首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Glutathione transferase (GST) was purified from the microsomes of rat liver by glutathione affinity chromatography. The interaction of 2,4-dichlorophenoxyacetic acid (2,4-D) and 1,4-benzoquinone with microsomal GST was investigated and compared with cytosolic GST. The kinetic inhibition pattern of 1,4-benzoquinone towards microsomal GST was found to be different from that towards cytosolic GST. Microsomal GST purified by affinity chromatography was inhibited by 2,4-D in a non dose-dependent manner, while the crude microsomal GST was inhibited in a dose-dependent manner. This difference was shown to be induced by a reaction on the affinity column, and not by Triton X-100 (also shown to be a GST inhibitor), glutathione, or the elution buffer 0.2% Triton X-100 and 5 mM glutathione in 50 mM Tris-HCl, pH 9.6. The binding of microsomal GST to the affinity matrix caused a partial inactivation of the active site for 2,4-D interaction. The results show that the properties of soluble GST enzymes may not be extrapolated to the microsomal ones.  相似文献   

2.
Interaction of hemin with placental glutathione transferase   总被引:3,自引:0,他引:3  
To verify a possible involvement of glutathione transferase pi in intracellular transport of hemin the interaction between the protein and the ligand was studied using three different spectroscopic techniques: intrinsic fluorescence quenching, kinetic measurements in the visible range and circular dichroism. From fluorescence experiments two binding sites for the hemin were found with Kd values of about 20 nM (high-affinity site) and 400 nM (low-affinity site). In the presence of glutathione or S-methylglutathione the high-affinity site further increased its affinity, while the second site reduced its affinity for hemin. The effect of hemin on the catalytic activity of the glutathione transferase pi was studied using two different glutathione concentrations. With 1 mM glutathione a non-linear Dixon plot was obtained, while decreased hemin inhibition and a linear pattern was observed with 2.5 mM glutathione. The Ki calculated was 4 microM and the inhibition appeared to be non-competitive with respect to 1-chloro-2,4-dinitrobenzene. CD spectra of the bilirubin-glutathione-transferase complex (350-600 nm region) at different hemin concentrations showed a common binding site for bilirubin and hemin. In conclusion, the presence of a high-affinity site for the hemin and the fact that glutathione at physiological concentrations increased the affinity of this site, suggest the involvement of glutathione transferase pi in the hemin transport.  相似文献   

3.
Inhibition studies on rat liver microsomal glutathione transferase   总被引:2,自引:0,他引:2  
A set of inhibitors for rat liver microsomal glutathione transferase have been characterized. These inhibitors (rose bengal, tributyltin acetate, S-hexylglutathione, indomethacin, cibacron blue and bromosulphophtalein) all have I50 values in the 1-100 microM range. Their effects on the unactivated enzyme were compared to those on the N-ethylmaleimide- and trypsin-activated microsomal glutathione transferase. It was found that the I50 values were decreased upon activation of the enzyme (5-20-fold), except for S-hexylglutathione, where a slight increase was noted. Thus, the activated microsomal glutathione transferase is generally more sensitive to the effect of inhibitors than the unactivated enzyme. It was also noted that inhibitor potency can vary dramatically depending on the substrate used. The I50 values for the N-ethylmaleimide- and trypsin-activated enzyme preparations are altered in a similar fashion compared to the unactivated enzyme. This finding indicates that these two alternative mechanisms of activation induce a similar type of change in the microsomal glutathione transferase.  相似文献   

4.
The in vitro interaction of the mycotoxin penicillic acid (PA) with rat liver glutathione S-transferase (GST) was studied using reduced glutathione and 1-chloro-2,4-dinitrobenzene as substrates. The inhibition of the GST activity by PA in crude extracts was dose dependent. Each of the different GST isoenzymes was inhibited, albeit at different degrees. Kinetic studies never revealed competitive inhibition kinetics. The conjugation of PA with GSH occurred spontaneously; it was not enzymatically catalyzed by GST, indicating that an epoxide intermediate is not involved in conjugation. The direct binding of PA to GST provides an additional detoxication mechanism.  相似文献   

5.
The substrate specificity of rat liver microsomal glutathione transferase toward glutathione has been examined in a systematic manner. Out of a glycyl-modified and eight gamma-glutamyl-modified glutathione analogues, it was found that four (glutaryl-L-Cys-Gly, alpha-L-Glu-L-Cys-Gly, alpha-D-Glu-L-Cys-Gly, and gamma-L-Glu-L-Cys-beta-Ala) function as substrates. The kinetic parameters for three of these substrates (the alpha-D-Glu-L-Cys-Gly analogue gave very low activity) were compared with those of GSH with both unactivated and the N-ethylmaleimide-activated microsomal glutathione transferase. The alpha-L-Glu-L-Cys-Gly analogue is similar to GSH in that it has a higher kcat (6.9 versus 0.6 s-1) value with the activated enzyme compared with the unactivated enzyme but displays a high Km (6 versus 11 mM) with both forms. Glutaryl-L-Cys-Gly, in contrast, exhibited a similar kcat (8.9 versus 6.7 s-1) with the N-ethylmaleimide-treated enzyme but retains a higher Km value (50 versus 15 mM). Thus, the alpha-amino group of the glutamyl residue in GSH is important for the activity of the activated microsomal glutathione transferase. These observations were quantitated by analyzing the changes in the Gibbs free energy of binding calculated from the changes in kcat/Km values, comparing the analogues to GSH and each other. It is estimated that the binding energy of the alpha-amino group of the glutamyl residue in GSH contributes 9.7 kJ/mol to catalysis by the activated enzyme, whereas the corresponding value for the unactivated enzyme is 3.2 kJ/mol. The importance of the acidic functions in glutathione is also evident as shown by the lack of activity with 4-aminobutyric acid-L-Cys-Gly and the low kcat/Km values with gamma-L-Glu-L-Cys-beta-Ala (0.03 and 0.01 mM-1s-1 for unactivated and activated enzyme, respectively). Utilization of binding energy from a correctly positioned carboxyl group in the glycine residue (10 and 17 kJ/mol for unactivated and activated enzyme, respectively) therefore also appears to be required for optimal activity and activation. A conformational change in the microsomal glutathione transferase upon treatment with N-ethylmaleimide or trypsin, which allows utilization of binding energy from the alpha-amino group of GSH as well as the glycine carboxyl in catalysis, is suggested to account for at least part of the activation of the enzyme.  相似文献   

6.
The activity of rat liver microsomal glutathione transferase is increased by limited tryptic proteolysis; the membrane-bound and purified forms of the enzyme are activated about 5- and 10-fold respectively. The cleavage sites that correlate with this activation were determined by amino acid sequence analysis to be located after Lys-4 and Lys-41. Differences in the relative extent of cleavage at these two sites did not consistently affect the degree of activation. Thus the data support the conclusion that cleavage at either site results in activation. The trypsin-activated enzyme was compared with the form activated with N-ethylmaleimide, which modifies Cys-49. These two differently activated forms were found to have similar kinetic parameters, which differ from those of the unactivated enzyme. The relatedness of the two types of activation is also demonstrated by the observation that microsomal glutathione transferase fully activated by N-ethylmaleimide is virtually resistant to further activation by trypsin. This is the case despite the fact that the N-ethylmaleimide-activated enzyme is much more susceptible to trypsin cleavage at Lys-41 than is the untreated enzyme. The latter observation indicates that activation with N-ethylmaleimide is accompanied by a conformational change involving Lys-41.  相似文献   

7.
The membrane topology of rat liver microsomal glutathione transferase was investigated by comparing the tryptic cleavage products from intact and permeabilized microsomes. It was shown that lysine-4 of microsomal glutathione transferase is accessible at the luminal surface of the endoplasmic reticulum, whereas lysine-41 faces the cytosol. These positions are separated by a hydrophobic stretch of 25 amino acids (positions 11–35) which comprises the likely membrane-spanning region. Reaction of cysteine-49 of the microsomal glutathione transferase with the charged sulfhydryl reagent DTNB (2,2′-dithiobis(5-nitrobenzoic acid))) in intact microsomes further supports the cytosolic localization of this portion of the polypeptide chain. The role of two other potential membrane-spanning/associated segments in the C-terminal half of the polypeptide chain was examined by investigating the association of the protein to the membrane after trypsin cleavage at lysine-41. Activity measurements and Western blot analysis after washing with high concentrations of salt, as well as after phase separation in Triton X-114, indicate that this portion of the protein also binds to the membrane. It is also shown that cleavage of the purified protein at Lys-41 and subsequent separation of the fragments obtained yields a functional C-terminal polypeptide with the expected length for the product encompassing positions 42–154. The location of the active site of microsomal glutathione transferase was investigated using radiolabelled glutathione together with a second substrate. Since isolated rat liver microsomes do not take up glutathione or release the glutathione conjugate into the lumen, it can be concluded that the active site of rat liver microsomal glutathione transferase faces the cytosolic side of the endoplasmic reticulum.  相似文献   

8.
The major form of glutathione transferase from the toad liver previously designed as Bufo bufo liver GST-7.6 (A. Aceto, B. Dragani, T. Bucciarelli, P. Sacchetta, F. Martini, S. Angelucci, F. Amicarelli, M. Miranda and C. Di Ilio, Biochem. J. 289 (1993) 417-422) has been characterized. According to its partial amino acid sequence, the toad enzyme may be included in the pi class GST and named bbGST P2-2. However, bbGST P2-2 appears to be immunologically, structurally and kinetically distinct from any other members of pi family, including bbGST P1-1, suggesting that it may constitute a subset of pi class GST. The data support the hypothesis that the transition from aquatic to terrestrial life causes a switch of the GST amphibian pattern promoting the expression of a GST form (bbGST P2-2) able to counteract, with higher efficiency, the toxic effects of reactive metabolites of oxidative metabolism and those of hydrophobic xenobiotics.  相似文献   

9.
Cytosolic GSH transferases have been purified from rat lung by affinity chromatography followed by chromatofocusing. On the criteria of order of elution, substrate specificity, apparent subunit Mr, sensitivity to inhibitors, and reaction with antibodies, transferase subunits equivalent to subunits 2, 3, and 4, in the binary combinations occurring in liver, were identified. However, subunit 1 (and therefore transferases 1-1 and 1-2) was not detected. The most conspicuous difference is the presence in lung of a new form, eluting at pH 8.7, which is not detected in rat liver. This isoenzyme (transferase "pH 8.7") is characterized by its low apparent subunit Mr and high efficiency in the conjugation of glutathione with anti-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide, considered the ultimate carcinogen of benzo(a)-pyrene.  相似文献   

10.
Three reactions (nucleophile substitution, thiolysis and N-deoxygenation) catalyzed by rat liver glutathione transferase have been studied using several N-heterylazimine inhibitors. The inhibitors are sharply different in their effectiveness in the transferase reactions. Their efficiency depends on their structure. The mechanism which underlies the found regularities is suggested.  相似文献   

11.
The glutathione transferase (GST) activity of rat liver cytosolic preparations with ethacrynic acid (EA) and (±)-7β,8α-dihydroxy-9α, 10α-epoxy-7,8,9,10-tetrahydro-benzo(a)pyrene (BPDE) as substrates, increased by 125 and 350%, respectively, in animals that had been treated with a single intravenous dose of Pb(NO3)2 (100 μmol/kg body wt) 48 h prior to sacrifice, whereas activity with 1-chloro-2,4-dinitro-benzene (CDNB) increased only about 60%. No induction of these activities was observed in cytosolic preparations from regenerating rat liver, whereas cytosols prepared from hepatocyte nodules showed increased activity with all three substrates (EA: 400%; BPDE: 790%; CDNB: 205%). These results suggest that Pb(NO3)2 is an inducer of GST 7-7, an isoenzyme that has been associated with hepatocarcinogenesis. Elucidation of the mechanism of GST 7-7 induction by lead may contribute to our understanding of the process of chemical carcinogenesis.  相似文献   

12.
The trimeric membrane protein microsomal glutathione transferase 1 (MGST1) possesses glutathione transferase and peroxidase activity. Previous data indicated one active site/trimer whereas structural data suggests three GSH-binding sites. Here we have determined ligand interactions of MGST1 by several techniques. Nanoelectrospray mass spectrometry of native MGST1 revealed binding of three GSH molecules/trimer and equilibrium dialysis showed three product molecules/trimer (Kd = 320 ± 50 μM). All three product molecules could be competed out with GSH. Reinvestigation of GSH-binding showed one high affinity site per trimer, consistent with earlier data. Using single turnover stopped flow kinetic measurements, Kd could be determined for a low affinity GSH-binding site (2.5 ± 0.5 mM). Thus we can reconcile previous observations and show here that MGST1 contains three active sites with different affinities for GSH and that only the high affinity site is catalytically competent.  相似文献   

13.
By adopting biotin switch method, we recently reported that liver microsomal glutathione transferase 1 (MGST1) might not be a protein target for S-nitrosylation in rat microsomes or in vivo. However, alternative analytic methods are needed to confirm this observation, as a single biotin switch method in judging specific protein S-nitrosylation in biological samples is increasingly recognized as insufficient, or even unreliable. Besides, only MGST1 localized on endoplasmic reticulum (ER), but not mitochondria which favors protein S-nitrosylation was examined in the previous report. Present study was therefore carried out to address these issues. Primary cultured hepatocytes were used. A physiological existing nitric oxide (NO) donor S-nitrosoglutathione (GSNO) was adopted to trigger protein S-nitrosylation. MGST1 was immunoprecipitated and its S-nitrosothiol content was measured by the NO probe 2,3-diaminonaphthalene. In parallel, S-nitrosylated proteins were immunoprecipitated by a monoclonal anti-S-nitrosocysteine antibody and probed with an anti-MGST1 antibody. In hepatocytes, neither ER nor mitochondria were found to contain S-nitrosylated MGST1 after GSNO treatment, showing that differently distributed MGST1 was consistently un-nitrosylable in the cellular environment. But under broken cell conditions, when samples were incubated directly with GSNO, MGST1 S-nitrosylation was indeed detectable in both the microsomal and mitochondrial proteins, indicating that previous failure in detecting MGST1 S-nitrosylation in microsomes is due to the limitations of biotin switch method. These results clearly, if not definitely, demonstrate that MGST1 is not a ready candidate for S-nitrosylation in the cellular content, despite its susceptibility to S-nitrosylation under broken cell conditions.  相似文献   

14.
The stereoselectivity of purified rat GSH transferases towards alpha-bromoisovaleric acid (BI) and its amide derivative alpha-bromoisovalerylurea (BIU) was investigated. GSH transferase 2-2 was the only enzyme to catalyse the conjugation of BI and was selective for the (S)-enantiomer. The conjugation of (R)- and (S)-BIU was catalysed by the isoenzymes 2-2, 3-3 and 4-4. Transferase 1-1 was less active, and no catalytic activity was observed with transferase 7-7. Isoenzymes 1-1 and 2-2 of the Alpha multigene family preferentially catalysed the conjugation of the (S)-enantiomer of BIU (and BI), whereas isoenzymes 3-3 and 4-4 of the Mu multigene family preferred (R)-BIU. The opposite stereoselectivity of conjugation of BI and BIU previously observed in isolated rat hepatocytes and the summation of activities of enzymes known to be present in hepatocytes on the basis of present data are in accord.  相似文献   

15.
A set of inhibitors including hematin, bromosulfophthalein, and triethyltin bromide was used for discrimination and identification of the major basic isozymes of glutathione transferase in rat liver cytosol. Six enzymes are formed as binary combinations of 4 protein subunits: A, B, C, and L. Discrimination between the transferases can be based on the differences of the subunits in susceptibility to the inhibitors. The identification of transferase subunits is further supported by the combined use of specific substrates and inhibitors.  相似文献   

16.
Six forms of glutathione transferase with pI values of 4.6, 5.9, 6.8, 7.1, 8.5 and 9.9 have been isolated from the cytosol fraction of normal skin from three human subjects. The three most abundant enzymes were an acidic Class Pi transferase (pI 4.6; apparent subunit Mr 23,000), a basic Class Alpha transferase (pI 8.5; apparent subunit Mr 24,000) and an even more basic glutathione transferase of Class Alpha (pI 9.9; apparent subunit Mr 26,500). The last enzyme, which was previously unknown, accounts for 10-20% of the glutathione transferase in human skin. The novel transferase showed greater similarities with rat glutathione transferase 2-2, another Class Alpha enzyme, than with any other known transferase irrespective of species. The most striking similarities included reactions with antibodies, amino acid compositions and identical N-terminal amino acid sequences (16 residues). The close relationship between the human most basic and the rat glutathione transferase 2-2 supports the classification of the transferases previously proposed and indicates that the similarities between enzymes isolated from different species are more extensive than had been assumed previously.  相似文献   

17.
The "mu loop," an 11-residue loop spanning amino acid residues 33-43, is a characteristic structural feature of the mu class of glutathione transferases. To assess the contribution of the mu loop to the structure and function of rat GST M1-1, amino acid residues 35-44 (35GDAPDYDRSQ44) were excised by deletion mutagenesis, resulting in the "Deletion Enzyme." Kinetic studies reveal that the Km values of the Deletion Enzyme are markedly increased compared with those of the wild-type enzyme: 32-fold for 1-chloro-2,4-dinitrobenzene, 99-fold for glutathione, and 880-fold for monobromobimane, while the Vmax value for each substrate is increased only modestly. Results from experiments probing the structure of the Deletion Enzyme, in comparison with that of the wild-type enzyme, suggest that the secondary and quaternary structures have not been appreciably perturbed. Thermostability studies indicate that the Deletion Enzyme is as stable as the wild-type enzyme at 4 degrees C and 10 degrees C, but it rapidly loses activity at 25 degrees C, unlike the wild-type enzyme. In the temperature range of 4 degrees C through 25 degrees C, the loss of activity of the Deletion Enzyme is not the result of a change in its structure, as determined by circular dichroism spectroscopy and sedimentation equilibrium centrifugation. Collectively, these results indicate that the mu loop is not essential for GST M1-1 to maintain its structure nor is it required for the enzyme to retain some catalytic activity. However, it is an important determinant of the enzyme's affinity for its substrates.  相似文献   

18.
Isoenzymes of glutathione transferase in rat small intestine.   总被引:2,自引:1,他引:1       下载免费PDF全文
The role of plasminogen activators (PAs) as potential mediators of involution of the rat ventral prostate was investigated by using an approach involving the administration in vivo of anti-PA drugs. The prostates of castrated rats, which had been injected daily for 7 days with the anti-PA drugs 6-aminohexanoic acid, tranexamic acid, aprotinin and cortisol, were assayed for PA activity, weight and cell number. In the prostates from the castrated controls, there was a 10-fold increase in the mean PA activity and a 7-fold decrease in cell number relative to that of the non-castrated animals. Although this rise in enzyme activity could be decreased to some extent by all the drugs except aprotinin, only treatment with high doses of tranexamic acid or cortisol had a statistically significant effect. A similar pattern was observed with respect to the relative potency of the drugs in preventing the loss of prostatic weight and cell number after castration. The effects of cortisol were dose-dependent, with complete inhibition of both the rise in PA activity and cell loss occurring at a dose of about 15 mg/day. Since the concentration of the principal intranuclear androgen, dihydrotestosterone, was the same in the prostates from treated and untreated castrated rats, the effects of cortisol are not due to increased retention of this androgen. Rather, the high inverse correlation (r = 0.86) between the cellular concentration of PA activity and the cell population of the prostate implies that PAs are directly associated with prostatic involution and that cortisol, and to a lesser extent tranexamic acid, blocks the involution process through inhibition of PAs.  相似文献   

19.
A number of potential substrates for the microsomal glutathione transferase have been investigated. Out of 11 epoxides tested, only two, i.e. androstenoxide and benzo(a)pyrene-4,5-oxide, were found to be substrates. Upon treatment of the enzyme with N-ethylmaleimide, its activity toward only certain substrates is increased. It appeared upon inspection of the bimolecular rate constants from the corresponding nonenzymatic reactions that the substrates for which the activity is increased are the more reactive ones. This hypothesis was investigated further using a series of para-substituted 1-chloro-2-nitrobenzene derivatives as substrates. Activation was seen only with the more reactive nitro-, aldehyde-, and acetaldehyde-substituted compounds and not with the amide and chloroanalogues, thus demonstrating the predicted effect with a related series of compounds. Interestingly, kcat values are increased 7-20-fold by N-ethylmaleimide treatment, whereas the corresponding kcat/Km value is increased only for the p-nitro derivative. Effective molarity and rate enhancement values were found to increase with decreasing reactivity of the substrate, attaining maximal values of 10(5) M and 10(8), respectively. It is concluded that the glutathione transferases are quite effective catalysts with their less reactive substrates. Hammett rho values for the kcat values of unactivated and activated enzyme were 0.49 and 2.0, respectively. The latter value is close to those found for cytosolic glutathione transferases, indicating that activation changes the catalytic mechanism so that it more closely resembles that of the soluble enzymes. The rho values for kcat/Km values were 3 and 3.5 for the unactivated and activated enzyme, respectively, values close to those observed for the nonenzymatic bimolecular rate constants and thereby demonstrating that these reactions have similar properties. The high coefficients of correlation between resonance sigma- values and all of these parameters demonstrate a strong dependence on substrate electrophilicity, as expected for nucleophilic aromatic substitution.  相似文献   

20.
Amino acid residues that are essential for the activity of rat liver microsomal glutathione transferase have been identified using chemical modification with various group-selective reagents. The enzyme reconstituted into phosphatidylcholine liposomes does not require stabilization with glutathione for activity (in contrast with the purified enzyme in detergent) and can thus be used for modification of active-site residues. Protection by the product analogue and inhibitor S-hexylglutathione was used as a criterion for specificity. It was shown that the histidine-selective reagent diethylpyrocarbonate inactivated the enzyme and that S-hexylglutathione partially protected against this inactivation. All three histidine residues in microsomal glutathione transferase could be modified, albeit at different rates. Inactivation of 90% of enzyme activity was achieved within the time period required for modification of the most reactive histidine, indicating the functional importance of this residue in catalysis. The arginine-selective reagents phenylglyoxal and 2,3-butanedione inhibited the enzyme, but the latter with very low efficiency; therefore no definitive assignment of arginine as essential for the activity of microsomal glutathione transferase can be made. The amino-group-selective reagents 2,4,6-trinitrobenzenesulphonate and pyridoxal 5'-phosphate inactivated the enzyme. Thus histidine residues and amino groups are suggested to be present in the active site of the microsomal glutathione transferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号