共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Natali AN Carniel EL Pavan PG Sander FG Dorow C Geiger M 《Journal of biomechanical engineering》2008,130(3):031004
The periodontal ligament (PDL), as other soft biological tissues, shows a strongly non-linear and time-dependent mechanical response and can undergo large strains under physiological loads. Therefore, the characterization of the mechanical behavior of soft tissues entails the definition of constitutive models capable of accounting for geometric and material non-linearity. The microstructural arrangement determines specific anisotropic properties. A hyperelastic anisotropic formulation is adopted as the basis for the development of constitutive models for the PDL and properly arranged for investigating the viscous and damage phenomena as well to interpret significant aspects pertaining to ordinary and degenerative conditions. Visco-hyperelastic models are used to analyze the time-dependent mechanical response, while elasto-damage models account for the stiffness and strength decrease that can develop under significant loading or degenerative conditions. Experimental testing points out that damage response is affected by the strain rate associated with loading, showing a decrease in the damage limits as the strain rate increases. These phenomena can be investigated by means of a model capable of accounting for damage phenomena in relation to viscous effects. The visco-hyperelastic-damage model developed is defined on the basis of a Helmholtz free energy function depending on the strain-damage history. In particular, a specific damage criterion is formulated in order to evaluate the influence of the strain rate on damage. The model can be implemented in a general purpose finite element code. The accuracy of the formulation is evaluated by using results of experimental tests performed on animal model, accounting for different strain rates and for strain states capable of inducing damage phenomena. The comparison shows a good agreement between numerical results and experimental data. 相似文献
3.
An interface model for the periodontal ligament 总被引:2,自引:0,他引:2
A nonlinear interface constitutive law is formulated for modeling the mechanical behavior of the periodontal ligament. This gives an accurate interpolation of the few available experimental results and provides a reasonably simple model for mechanical applications. The model is analyzed from the viewpoints of both mathematical consistency and effectiveness in numerical calculations. In order to demonstrate the latter, suitable two- and three-dimensional nonlinear interface finite elements have been implemented. 相似文献
4.
Limbert G Middleton J Laizans J Dobelis M Knets I 《Computer methods in biomechanics and biomedical engineering》2003,6(5-6):337-345
This study describes the development of a constitutive law for the modelling of the periodontal ligament (PDL) and its practical implementation into a commercial finite element code. The constitutive equations encompass the essential mechanical features of this biological soft tissue: non-linear behaviour, large deformations, anisotropy, distinct behaviour in tension and compression and the fibrous characteristics. The approach is based on the theory of continuum fibre-reinforced composites at finite strain where a compressible transversely isotropic hyperelastic strain energy function is defined. This strain energy density function is further split into volumetric and deviatoric contributions separating the bulk and shear responses of the material. Explicit expressions of the stress tensors in the material and spatial configurations are first established followed by original expressions of the elasticity tensors in the material and spatial configurations. As a simple application of the constitutive model, two finite element analyses simulating the mechanical behaviour of the PDL are performed. The results highlight the significance of integrating the fibrous architecture of the PDL as this feature is shown to be responsible for the complex strain distribution observed. 相似文献
5.
Narrowing of the spinal canal generates an amalgamation of stresses within the spinal cord parenchyma. The tissue’s stress state cannot be quantified experimentally; it must be described using computational methods, such as finite element analysis. The objective of this research was to propose a compressible, transversely isotropic constitutive model, an augmentation of the isotropic Mooney–Rivlin hyperelastic strain energy function, to describe the guinea pig spinal cord white matter. Model parameters were derived from a combination of inverse finite element analysis on transverse compression experiments and least squared error analysis applied to quasi-static longitudinal tensile tests. A comparison of the residual errors between the predicted response and the experimental measurements indicated that the transversely isotropic constitutive law that incorporates an offset stretch reduced the error by a factor of four when compared to other commonly used models. 相似文献
6.
The objective of this study was to define the constitutive response of brainstem undergoing finite shear deformation. Brainstem was characterized as a transversely isotropic viscoelastic material and the material model was formulated for numerical implementation. Model parameters were fit to shear data obtained in porcine brainstem specimens undergoing finite shear deformation in three directions: parallel, perpendicular, and cross sectional to axonal fiber orientation and determined using a combined approach of finite element analysis (FEA) and a genetic algorithm (GA) optimizing method. The average initial shear modulus of brainstem matrix of 4-week old pigs was 12.7 Pa, and therefore the brainstem offers little resistance to large shear deformations in the parallel or perpendicular directions, due to the dominant contribution of the matrix in these directions. The fiber reinforcement stiffness was 121.2 Pa, indicating that brainstem is anisotropic and that axonal fibers have an important role in the cross-sectional direction. The first two leading relative shear relaxation moduli were 0.8973 and 0.0741, respectively, with corresponding characteristic times of 0.0047 and 1.4538 s, respectively, implying rapid relaxation of shear stresses. The developed material model and parameter estimation technique are likely to find broad applications in neural and orthopaedic tissues. 相似文献
7.
8.
While orthodontic tooth movement (OTM) gains considerable popularity and clinical success, the roles played by relevant tissues involved, particularly periodontal ligament (PDL), remain an open question in biomechanics. This paper develops a soft-tissue induced external (surface) remodeling procedure in a form of power law formulation by correlating time-dependent simulation in silico with clinical data in vivo (p<0.05), thereby providing a systematic approach for further understanding and prediction of OTM. The biomechanical stimuli, namely hydrostatic stress and displacement vectors experienced in PDL, are proposed to drive tooth movement through an iterative hyperelastic finite element analysis (FEA) procedure. This algorithm was found rather indicative and effective to simulate OTM under different loading conditions, which is of considerable potential to predict therapeutical outcomes and develop a surgical plan for sophisticated orthodontic treatment. 相似文献
9.
Due to its significance in tooth movement, the stress/deformation field of periodontium and the alveolar bone remodeling process, periodontal ligament (PDL) cannot be excluded from the studies investigating dental biomechanics regarding its excessive deformability. Therefore, many analytical and numerical researches are carried out to simulate its response and to create a constitutive model via experiments intending to discover the material properties of PDL. The aim of this study is to formulate a user specified contact model that can be used in conjunction with finite element (FE) software and reflects PDL’s influence on neighboring structures based on the currently available information, without requiring an actual volumetric finite element mesh of ligament. The results show good agreement with available experimental tooth mobility data. Smooth stress fields are obtained on the tooth root and alveolar bone, which is a significant aspect in bone-remodeling studies. The advantage of simulating PDL as a contact model at the interface of tooth root and the alveolar process instead of a solid-meshed FE model with poor geometric morphology and/or very dense mesh is expected to save pre/post-processing workforce, to increase the accuracy and to contribute to the smoothness of interface stress distributions. 相似文献
10.
Burd HJ 《Biomechanics and modeling in mechanobiology》2009,8(3):217-231
Published data on the mechanical performance of the human lens capsule when tested under uniaxial and biaxial conditions are
reviewed. It is concluded that two simple phenomenological constitutive models (namely a linear elastic model and a Fung-type
hyperelastic model) are unable to provide satisfactory representations of the mechanical behaviour of the capsule for both
of these loading conditions. The possibility of resolving these difficulties using a structural constitutive model for the
capsule, of a form that is inspired by the network of collagen IV filaments that exist within the lens capsule, is explored.
The model is implemented within a rectangular periodic cell. Prescribed stretches are imposed on the periodic cell and the
network is allowed to deform in a non-affine manner. The performance of the constitutive model correlates well with previously
published test data. One possible application of the model is in the development of a multi-scale analysis of the mechanics
of the human lens capsule. 相似文献
11.
Anin vitro system is described which uses human diploid cells derived from the periodontal ligament. It simulates the clinical situation and is suitable for rapid cytotoxicity screening of dental materials. It can also be adapted to study various factors influencing biocompatibility. 相似文献
12.
Genna F 《Computer methods in biomechanics and biomedical engineering》2006,9(4):243-256
Some ideas are presented for the implementation of an interface finite element capable to model in 3-dimensions several mechanical features of the periodontal ligament. Such an element is based on a simple 2-cable micromechanical model, able to reproduce the periodontal ligament stiffness and strength under any loading condition, including the pure torsion of a tooth. A single cable represents a sufficiently populated sample of collagen fibres, each with an initially crimped geometry; a single collagen fibre can provide a mechanical response, in tension, only when it is completely uncoiled. The macroscopic interface behaviour is obtained by statistical integrations over the uncoiled length of each collagen fibre, up to the fibre failure. Such a model can reproduce the periodontal ligament anisotropy due to the variable fibre orientation along the tooth root, its different behaviour in tension/compression/shear, its different behaviour for extrusive/intrusive loading, and so forth. Some numerical examples illustrate the potentialities of this interface element, quite simple in essence but rather complete from an engineering viewpoint. 相似文献
13.
Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model 总被引:8,自引:0,他引:8
The collagen network in skin is largely responsible for the nonlinear mechanical stress-strain response of skin. We hypothesize that the force-stretch response of collagen is governed by the entropics of long-chain molecules. We show that a constitutive model derived from the statistical mechanics of long-chain molecules, corresponding to the fibrous collagen network in skin, captures the mechanical response of skin. A connection between the physiologically meaningful parameters of network molecular chain density and free length of collagen fibers and the constitutively significant parameters of initial modulus and limiting stretch is thus established. The relevant constitutive law is shown to have predictive capabilities related to skin histology by replicating in vivo and in vitro experimental results. From finite element simulations, this modeling approach predicts that the collagen network in hypertrophic scars is more dense and the constituent collagen fibers have shorter free lengths than in healthy skin. Additionally, the model is shown to predict that as rat skin ages, collagen network density increases and fiber free length decreases. The importance of knowledge of the in situ stress state for analyzing skin response and validating constitutive laws is also demonstrated. 相似文献
14.
In many biomechanical studies, blood vessels can be modeled as pseudoelastic orthotropic materials that are incompressible (volume-preserving) under physiological loading. To use a minimum number of elastic constants to describe the constitutive behavior of arteries, we adopt a generalized Hooke's law for the co-rotational Cauchy stress and a recently proposed logarithmic-exponential strain. This strain tensor absorbs the material nonlinearity and its trace is zero for volume-preserving deformations. Thus, the relationships between model parameters due to the incompressibility constraint are easy to analyze and interpret. In particular, the number of independent elastic constants reduces from ten to seven in the orthotropic model. As an illustratory study, we fit this model to measured data of porcine coronary arteries in inflation-stretch tests. Four parameters, n (material nonlinearity), Young's moduli E? (circumferential), E? (axial), and E? (radial) are necessary to fit the data. The advantages and limitations of this model are discussed. 相似文献
15.
Hironao Kataoka 《Journal of plant research》1982,95(3):317-330
The tip-growth ofVaucheria geminata was analyzed. The elemental rate of surface expansion (RERE) at the very apex of this alga cell reaches ca. 100% min−1. The expansion is almost isotropic; i.e. the both meridional and latitudinal components of RERE are almost equal. An antimicrotubular reagent, colchicine, caused expansion at the actively growing cell apex of this alga. This drug did not change the surface expansion rate, but altered the polarity of cell wall expansion from isotropic to transversally anisotropic. The orientation of cell wall microfibrils is random at the apex but axial at the basal cylindrical part of the cell. Colchicine did not change the fluence-response relationship for the first positive phototropism. 相似文献
16.
Chantal N. van den Broek Arjen van der Horst Marcel C. M. Rutten Frans N. van de Vosse 《Biomechanics and modeling in mechanobiology》2011,10(2):249-258
Constitutive models describing the arterial mechanical behavior are important in the development of catheterization products,
to be used in arteries with a specific radius. To prove the possible existence of a constitutive model that, provided with
a generic set of material and geometric parameters, is able to predict the radius-specific mechanical behavior of a coronary
artery, the passive pressure–inner radius (P–r
i
) and pressure–axial force change (P–ΔF
z
) relations of seven porcine left anterior descending coronary arteries were measured in an in-vitro set-up and fitted with
the model of Driessen et al. in J Biomech Eng 127(3):494–503 (2005), Biomech Model Mechanobiol 7(2):93–103 (2008). Additionally,
the collagen volume fraction, physiological axial pre-stretch, and wall thickness to inner radius ratio at physiological loading
were determined for each artery. From this, two generic parameter sets, each comprising four material and three geometric
parameters, were obtained. These generic sets were used to compute the deformation of each tested artery using a single radius
measurement at physiological loading as an artery-specific input. Artery-specific P–r
i
and P–ΔF
z
relations were predicted with an accuracy of 32 μm (2.3%) and 6 mN (29% relative to ΔF
z
-range) on average compared to the relations measured in-vitro. It was concluded that the constitutive model provided with
the generic parameters found in this study can well predict artery-specific mechanical behavior. 相似文献
17.
J M Egan 《Journal of biomechanics》1987,20(7):681-692
A model of the mechanical behaviour of soft connective tissue has been developed by considering the role of the collagen and glycosaminoglycan (GAG) components within the tissue in order to examine the mechanism by which a variation in the GAG components may exert a control over the mechanical properties of the tissue. It is proposed that the strain energy stored within the collagen fibrils of the loaded tissue can be transferred into a potential field created by the charged GAG components and their electrostatic interaction with the collagen fibrils. A fundamental mechanical unit is described to simulate this energy transfer and a combination of such units is used to represent the tissue. The computer implementation of the proposed tissue model shows it to reproduce many features which have been recognised in the rate dependent mechanical behaviour of soft tissues. These include the characteristic non-linearity of the force-deformation behaviour and the approximate invariance of the stress relaxation behaviour with deformation. The model is also consistent with earlier constitutive representations of tissue behaviour. 相似文献
18.
A new nonlinear constitutive model for the three-dimensional stress relaxation of articular ligaments is proposed. The model accounts for finite strains, anisotropy, and strain-dependent stress relaxation behavior exhibited by these ligaments. The model parameters are identified using published uniaxial stress–stretch and stress relaxation data on human medial collateral ligaments (MCLs) subjected to tensile tests in the fiber and transverse to the fiber directions (Quapp and Weiss in J Biomech Eng Trans ASME 120:757–763, 1998; Bonifasi-Lista et al. in J Orthop Res 23(1):67–76, 2005). The constitutive equation is then used to predict the nonlinear elastic and stress relaxation response of ligaments subjected to shear deformations in the fiber direction and transverse to the fiber direction, and an equibiaxial extension. A direct comparison with stress relaxation data collected by subjecting human MCLs to shear deformation in the fiber direction is presented in order to demonstrate the predictive capabilities of the model. 相似文献
19.
20.
A fundamental understanding of the mechanical properties of the extracellular matrix (ECM) is critically important to quantify the amount of macroscopic stress and/or strain transmitted to the cellular level of vascular tissue. Structural constitutive models integrate histological and mechanical information, and hence, allocate stress and strain to the different microstructural components of the vascular wall. The present work proposes a novel multi-scale structural constitutive model of passive vascular tissue, where collagen fibers are assembled by proteoglycan (PG) cross-linked collagen fibrils and reinforce an otherwise isotropic matrix material. Multiplicative kinematics account for the straightening and stretching of collagen fibrils, and an orientation density function captures the spatial organization of collagen fibers in the tissue. Mechanical and structural assumptions at the collagen fibril level define a piece-wise analytical stress-stretch response of collagen fibers, which in turn is integrated over the unit sphere to constitute the tissue's macroscopic mechanical properties. The proposed model displays the salient macroscopic features of vascular tissue, and employs the material and structural parameters of clear physical meaning. Likewise, the constitutive concept renders a highly efficient multi-scale structural approach that allows for the numerical analysis at the organ level. Model parameters were estimated from isotropic mean-population data of the normal and aneurysmatic aortic wall and used to predict in-vivo stress states of patient-specific vascular geometries, thought to demonstrate the robustness of the particular Finite Element (FE) implementation. The collagen fibril level of the multi-scale constitutive formulation provided an interface to integrate vascular wall biology and to account for collagen turnover. 相似文献