首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand the pathophysiologic mechanisms underlying Guillain-Barré syndrome (GBS), Comparative proteomic analysis of cerebrospinal fluid (CSF) between patients with GBS (the experiment group) and control subjects suffering from other neurological disorders (the control group) was carried out using two-dimensional gel electrophoresis (2-DE) technique, in combination with matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and database searching to determine abnormal CSF proteins in GBS patients. Image analysis of 2-DE gels silver stained revealed that 10 protein spots showed significant differential expression between the two groups of CSF samples. The expression of cystatin C, transthyretin, apolipoprotein E and heat shock protein 70 were decreased. However, haptoglobin, alpha-1-antitrypsin, apolipoprotein A-IV and neurofilaments were elevated. The subsequent ELISA measured the concentration of cystatin C and confirmed the result of the proteomic analysis. These identified proteins may be involved in the pathophysiological process of GBS and call for further studying the role of these proteins in the pathogenesis of the disease.  相似文献   

2.
In recent years, there are an increasing number of proteomics studies that investigated the alterations in the protein expression relevant to human diseases but none for stroke. We, therefore, attempted such a study in a paradigm of focal cerebral ischemia in rat. Rats were subjected to cerebral ischemia by unilateral occlusion of the middle cerebral artery. Global protein analysis was performed after 24h on the lesioned and sham-control cerebral cortex using two-dimensional gel electrophoresis. Protein spots with more than a 3-fold change in intensity were identified by mass spectrometry. Middle cerebral artery occlusion (MCAO) caused infarct volume of 18-22% predominantly in the cortex of the lesioned hemisphere. Two-dimensional gel electrophoresis resolved about 1500 protein spots of which only 12 were significantly upregulated by 3-46-fold. Three spots were identified to be dihydropyrimidinase-related protein 2 (DRP-2, also known as collapsin response mediator protein 2 (CRMP-2) or turned on after division, 64 kD protein (TOAD-64)). The spots varied in pI values only and this may reflect different phosphorylation status of the same protein. Two spots were identified as spectrin alpha II chain (rat fragment, also known as alpha-fodrin or non-erythroid alpha chain, SPNA-2); and one spot each for heat shock cognate protein 70 pseudogene 1 (HSC70-ps1, also known as heat shock protein 8 pseudogene 1), and tropomodulin 2 (Tmod2). The upregulation of protein expression was corroborated by observed upregulation of mRNA expression. The remaining five spots were not identified satisfactorily. As DRP-2, spectrin, and Tmod2 are involved in axonal and neurite growth as well as synaptic plasticity and maturation, the presently observed upregulation of the expression of these proteins may indicate active neuroregeneration and repair at 24h after the induction of cerebral ischemia.  相似文献   

3.
In recent years, there are an increasing number of proteomics studies that investigated the alterations in the protein expression relevant to human diseases but none for stroke. We, therefore, attempted such a study in a paradigm of focal cerebral ischemia in rat. Rats were subjected to cerebral ischemia by unilateral occlusion of the middle cerebral artery. Global protein analysis was performed after 24 h on the lesioned and sham-control cerebral cortex using two-dimensional gel electrophoresis. Protein spots with more than a 3-fold change in intensity were identified by mass spectrometry. Middle cerebral artery occlusion (MCAO) caused infarct volume of 18–22% predominantly in the cortex of the lesioned hemisphere. Two-dimensional gel electrophoresis resolved about 1500 protein spots of which only 12 were significantly upregulated by 3–46-fold. Three spots were identified to be dihydropyrimidinase-related protein 2 (DRP-2, also known as collapsin response mediator protein 2 (CRMP-2) or turned on after division, 64 kD protein (TOAD-64)). The spots varied in pI values only and this may reflect different phosphorylation status of the same protein. Two spots were identified as spectrin α II chain (rat fragment, also known as α-fodrin or non-erythroid α chain, SPNA-2); and one spot each for heat shock cognate protein 70 pseudogene 1 (HSC70-ps1, also known as heat shock protein 8 pseudogene 1), and tropomodulin 2 (Tmod2). The upregulation of protein expression was corroborated by observed upregulation of mRNA expression. The remaining five spots were not identified satisfactorily. As DRP-2, spectrin, and Tmod2 are involved in axonal and neurite growth as well as synaptic plasticity and maturation, the presently observed upregulation of the expression of these proteins may indicate active neuroregeneration and repair at 24 h after the induction of cerebral ischemia.  相似文献   

4.
Liu XD  Zeng BF  Xu JG  Zhu HB  Xia QC 《Proteomics》2006,6(3):1019-1028
To better understand the pathophysiologic mechanisms underlying spinal nerve root injury induced by lumbar disk herniation (LDH), comparative proteomic analysis of cerebrospinal fluid (CSF) between patients with LDH (the experiment group) and the otherwise healthy patients who had had implants removed from healed fractures in the lower limbs (the control group) was carried out using 2-DE followed by LC-IT-MS and database searching. Image analysis of silver-stained 2-DE gels revealed that 15 protein spots showed significant differential expression between the two groups of CSF samples (p < 0.05). After searching the database we found that in CSF of LDH patients, the expression of cystatin C, apolipoprotein A-IV, vitamin D-binding protein, neurofilament triplet L protein, IgG, tetranectin, and hemoglobin were elevated. However, ProSAAS, prostagladin D2 synthase, creatine kinase B, superoxide dismutase 1 and peroxiredoxin 2 were decreased. The subsequent ELISA measured the concentration of tetranectin, vitamin D-binding protein and cystatin C and confirmed the results of proteomic analysis. These identified proteins are involved in the pathophysiological process of spinal nerve root injury caused by herniated lumbar disk. The functional implications of the alterations in the levels of these proteins are discussed in this paper.  相似文献   

5.
The aims of this study were to demonstrate the feasibility of centrally collecting and processing high-quality cerebrospinal fluid (CSF) samples for proteomic studies within a multi-center consortium and to identify putative biomarkers for medulloblastoma in CSF. We used 2-DE to investigate the CSF proteome from 33 children with medulloblastoma and compared it against the CSF proteome from 25 age-matched controls. Protein spots were subsequently identified by a combination of in-gel tryptic digestion and MALDI-TOF TOF MS analysis. On average, 160 protein spots were detected by 2-DE and 76 protein spots corresponding to 25 unique proteins were identified using MALDI-TOF. Levels of prostaglandin D2 synthase (PGD2S) were found to be six-fold decreased in the tumor samples versus control samples (p<0.00001). These data were further validated using ELISA. Close examination of PGD2S spots revealed the presence of complex sialylated carbohydrates at residues Asn(78) and Asn(87) . Total PGD2S levels are reduced six-fold in the CSF of children with medulloblastoma most likely representing a host response to the presence of the tumor. In addition, our results demonstrate the feasibility of performing proteomic studies on CSF samples collected from patients at multiple institutions within the consortium setting.  相似文献   

6.
We used proteomic approach to analyze the protein profile of human follicular fluid (HFF) obtained from 25 normo-ovulatory women undergoing assisted reproduction techniques due to a male infertility factor. In all HFF samples analyzed we found 695 common spots distributed in the 3 to 10 pH range and in the 10-200 kDa range. Only 625 of these spots were also present in the plasma. We used MALDI-TOF-MS analysis to unequivocally assign 183 HFF/plasma matched spots and 27 HFF/plasma unmatched spots. A large number of acute-phase proteins, including transferrin, ceruloplasmin, afamin, hemopexin, haptoglobin and plasma amyloid protein, were identified in HFF in relatively high concentration supporting the hypothesis that mammalian ovulation can be compared to an inflammatory event. We also identified several important antioxidant enzymes; i.e., catalase, superoxide dismutase, glutathione transferase, paraoxonase, heat shock protein 27 and protein disulfide isomerase. This indicates that during maturation the human follicle is well protected against toxic injury due to oxidative stress.  相似文献   

7.
We report a global proteomic approach for analyzing brain tissue and for the first time a comprehensive characterization of the whole mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 nonredundant proteins ( approximately 34% of the predicted mouse proteome). A total of 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models. The proteomic approach presented here may have broad applications for rapid proteomic analyses of various mouse models of human brain diseases.  相似文献   

8.
9.
Clinical cancer proteomics: promises and pitfalls   总被引:5,自引:0,他引:5  
Proteome analysis promises to be valuable for the identification of tissue and serum biomarkers associated with human malignancies. In addition, proteome technologies offer the opportunity to analyze protein expression profiles and to analyze the activity of signaling pathways. Many published proteomic studies of human tumor tissue are associated with weaknesses in tumor representativity, sample contamination by nontumor cells and serum proteins. Studies often include a moderate number of tumors which may not be representative of clinical materials. It is therefore very important that biomarkers identified by proteomics are validated in representative tumor materials by other techniques, such as immunohistochemistry. Proteome technologies can be used to identify disease markers in human serum. Tumor derived proteins are present at nanomolar to picomolar concentrations in cancer patient sera, 10(6)-10(9)-fold lower than albumin, and will give rise to correspondingly smaller spots/peaks in protein separations. This leads to the need to prefractionate serum samples before analysis. Despite various pitfalls, proteomic analysis is a promising approach to the identification of biomarkers, and for generation of protein expression profiles that can be analyzed by artificial learning methods for improved diagnosis of human malignancy. Recent advances in the field of proteomic analysis of human tumors are summarized in the present review.  相似文献   

10.

Background

Alzheimer’s disease (AD) is the most common type of dementia affecting people over 65 years of age. The hallmarks of AD are the extracellular deposits known as amyloid β plaques and the intracellular neurofibrillary tangles, both of which are the principal players involved in synaptic loss and neuronal cell death. Tau protein and Aβ fragment 1–42 have been investigated so far in cerebrospinal fluid as a potential AD biomarkers. However, an urgent need to identify novel biomarkers which will capture disease in the early stages and with better specificity remains. High-throughput proteomic and pathway analysis of hippocampal tissue provides a valuable source of disease-related proteins and biomarker candidates, since it represents one of the earliest affected brain regions in AD.

Results

In this study 2954 proteins were identified (with at least 2 peptides for 1203 proteins) from both control and AD brain tissues. Overall, 204 proteins were exclusively detected in AD and 600 proteins in control samples. Comparing AD and control exclusive proteins with cerebrospinal fluid (CSF) literature-based proteome, 40 out of 204 AD related proteins and 106 out of 600 control related proteins were also present in CSF. As most of these proteins were extracellular/secretory origin, we consider them as a potential source of candidate biomarkers that need to be further studied and verified in CSF samples.

Conclusions

Our semiquantitative proteomic analysis provides one of the largest human hippocampal proteome databases. The lists of AD and control related proteins represent a panel of proteins potentially involved in AD pathogenesis and could also serve as prospective AD diagnostic biomarkers.  相似文献   

11.
Pinus radiata is one of the most economically important forest tree species, with a worldwide production of around 370 million m (3) of wood per year. Current selection of elite trees to be used in conservation and breeding programes requires the physiological and molecular characterization of available populations. To identify key proteins related to tree growth, productivity and responses to environmental factors, a proteomic approach is being utilized. In this paper, we present the first report of the 2-DE protein reference map of physiologically mature P. radiata needles, as a basis for subsequent differential expression proteomic studies related to growth, development, biomass production and responses to stresses. After TCA/acetone protein extraction of needle tissue, 549 +/- 21 well-resolved spots were detected in Coommassie-stained gels within the 5-8 pH and 10-100 kDa M(r) ranges. The analytical and biological variance determined for 450 spots were of 31 and 42%, respectively. After LC/MS/MS analysis of in-gel tryptic digested spots, proteins were identified by using the novel Paragon algorithm that tolerates amino acid substitution in the first-pass search. It allowed the confident identification of 115 out of the 150 protein spots subjected to MS, quite unusual high percentage for a poor sequence database, as is the case of P. radiata. Proteins were classified into 12 or 18 groups based on their corresponding cell component or biological process/pathway categories, respectively. Carbohydrate metabolism and photosynthetic enzymes predominate in the 2-DE protein profile of P. radiata needles.  相似文献   

12.
Proteome profiling of human epithelial ovarian cancer cell line TOV-112D   总被引:3,自引:0,他引:3  
A proteome profiling of the epithelial ovarian cancer cell line TOV-112D was initiated as a protein expression reference in the study of ovarian cancer. Two complementary proteomic approaches were used in order to maximise protein identification: two-dimensional gel electrophoresis (2DE) protein separation coupled to matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and one-dimensional gel electrophoresis (1DE) coupled to liquid-chromatography tandem mass spectrometry (LC MS/MS). One hundred and seventy-two proteins have been identified among 288 spots selected on two-dimensional gels and a total of 579 proteins were identified with the 1DE LC MS/MS approach. This proteome profiling covers a wide range of protein expression and identifies several proteins known for their oncogenic properties. Bioinformatics tools were used to mine databases in order to determine whether the identified proteins have previously been implicated in pathways associated with carcinogenesis or cell proliferation. Indeed, several of the proteins have been reported to be specific ovarian cancer markers while others are common to many tumorigenic tissues or proliferating cells. The diversity of proteins found and their association with known oncogenic pathways validate this proteomic approach. The proteome 2D map of the TOV-112D cell line will provide a valuable resource in studies on differential protein expression of human ovarian carcinomas while the 1DE LC MS/MS approach gives a picture of the actual protein profile of the TOV-112D cell line. This work represents one of the most complete ovarian protein expression analysis reports to date and the first comparative study of gene expression profiling and proteomic patterns in ovarian cancer.  相似文献   

13.
A proper sample preparation, in particular, abundant protein removal is crucial in the characterization of low-abundance proteins including those harboring post-translational modifications. In human cerebrospinal fluid (CSF), approximately 80% of proteins originate from serum, and removal of major proteins is necessary to study brain-derived proteins that are present at low concentrations for successful biomarker and therapeutic target discoveries for neurological disorders. In this study, phospho- and glycoprotein specific fluorescent stains and mass spectrometry were used to map proteins from CSF on two-dimensional gel electropherograms after immunoaffinity based protein removal. Two protein removal methods were evaluated: batch mode with avian IgY antibody microbeads using spin filters and HPLC multiple affinity removal column. Six abundant proteins were removed from CSF: human serum albumin (HSA), transferrin, IgG, IgA, IgM, and fibrinogen with batch mode, and HSA, transferrin, IgG, IgA, antitrypsin, and haptoglobin with column chromatography. 2D gels were compared after staining for phospho-, glyco- and total proteins. The column format removed the major proteins more effectively and approximately 50% more spots were visualized when compared to the 2D gel of CSF without protein depletion. After protein depletion, selected phospho- and glycoprotein spots were identified using mass spectrometry in addition to some of the spots that were not visualized previously in nondepleted CSF. Fifty proteins were identified from 66 spots, and among them, 12 proteins (24%) have not been annotated in previously published 2D gels.  相似文献   

14.
15.
帕金森病(Parkinson′s disease,PD)是一种中枢神经系统慢性进展性疾病.本研究采用双向凝胶电泳(two-dimensional gel electrophoresis,2-DE)分离脑脊液(cerebrospinal fluid,CSF)蛋白,获得2-DE图谱,通过ImageMaster 2D Elite软件分析寻找两组的差异蛋白点.结果显示,PD患者CSF中有4个蛋白点丰度下降,22个蛋白点丰度上升.还利用电喷雾质谱(electrospray ionization-tandem mass spectrometric,ESI-MS)对差异蛋白点进行鉴定,发现丰度上升的蛋白点有电压依赖性钙通道α2/δ1亚基,结合珠蛋白,β2-微球蛋白和阿朴脂蛋白A-IV前体,丰度下降的蛋白点为转铁蛋白和转甲状腺蛋白.研究发现,PD患者与对照组CSF蛋白质表达有明显差异,对差异蛋白进行质谱鉴定并了解它们的功能,为以后进一步研究他们在PD发病机制和病程进展中的作用奠定基础.  相似文献   

16.
Proteomics methodologies hold great promise in basic renal research and clinical nephrology. The classical approach for proteomic analysis couples two-dimensional gel electrophoresis (2-DE) with protein identification by mass spectrometry, to produce more global information regarding normal protein expression and alterations in different physiological and pathological states. In this report we have expanded the identification of proteins in the renal cortex, improving the previously published map to facilitate the study of different diseases affecting the human kidney. About 250 spots were analyzed by peptide mass fingerprinting, 89 proteins and 74 isoforms for some of them were identified and implemented in the normal human renal cortex 2-DE reference map. This more comprehensive view of the proteome of the human renal cortex could be of invaluable help to the differential proteomic display of urological diseases.  相似文献   

17.
18.
A proteomic approach was used to search for larval proteins specific to the mussel Mytilus galloprovincialis from Galicia in northwest Spain. The study included both a comparative analysis, through two-dimensional electrophoresis, of protein expression maps of the larvae of the mussel and of 5 abundant and commercially important bivalve species from the region (Ostrea edulis, Cerastoderma edule, Pecten maximus, Tapes decussatus, and Venarupis pullastra) and subsequent mass spectrometric analysis of some of the protein spots. A total of 18 spots were selected and isolated from gels of M. galloprovincialis larvae. From their relative position on the electrophoresis gels, 6 of these were clearly exclusive to the mussel species. However, it was not clear whether the other spots were shared by other species. To overcome this ambiguity, first an analysis using matrix assisted laser desorption ionization with time-of-flight (MALDI-TOF) was conducted on the 6 spots of Mytilus that could possibly be shared with only one species. The peptide mass fingerprinting was completely different for the proteins compared. This result confirmed that the 6 proteins were exclusively mussel proteins, but demonstrated the utility of this approach when working with species that are poorly represented at the protein level in databases.  相似文献   

19.
Human follicular fluid (hFF) is the in vivo environment of oocytes during follicular maturation in the ovaries. It contains a huge variety of compounds such as, e.g., proteins that might play an important role in follicular development and oocyte growth. Previous proteomic studies on follicular fluid have isolated and already identified a certain number of proteins. Nevertheless, only a small part of proteins present in follicular fluid have been covered so far and a large number have still not been identified. Therefore, the need for new, more resolving, and sensitive approaches in proteome research is evident. We utilized a proteomic setup based on in solution isoelectric focusing (IEF) and reversed-phase nanoliquid chromatography coupled to matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (nano-LC MALDI TOF/TOF MS) for in depth protein analysis of human follicular fluid samples of patients undergoing controlled ovarian hyper stimulation (COH) for in vitro fertilization therapy (IVF). This approach led to the significant identification of 69 proteins, where 32 have not been reported before to be found in human follicular fluid with proteomic methods. Among these findings, at least two relevant compounds essentially involved in hormone secretion regulation during the folliculogenetic process were identified: sex hormone binding globulin (SHBG) and inhibin A (INHA). To confirm these results, both proteins were further validated by immunoassays.  相似文献   

20.
Low TY  Seow TK  Chung MC 《Proteomics》2002,2(9):1229-1239
A classical proteomic analysis was used to establish a reference map of proteins associated with healthy human erythrocyte ghosts. Following osmotic lysis and differential centrifugation, ghost proteins were separated by either one-dimensional gel electrophoresis (1-DE) or two-dimensional gel electrophoresis (2-DE). Selected protein bands or spots were excised and trypsinized before mass spectrometric analyses and data mining was performed using the SWISS-PROT and NCBI nonredundant databases. A total of 102 protein spots from a 2-D gel were successfully identified. These corresponded to 59 distinct polypeptides with the remaining 43 being isoforms. As for the 1-D gel, 44 polypeptides were identified, of which 19 were also found on the 2-D gel. Most of the 19 common polypeptides were membrane cytoskeletal proteins that are often referred to as the "band" proteins. The remaining 25 polypeptides that were found exclusively on 1-D gels were proteins with high hydrophobicity (e.g., sorbitol dehydrogenase and glucose transporter) and high molecular mass (e.g., Kell blood group glycoprotein and Janus-kinase 2). A higher number of signaling proteins was also identified on 1-D gels compared to 2-D gels. These included Ras, cAMP dependent protein kinase and TGF-beta receptor type 1 precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号