytosis and endocytosis is significantly stimulated by increasing [Ca2+] e even beyond levels usually available to cells. Quenching of [Ca2+] e by EGTA application to levels of resting [Ca2+] i or slightly below does reduce (by ∼50%) but not block AED-triggered exocytosis (again tested with 80 msec AED application). This effect can be overridden either by increasing stimulation time or by readdition of an excess of Ca2+ e . Our data are compatible with the assumption that normally exocytotic membrane fusion will include a step of rapid Ca2+-mobilization from subplasmalemmal pools (``alveolar sacs') and, as a superimposed step, a Ca2+-influx, since exocytotic membrane fusion can occur at [Ca2+] e even slightly below resting [Ca2+] i . The other important conclusion is that increasing [Ca2+] e facilitates exocytotic and endocytotic membrane fusion, i.e., membrane resealing. In addition, we show for the first time that increasing [Ca2+] e also drives detachment of ``ghosts' — a novel aspect not analyzed so far in any other system. According to our pilot calculations, a flush of Ca2+, orders of magnitude larger than stationary values assumed to drive membrane dynamics, from internal and external sources, drives the different steps of the exo-endocytosis cycle. Received: 27 September 1996/Revised: 11 February 1997  相似文献   

13.
Epithelial cells of toad (Bufo bufo) skin were isolated by treatments of the epidermis with collagenase and trypsin. Cl- channels in the basolateral membrane from soma or neck of mitochondria-rich cells were studied in cell-attached and excised inside-out configurations. Of a total of 87 sealed patches only 28 (32%) were electrically active, and in these we identified four different types of Cl- channels. The two major populations constituted Ohmic Cl- channels with limiting conductance (γ125/125) of 10 pS and 30 pS, respectively. A much rarer 150 pS Ohmic Cl- channel was also characterized. From i/V relationships of individual channels the following Goldman-Hodgkin-Katz permeabilities were calculated, 2.2 (±0.1) × 10-14, 5.7 (±0.7) × 10-14, and 32 (±2) × 10-14 cm3/sec, for the 10, 30 and 150 pS Cl- channels, respectively. The 30 pS channel was activated by hyperpolarization. The gating kinetics of the 150 pS channel was complex with burstlike closures within openings of long duration. The fourth type of Cl- channel was studied in patches generating `noisy currents' with no discrete single-channel events, but with vanishing fluctuations at pipette potentials near E Cl. Noise analysis revealed a power spectrum with cutoff frequencies of 1.2 and 13 Hz, indicating that resolution of kinetic steps was limited by small channel currents rather than fast channel gating. From the background noise level we estimated the channel conductance to be less than 1.7 pS. Despite the fact that the majority of patches did not contain electrically active Cl- channels, patches being active, generally, contained more than a single active channel. Thus, for the above three types of resolvable channels, the mean number of active channels per patch amounted to 2.1, 1.4, and 2.0, respectively. This observation, like the finding of few patches with several unresolvable channels, indicates that electrically active Cl- channels are organized in clusters. Received: 10 October 1996/Revised: 8 January 1997  相似文献   

14.
Nitrogen is available to the plant in the form of NH+ 4 in the soil solution. Here it is shown that a voltage-independent K+ channel in the plasma membrane of rye (Secale cereale L.) roots is permeable to NH+ 4. The channel was studied following its incorporation into planar 1-palmitoyl-2-oleoyl phosphatidyl ethanolamine bilayers. The unitary conductance of the channel was greater when assayed in the presence of 100 mm NH4Cl than 100 mm KCl. However, the probability of finding the channel open (P o ) was lower in the presence of 100 mm NH4Cl (P o = 0.63) than in 100 mm KCl (P o = 0.8), suggesting that P o can be regulated by the (permeant) ions present in solution. When assayed in equimolar concentrations of NH4Cl (cis) and KCl (trans), the zero-current (reversal) potential for the channel (E rev) exhibited a complex concentration dependence. At low cation concentrations, the apparent permeability of NH+ 4 relative to K+ (PNH4/PK) was greater than 1.0. However, as the cation concentration was increased, PNH4/PK initially decreased to a minimum of 0.95 at 3 mm before increasing again to a maximum of 1.89 at 300 mm. At cation concentrations above 300 mm, PNH4/PK decreased slightly. This implies that the pore of the channel can be occupied by more than one cation simultaneously. Ammonium permeation through the pore was simulated using a model which is composed of three energy barriers and two energy wells (the ion-binding sites). The model (3B2S) allowed for single-file permeation, double cation occupancy, ion-ion repulsion within the pore and surface potential effects. Results indicated that energy peaks and energy wells were situated asymmetrically within the electrical distance of the pore, that cations repel each other within the pore and that the vestibules to the pore contain negligible surface charge. The energy profile obtained for NH+ 4 is compared with ones obtained for K+ and Na+. This information allows the fluxes through the K+ channel of the three major monovalent cations present in the soil solution to be predicted. Received: 16 October 1995/Revised 12 March 1996  相似文献   

15.
Thermal stability of plasma membrane Ca2+ pump was systematically studied in three micellar systems of different composition, and related with the interactions amphiphile-protein measured by fluorescence resonance energy transfer. Thermal denaturation was characterized as an irreversible process that is well described by a first order kinetic with an activation energy of 222 ± 12 kJ/mol in the range 33–45°C. Upon increasing the mole fraction of phospholipid in the mixed micelles where the Ca2+ pump was reconstituted, the kinetic coefficient for the inactivation process diminished until it reached a constant value, different for each phospholipid species. We propose a model in which thermal stability of the pump depends on the composition of the amphiphile monolayer directly in contact with the transmembrane protein surface. Application of this model shows that the maximal pump stability is attained when 80% of this surface is covered by phospholipids. This analysis provides an indirect measure of the relative affinity phospholipid/detergent for the hydrophobic transmembrane surface of the protein (K LD ) showing that those phospholipids with higher affinity provide greater stability to the Ca2+ pump. We developed a method for directly measure K LD by using fluorescence resonance energy transfer from the membrane protein tryptophan residues to a pyrene-labeled phospholipid. K LD values obtained by this procedure agree with those obtained from the model, providing a strong evidence to support its validity. Received: 5 August 1999/Revised: 20 October 1999  相似文献   

16.
We have previously demonstrated (Diabetes 39:707–711, 1990) that in vitro glycation of the red cell Ca2+ pump diminishes the Ca2+-ATPase activity of the enzyme up to 50%. Such effect is due to the reaction of glucose with lysine residues of the Ca2+ pump (Biochem. J. 293:369–375, 1993). The aim of this work was to determine whether the effect of glucose is due to a full inactivation of a fraction of the total population of Ca2+ pump, or to a partial inactivation of all the molecules. Glycation decreased the V max for the ATPase activity leaving unaffected the apparent affinities for Ca2+, calmodulin or ATP. The apparent turnover was identical in both, the glycated and the native enzyme. Glycation decreased the V max for the ATP-dependent but not for the calmodulin-activated phosphatase activities. Concomitantly with the inhibition, up to 6.5% of the lysine residues were randomly glycated. The probabilistic analysis of the relation between the enzyme activity and the fraction of nonmodified residues indicates that only one Lys residue is responsible for the inhibition. We suggest that glucose decreases the Ca2+-ATPase activity by reacting with one essential Lys residue probably located in the vicinity of the catalytic site, which results in the full inactivation of the enzyme. Thus, Ca2+-ATPase activity measured in erythrocyte membranes or purified enzyme preparations preincubated with glucose depends on the remaining enzyme molecules in which the essential Lys residue stays unglycated. Received: 9 March 1999/Revised: 11 May 1999  相似文献   

17.
The NMR (nuclear magnetic resonance) method of Conlon and Outhred (1972) was used to measure diffusional water permeability of the nodal cells of the green alga Chara gymnophylla. Two local minima at 15 and 30°C of diffusional water permeability (P d ) were observed delimiting a region of low activation energy (E a around 20 kJ/mol) indicative of an optimal temperature region for membrane transport processes. Above and below this region water transport was of a different type with high E a (about 70 kJ/mol). The triphasic temperature dependence of the water transport suggested a channel-mediated transport at 15–30°C and lipid matrix-mediated transport beyond this region. The K+ channel inhibitor, tetraethylammonium as well as the Cl channel inhibitor, ethacrynic acid, diminished P d in the intermediate temperature region by 54 and 40%, respectively. The sulfhydryl agent p-(chloromercuri-benzensulfonate) the water transport inhibitor in erythrocytes also known to affect K+ transport in Chara, only increased P d below 15°C. In high external potassium (`K-state') water transport minima were pronounced. The role of K+ channels as sensors of the optimal temperature limits was further emphasized by showing a similar triphasic temperature dependence of the conductance of a single K+ channel also known to cotransport water, which originated from cytoplasmic droplets (putatively tonoplast) of C. gymnophylla. The minimum of K+ single channel conductance at around 15°C, unlike the one at 30°C, was sensitive to changes of growth temperature underlining membrane lipid involvement. The additional role of intracellular (membrane?) water in the generation of discontinuities in the above thermal functions was suggested by an Arrhenius plot of the cellular water relaxation rate which showed breaks at 13 and 29°C. Received: 12 August 1998/Revised: 13 November 1998  相似文献   

18.
The hyperpolarization of the electrical plasma membrane potential difference has been identified as an early response of plant cells to various signals including fungal elicitors. The hyperpolarization-activated influx of Ca2+ into tomato cells was examined by the application of conventional patch clamp techniques. In both whole cell and single-channel recordings, clamped membrane voltages more negative than −120 mV resulted in time- and voltage-dependent current activation. Single-channel currents saturated with increasing activities of Ca2+ and Ba2+ from 3 to 26 mm and the single channel conductance increased from 4 pS to 11 pS in the presence of 20 mm Ca2+ or Ba2+, respectively. These channels were 20–25 and 10–13 times more permeable to Ca2+ than to K+ and to Cl, respectively. Channel currents were strongly inhibited by 10 μm lanthanum and 50% inhibited by 100 μm nifedipine. This evidence suggests that hyperpolarization-activated Ca2+-permeable channels provide a mechanism for the influx of Ca2+ into tomato cells. Received: 13 February 1996/Revised: 12 August 1996  相似文献   

19.
Evolution of Substrate Specificities in the P-Type ATPase Superfamily   总被引:23,自引:0,他引:23  
P-type ATPases make up a large superfamily of ATP-driven pumps involved in the transmembrane transport of charged substrates. We have performed an analysis of conserved core sequences in 159 P-type ATPases. The various ATPases group together in five major branches according to substrate specificity, and not according to the evolutionary relationship of the parental species, indicating that invention of new substrate specificities is accompanied by abrupt changes in the rate of sequence evolution. A hitherto-unrecognized family of P-type ATPases has been identified that is expected to be represented in all the major phyla of eukarya. Received: 21 May 1997 / Accepted: 1 August 1997  相似文献   

20.
The nature of transepithelial and cellular transport of the dibasic amino acid lysine in human intestinal epithelial Caco-2 cells has been characterized. Intracellular accumulation of lysine across both the apical and basolateral membranes consists of a Na+-independent, membrane potential-sensitive uptake. Na+-independent lysine uptake at the basolateral membrane exceeds that at the apical membrane. Lysine uptake consists of both saturable and nonsaturable components. Na+-independent lysine uptake at both membranes is inhibited by lysine, arginine, alanine, histidine, methionine, leucine, cystine, cysteine and homoserine. In contrast, proline and taurine are without inhibitory effects at both membranes. Fractional Na+-independent lysine efflux from preloaded epithelial layers is greater at the basolateral membrane and shows trans-stimulation across both epithelial borders by lysine, arginine, alanine, histidine, methionine, and leucine but not proline and taurine. Na+-independent lysine influx (10 μm) in the presence of 10 mm homoserine shows further concentration dependent inhibition by lysine. Taken together, these data are consistent with lysine transport being mediated by systems bo,+, y+ and a component of very low affinity (nonsaturable) at both membranes. The relative contribution to lysine uptake at each membrane surface (at 10 μm lysine), normalized to total apical uptake (100%), is apical bo,+ (47%), y+ (27%) and the nonsaturable component (26%), and basal bo,+ (446%), y+ (276%) and the nonsaturable component (20%). Northern analysis shows hybridization of Caco-2 poly(A)+RNA with a human rBAT cDNA probe. Received: 3 July 1995/Revised: 6 February 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号